Advertisement

Brittle Fracture of ABS — Investigation of the Morphology—Failure Relationship

  • B. Möginger
  • G. H. Michler
  • H. C. Ludwig
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The polymers belonging to the class of acrylonitrile—butadiene—styrene copolymers (ABS) are toughened modifications of styrene—acrylonitrile (SAN) copolymers. The toughening modification is achieved by dispersing submicroscopically small elastomeric particles — mainly derived from butadiene — in the coherent, brittle SAN matrix.

Keywords

Tensile Test Brittle Fracture Creep Test Tangent Modulus Bimodal Particle Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Platt A. E. (1989): Rubber modification of plastics. In: Comprehensive Polymer Science. The Synthesis, Characterization, Reactions & Applications of Polymers (Allen G., Bevington J. C., Chairmen) Vol. 6: Polymer Reactions ( Eastmond G. C., Ledwith A., Russo S., Sigwatt P., Eds.) Pergamon, Oxford, New York: 437–449Google Scholar
  2. 2.
    Bucknall C. B. (1977): Toughened Plastics. Applied Science, LondonGoogle Scholar
  3. 3.
    Domininghaus H. (1998): Die Kunststoffe und ihre Eigenschaften. 5th edition, Springer, Berlin, HeidelbergGoogle Scholar
  4. 4.
    Michler G. H. (1986): Determination of the morphology and mechanical microprocesses in polymer combinations by electron microscopy. Polymer 27: 323–328CrossRefGoogle Scholar
  5. 5.
    Starke J. U., Godehardt R., Michler G. H., Bucknall C. B. (1997): Mechanisms of cavitation over a range of temperatures in rubber-toughened PSAN modified with three-stage core—shell particles. J. Mat. Sci. 32: 1855–1860Google Scholar
  6. 6.
    Goodier J. N. (1993): Concentration of stress around spherical and cylindrical inclusions and flaws. Trans. ASME 55: 39Google Scholar
  7. 7.
    Ondracek G. (1978): Zum Zusammenhang zwischen Eigenschaften und Gefügestruktur mehrphasiger Werkstoffe, Teil III: Zur Theorie des Zusammenhangs zwischen Gefügestruktur und Elastizitätsmodul. Z. Werkstofftechnik 9: 31–36CrossRefGoogle Scholar
  8. 8.
    Oswald I. A., Menges G. (1995): Materials Science of Polymers for Engineerings. Carl Hanser, Munich, ViennaGoogle Scholar
  9. 9.
    Retting W. (1977): Deformations-und Bruchmechanismen in mehrphasigen Polymersystemen. Angew. Makromol. Chem. 58 /59: 133–174CrossRefGoogle Scholar
  10. 10.
    Gust H. (1993): Material behaviour of prestressed ABS. In: Proceedings of the 13th Stuttgarter Kunststoff-Kolloquium, Stuttgart, Germany, March 17–18: 353–358Google Scholar
  11. 11.
    Pöllet P. (1985): Automatisierte Zeitstandprüfung — Verfahren mit berührungsloser Dehnungsmessung. Kunstst. — Germ. Plast. 75: 829–833Google Scholar
  12. 12.
    Gust H., Starke J.-U. (1995): Correlation between changed material behaviour and structure of prestressed ABS. In: Proceedings of the 14th Stuttgarter Kunststoff-Kolloquium, Stuttgart, Germany, March 22–23: 6.3/1–6.3/12Google Scholar
  13. 13.
    Michler G. H. (1998): Microstructural construction of polymers with improved mechanical properties. Polym. Adv. Technol. 9: 812–822Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Möginger
    • 1
  • G. H. Michler
    • 2
  • H. C. Ludwig
    • 3
  1. 1.StuttgartGermany
  2. 2.MerseburgGermany
  3. 3.BöblingenGermany

Personalised recommendations