Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1031 Accesses

Abstract

It is well known that toughness, defined in the engineering sense as the material resistance against stable and unstable crack propagation or fracture, is a highly important material property. Since excessively small values of toughness often restrict the application fields of polymeric materials, various ways derived from materials science of toughening brittle polymers (for instance SAN) have been developed (such as blending with or without compatibilizer, and copolymerization). This toughening is achieved by heterogenization of the material, i.e. incorporation of fmely dispersed rubber particles into the matrix material [1]. Morphological parameters such as particle size and distance, matrix—particle adhesion, and the internal structure of particles, which vary with production conditions (i.e. synthesis and processing), strongly affect the morphology—toughness correlations since the processes of stable and unstable crack initiation and propagation and of energy dissipation are influenced in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bucknall C. B. (1977): Toughened Plastics. Applied Science, London

    Google Scholar 

  2. Merkle J. G., Corten H. T. (1974): ASME Paper 74. J. Pressure Vessel Technol. 96, 4: 286ff.

    Google Scholar 

  3. Grellmann W., Sommer J.-P. (1986): Toughness properties description of polymers using the J-integral concept. In: Fracture Mechanics, Micromechanics and Coupled Fields (FMC) Series, No. 17, Institut für Mechanik, Berlin, Chemnitz: 48–72

    Google Scholar 

  4. Grellmann W., Jungbluth M. (1987): Application of the crack-opening displacement concept for determining geometry-independent fracture mechanical parameters in the instrumented Charpy impact test. In: Fracture Mechanics, Micromechanics and Coupled Fields (FMC) Series, No. 37, Institut für Mechanik, Berlin, Chemnitz: 186–192

    Google Scholar 

  5. Leevers P. S. (1999): Fracture mechanics. In: Swallowe G. M. (Ed.) Mechanical Properties and Testing of Polymers–An A-Z Reference. Kluwer Academic, Dordrecht: 96–101

    Google Scholar 

  6. Grellmann W., Seidler S. (1999): Possibilities and limits of standards and drafts for JR-curve determination on polymers. In: Winkler T., Schubert A. (Eds.) Material Mechanics–Fracture Mechanics–Micromechanics. DDP Goldenbogen, Dresden, Germany: 336–341

    Google Scholar 

  7. Nielsen I. E. (1967): Mechanical properties of particle-filled systems. J. Compos. Mater. 1: 100–119

    Google Scholar 

  8. Michler G. H. (1992): Kunststoff-Mikromechanik. Morphologie, Deformations-und Bruchmechanismen. Carl Hanser, Munich, Vienna

    Google Scholar 

  9. Grellmann W., Lach R. (1997): Toughness and relaxation behaviour of poly(methyl methacrylate), polystyrene and polycarbonate. Appl. Macromol. Chem. Phys. 253: 27–49

    Google Scholar 

  10. Lach R., Grellmann W. (2000): Estimation of the resistance against stable crack initiation and unstable crack propagation, R-curves and stability assessment diagrams in ductile polymeric ABS materials. In: Proceedings of the 13th European Conference on Fracture (ECF 13), San Sebastian, Spain, September 6–9, CD-ROM Polymer und Composites No. 20: 1–8

    Google Scholar 

  11. Gaymans R. J., Borggreve R. J. M., Oostenbring A. J. (1990): Toughening behavior of polyamide-rubber blends. Macromol. Chem. Macromol. Symp. 38: 125–136

    Google Scholar 

  12. Borggreve R. J. M., Gaymans R. J., Schuijer J. (1989): Impact behaviour of nylon-rubber blends: 5. Influence of the mechanical properties of the elastomer. Polymer 30: 71–77

    Google Scholar 

  13. Seidler S., Grellmann W. (1993): Fracture behaviour and morphology of PC/ABS blends. J. Mat. Sci. 28: 4078–4084

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lach, R., Grellmann, W., Krüger, P. (2001). Crack Toughness Behaviour of ABS Materials. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics