Toughness Optimization of Multi-Phase Polymer Materials Based on a PP Matrix Using Fracture Mechanics Parameters

  • S. Seidler
  • W. Grellmann
Part of the Engineering Materials book series (ENG.MAT.)


Besides the development of new materials, the emphasis of international polymer science is on the extension of the range of application of the currently available polymers. Possible ways of achieving this purpose are filling and reinforcing the polymer to increase the strength and stiffness, and the production of blends and copolymers to increase the stiffness, toughness, heat deflection temperature, weathering resistance and environmental-stress-cracking resistance, and to improve the processability. These blends and copolymers consist of a continuous polymer phase and one or several dispersed phases. The dispersed phases may be either polymers or other components. Such materials are summarized in the term ‘multi-phase polymer materials’ [1].


Interparticle Distance Ethylene Content Stable Crack Growth Energy Dissipation Capacity Particle Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osswald T. A., Menges G. (1995): Materials Science of Polymers for Engineers. Carl Hanser, Munich, ViennaGoogle Scholar
  2. 2.
    Bucknall C. B. (1994): Role of the rubber particle in toughened plastics. In: Proceedings of Polymat 94, London, U.K.: 567–570Google Scholar
  3. 3.
    Agarwal C. M., Hunter K., Pearsall G. W., Henkens R. W. (1992): Application of scanning tunneling microscopy to the study of fracture morphology of polycarbonate. J. Mat. Sci. 27: 2606–2612Google Scholar
  4. 4.
    Bubeck R. A., Buckley Jr. D. J., Kramer E. J., Brown H. R. (1991): Modes of deformation in rubber-modified thermoplastics during tensile impact. J. Mat. Sci. 26: 6249–6259Google Scholar
  5. 5.
    Michler G. H. (1993): The role of interparticle distance in maximizing the toughness of high-impact thermoplastics. Acta Polym. 44: 113–124CrossRefGoogle Scholar
  6. 6.
    Donald A. M., Kramer E. J. (1982): Craze initiation and growth in high impact polystyrene. J. Appl. Polym. Sci. 27: 3729–3741Google Scholar
  7. 7.
    Argon A. S. (1988): Sources of toughness in polymers. In: Proceedings of the 7th European Conference on Fracture (ECF 7 ), Budapest, Hungary, Vol. II: 2661–2681Google Scholar
  8. 8.
    Mauzac O., Schirrer R. (1989): Effect of particle volume fraction on crack tip crazes in high impact poly(methyl methacrylate). J. Appl. Polym. Sci. 38: 2289–2302Google Scholar
  9. 9.
    Guiu F., Stevens R. N. (1991): Physical interpretation of fracture-toughening mechanisms. J. Mat. Sci. 26: 4375–4382Google Scholar
  10. 10.
    Pearson R. A., Yee A. F. (1991): Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J. Mat. Sci. 26: 3828–3844Google Scholar
  11. 11.
    Chen T. K., Jan Y. H. (1991): Toughening mechanism for a rubber-toughened epoxy resin with rubber/matrix interfacial modification. J. Mat. Sci. 26: 5848–5858Google Scholar
  12. 12.
    Gupta A. K., Ratnam B. K. et al. (1992): Impact toughening of polypropylene by ethylene vinyl acetate copolymer. J. Appl. Polym. Sci. 45: 1303–1312Google Scholar
  13. 13.
    Michler G. H. (1992): Kunststoff-Mikromechanik. Carl Hanser, Munich, ViennaGoogle Scholar
  14. 14.
    Galli P. (1994): The breakthrough in catalysis and processes for olefin polymerization: innovative structures and a strategy in the materials area for the twenty-first century. Prog. Polym. Sci. 19: 959–974CrossRefGoogle Scholar
  15. 15.
    Neißl W., Ledwinka H. (1993): Polypropylene — the future has only just begun. Kunst. — Ger. Plast. 83: 577–583Google Scholar
  16. 16.
    Seiler E. (1995): Polypropylene is able to do more. Kunst. — Germ. Plast. 85: 1109–1116Google Scholar
  17. 17.
    Borggreve R. J. M., Gaymans R. J., Eichenwald H. M. (1989): Impact behaviour of nylon—rubber blends: 6. Influence of structure on voiding processes; toughening mechanism. Polymer 30: 78–83Google Scholar
  18. 18.
    Borggreve R. J. M., Gaymans R. J., Schuijer R. J., Ingen Housz J. F. (1987): Brittle-tough transition in nylon-rubber blends; effect of rubber concentration and particle size. Polymer 28: 1489–1496CrossRefGoogle Scholar
  19. 19.
    Ouederni M., Phillips P. J. (1995): Influence of morphology on the fracture toughness of isotactic polypropylene. J. Polym. Sci., Polym. Phys. 33: 1313–1322Google Scholar
  20. 20.
    Kotter I., Grellmann W., Seidler S. (2000): Crack toughness behaviour and morphology of PP-blends. In: Proceedings of Polymeric Materials (P 2000 ), Halle, Germany, September 25–27: 368–371Google Scholar
  21. 21.
    Seidler S., Koch T., Kotter I., Grellmann W. (2000): Crack initiation processes in polymers. In: Proceedings of the 13th European Conference on Fracture (ECF 13), San Sebastian, Spain, September 6–9, CD-ROM Polymer and Composites No. 17: 1–8Google Scholar
  22. 22.
    Grellmann W., Seidler S., Kotter I. (2000): Brittle-to-tough transition in toughened polypropylene copolymers. In: Proceedings of the 13th European Conference on Fracture (ECF 13), San Sebastian, Spain, September 6–9, CD-ROM Polymer and Composites No. 24: 1–8Google Scholar
  23. 23.
    Grellmann W., Seidler S., Jung K., Kotter I. (2001): Crack-resistance behavior of polypropylene copolymers. J. Appl. Polym. Sci. 79: 2317–2325Google Scholar
  24. 24.
    Seidler S., Grellmann W. (1999): Application of the crack resistance concept to the toughness characterization of high impact thermoplastics. In: Kahovec I. (Ed.) Mechanical Behaviour of Polymeric Materials. Wiley-VCH, Weinheim: 63–72Google Scholar
  25. 25.
    Seidler S. (1998): Anwendung des Rißwiderstandskonzeptes zur Ermittlung strukturbezogener bruchmechanischer Werkstofficenngrößen bei dynamischer Beanspruchung. Fortschritt-Berichte, VDI Series 18: Mechanik/Bruchmechanik No. 18, VDI, DüsseldorfGoogle Scholar
  26. 26.
    Standard Draft ESIS TC4 (1995): A Testing Protocol for Conducting J-Crack Growth Resistance Curve Tests on PlasticsGoogle Scholar
  27. 27.
    Will P. (1994): R curves for energy dissipative materials. J. Mat. Sci. 29: 2335–2340CrossRefGoogle Scholar
  28. 28.
    Kim G. M., Michler G. H. (1998): Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology. Polymer 39: 5689–5697Google Scholar
  29. 29.
    Starke J. U., Michler G. H., Grellmann W., Seidler S., Gahleitner M., Fiebig J., Nezbedova E. (1998): Fracture toughness of polypropylene copolymers: influence of interparticle distance and temperature. Polymer 39: 75–82CrossRefGoogle Scholar
  30. 30.
    Wu, S. (1983): Impact fracture mechanisms in polymer blends: rubber toughened nylon. J. Polym. Sci., Polym. Phys. 21: 699–716Google Scholar
  31. 31.
    Wu S. (1985): Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26: 1855–1863CrossRefGoogle Scholar
  32. 32.
    Margolina A. (1990): Toughening mechanism for nylon/rubber blends: the effect of temperature. Polym. Commun. 31: 95 ffGoogle Scholar
  33. 33.
    Hobbs S. Y., Bopp R. C., Watkins V. H. (1983): Toughened nylon resins. Polym. Engng. Sci. 23: 380–389Google Scholar
  34. 34.
    Sjoerdsma S. D. (1989): The tough-brittle transition in rubber modified polymers. Polym. Commun. 30: 106–108Google Scholar
  35. 35.
    Margolina A., Wu S. (1988): Percolation model for brittle—tough transition in nylon/rubber blends. Polymer 29: 2170–2173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • S. Seidler
    • 1
  • W. Grellmann
    • 1
  1. 1.MerseburgGermany

Personalised recommendations