Skip to main content

Concepts of Fracture Mechanics for Polymers

  • Chapter
Deformation and Fracture Behaviour of Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The concepts of fracture mechanics received increasing interest during the last 60 years, when large objects such as ships, tanks and jets suddenly fractured in service, although on the basis of the conventional data for stiffness and strength this failure should not have happened [1]. Microdefects and flaws in the materials have been identified as the origin of this unexpected failure. These defects, which in nearly every material grow to an over-critical size during use of the item, fmally become unstable and initiate a catastrophic fracture. Consequently, it has become urgent to study the instability of cracks, which is the subject of fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marder M., Fineberg J. (1996): How things break. Phys. Today, September 1996: 25

    Google Scholar 

  2. Griffith A. A. (1920): The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A221: 163-198

    Google Scholar 

  3. Williams J. G. (1980): Stress Analysis of Polymers. Ellis Horwood

    Google Scholar 

  4. ISO/DIS 13586.2 (1998): Plastics - Determination of Fracture Toughness (Gc and KO -Linear Elastic Fracture Mechanics (LEFM) Approach

    Google Scholar 

  5. Hahn H. G. (1970): Spannungsverteilung an Rissen in festen Körpern. VDI-Forschungsheft 542: 1-46

    Google Scholar 

  6. Rice J. R. (1968): A path independent integral and the approximation analysis of strain concentration by notches and cracks. J. Appl. Mech. 35: 379-386

    Google Scholar 

  7. Weidmann G., Doll W. (1976): Interferenzoptische Vermessung der Craze-Zonen vor der Rißspitze in PMMA. Colloid Polym. Sci. 254: 205-214

    Google Scholar 

  8. Williams J. G., Cawood M. J. (1990): European group on fracture: K K and G, methods for polymers. Polym. Test. 9: 15-26

    Google Scholar 

  9. ISO/DIS 15850 (1999): Plastics - Determination of Tension Fatigue Crack Propagation - Linear Elastic Fracture Mechanics (LEFM) Approach

    Google Scholar 

  10. Newmann L. V., Williams J. G. (1978): The impact behaviour of ABS over a range of temperatures. In: Proceedings of the International Conference on Toughening of Plastics, London, July 1978: 18.1-18.8

    Google Scholar 

  11. Ramsteiner F. (1996): Method to evaluate the strength of interfaces in polymeric systems. Polym. Test. 15: 573-584

    Google Scholar 

  12. Gibson L. J., Ashby M. F. (1988): Cellular Solids. Pergamon, Oxford.

    MATH  Google Scholar 

  13. Heckmann W., Ramsteiner F., Theysohn R. (1980): Effects influencing the fibre concentration dependence of tensile strength of unidirectional, short-glass fibre reinforced thermoplastics. In: Proceedings of ICCM 3, Advances in Composite Materials, Paris (France): 95-103

    Google Scholar 

  14. Erdogan F., Sih G. C. (1963): On the crack extension in plates under plane loading and transverse shear. J. Basic Engng.: 519-527

    Google Scholar 

  15. Ramsteiner F. (1993): An approach towards understanding mode II failure in PMMA. Polymer 34: 312-317

    Google Scholar 

  16. Hashemi S., Williams J. G. (1986): A fracture toughness study on low density and linear low density polyethylene. Polymer 27: 384-392

    Google Scholar 

  17. ASTM E 1152 (1987): Standard Test Method for Determining J-R Curves

    Google Scholar 

  18. Zhou Z., Landes J. D., Huang D. D. (1994): J-R curve calculation with the normalization method for toughened polymers. Polym. Engng. Sci. 34: 128-134

    Google Scholar 

  19. Che M., Grellmann W., Seidler S., Landes J. D. (1997): Application of a normalization method for determining J-R curves in glassy polymer PVC at different crosshead speeds. Fatigue Fract. Engng. Mater. Struct. 20: 119-127

    Google Scholar 

  20. Ramsteiner F. (1999): J02-values by impact testing. Polym. Test. 18: 641-647

    Google Scholar 

  21. Seidler S., Grellmann W. (1995): Application of the instrumented impact test to the toughness characterization of high impact thermoplastics. In: Williams J. G., Pavan A. (Eds.) Impact and Dynamic Fracture of Polymers and Composites, ESIS Publication 19, Mechanical Engineering Publications, London: 171-178

    Google Scholar 

  22. Dugdale D. S. (1960): Yielding of steel sheets containing slits. J. Mech. Phys. 8: 100-104

    Google Scholar 

  23. Mai Y. W., Cotterell B. (1991): On the essential work of ductile fracture in polymers. J. Polym. Sci., Polym. Phys. 29: 785-793

    Google Scholar 

  24. Karger-Kocsis J. (1996): How does ’phase transformation toughening’ work in semicrystalline polymers? Polym. Engng. Sci. 36: 203-210

    Google Scholar 

  25. Clutton E. Q. (2000): ESIS TC4 experience with the essential work of fracture method applied to plastics films. In: Williams J. G., Pavan A. (Eds.) Composites and Adhesives. ESIS Publication, Elsevier Science Ltd, Oxford: 187-199

    Google Scholar 

  26. Wong S. C., Hai Y. W. (1999): Essential fracture work of short fiber reinforced polymer blends. Polym. Engng. Sci. 39: 356-364

    Google Scholar 

  27. Casellas J. J., Frontini P. M., Carella J. M. (1999): Fracture characterization of low-density polyethylenes by the essential work of fracture: changes induced by thermal treatments and testing temperature. J. Appl. Polym. Sci. 74: 781-796

    Google Scholar 

  28. Maspoch M. L., Ferrer D., Gordillo A., Santana O. O., Martinez A. B. (1999): Effect of specimen dimensions and the test speed on the fracture toughness of iPP by the essential work of fracture (EWF) method. J. Appl. Polym. Sci. 73: 177-187

    Google Scholar 

  29. Karger-Kocsis J. (1999): Toward understanding the morphology-related crack initiation and propagation behaviour in polypropylene systems as assessed by the essential work of fracture approach. J. Macromol. Sci. Phys. B (5 & 6) 38: 635-646

    Google Scholar 

  30. Raab M., Kotek J., Baldrian J., Grellmann W. (1998): Toughness profile of injection-molded polypropylene: The effect of the fi-modification. J. Appl. Polym. Sci. 69: 2255-2259

    Google Scholar 

  31. ASTM D 3433 (1999): Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Joints

    Google Scholar 

  32. Kinloch A. L., Lau C. C., Williams J. W. (1994): The peeling of flexible laminates. Int. J. of Fract. 66: 45-70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramsteiner, F., Schuster, W., Forster, S. (2001). Concepts of Fracture Mechanics for Polymers. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics