Skip to main content

An Alternative Method Based on JT J and δT δ Stability Assessment Diagrams to Determine Instability Values from Crack Resistance Curves

  • Chapter
Deformation and Fracture Behaviour of Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1030 Accesses

Abstract

Recently, the improvement of stiffness and strength and the optimization of toughness behaviour have become an important focus of engineering science because of the expanding fields of application of polymeric materials not only for common, but also for constructional purposes [1]. Measurement of crack resistance curves (R-curves) using the stop block method with the multiple-specimen technique and analysis of R-curve data by means of various procedures are well established for the evaluation of toughness levels, especially those expressed as resistance against initiation and propagation of stable cracks [2–4]. However, the relatively large amount of time required for measuring and analysis and the expensive personnel involved work against considerations of economy. Hence, many research groups have been working intensively on developing approximate R-curve determination methods and on their application to polymeric materials [2,5–7]. Because of limits on the specimen geometry in standard fracture mechanics specimens and because of the loading conditions used, unstable crack propagation can often not be observed. In such cases it is also of interest to calculate material parameters describing the crack instability point [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swallowe G. M. (Ed.) (1999): Mechanical Properties and Testing of Polymers. An A—Z Reference. Polymer Science and Technology Series, Brewis D., Briggs D. (Eds.), Chapman & Hall, London

    Google Scholar 

  2. Grellmann W., Seidler S., Jung K., Kotter I. (2001): Crack-resistance behavior of propylene copolymers. J. Appl. Polym. Sci. 79: 2317–2325

    Google Scholar 

  3. Seidler S., Grellmann W. (1998): Application of crack resistance concept to the toughness characterization of high impact thermoplastics. In: Proceedings of the 18th Discussion Conference: Mechanical Behaviour of High Impact Materials, Prague, Czech, July 20–23: 63–71

    Google Scholar 

  4. Seidler S., Grellmann W. (1995): Application of the instrumented impact test of the toughness characterization of high impact thermoplastics. Polym. Test. 14: 453–469

    Google Scholar 

  5. Fasce L., Pettarin V., Bernal C., Frontini P. M. (1999): Mechanical evaluation of propylene polymers under static and dynamic loading conditions. J. Appl. Polym. Sci. 74: 2681–2693

    Google Scholar 

  6. Che M., Grellmann W., Seidler S., Landes J. D. (1997): Application of normalization in determining J—R-curves in glassy polymer PVC at different crosshead speeds. Fatigue Fract. Engng. Mater. Struct. 20: 119–127

    Google Scholar 

  7. Bernal C. R., Montemartini P. E., Frontini P. M. (1996): The use of load separation and normalization method in ductile fracture characterization of thermoplastics polymers. J. Polym. Sci., Polym. Phys. 34: 1869–1880

    Google Scholar 

  8. Han Y., Lach R., Grellmann W. (1999): Effects of rubber content and temperature on ductile tearing stability in ABS materials. Appl. Macromol. Chem. Phys. 270: 5–12

    Google Scholar 

  9. Will P. (1994): R Curves of energy dissipative materials. J. Mat. Sci. 29: 2335–2340

    Article  Google Scholar 

  10. Blumenauer H., Pusch G. (1993): Technische Bruchmechanik. Deutscher Verlag ßir Grundstoffindustrie, Leipzig

    Google Scholar 

  11. Paris P. C., Tada H., Zahoor A., Ernst H. (1977): The theory of instability of the tearing mode of elastic—plastic crack growth. In: ASTM STP 668: Elastic—Plastic Fracture: 5–36

    Google Scholar 

  12. Tada H., Paris P. C., Irwin G. R. (1985): The Stress Analysis of Cracks Handbook. Paris Production Inc., Del. Research Corporation, 2nd ed., St. Louis

    Google Scholar 

  13. Sumpter J. D. G., Turner C. E. (1976): Cracks and fracture. In: ASTM STP 601: 3–18

    Google Scholar 

  14. Merkle J. G., Corten H. T. (1974): J integral analysis for the compact specimen, considering axial forces as well as bending effects. J. Pressure Vessel Technol. 96, 4: 286–292

    Google Scholar 

  15. Grellmann W., Sommer J.-P., Hoffmann H., Michel B. (1987): Application of different J-integral evaluation methods for a description of toughness properties of polymers. In: Proceedings of the 1st Conference on Mechanics, Prague, Czech, June 29—July 3, Vol. 5: 129–133

    Google Scholar 

  16. Paris P. C., Johnson R. E. (1983): Fracture resistance curves and engineering applications. In: ASTM STP 803 Vol. II: 5ff

    Google Scholar 

  17. Grellmann W., Lach R. (1996): Influence of temperature on toughness, fracture surface morphology and molecular relaxation behaviour of polycarbonate. Appl. Macromol. Chem. Phys. 273: 191–208

    Google Scholar 

  18. ASTM E 813–81 (1981): Standard Test Method for J1, a Measure of Fracture Toughness. Annual Book of ASTM Standards, Philadelphia, Vol. 03. 01

    Google Scholar 

  19. Grellmann W., Lach R. (1997): Toughness and relaxation behaviour of poly(methylmethacrylate), polystyrene and polycarbonate. Appl. Macromol. Chem.Phys. 253: 27–49

    Google Scholar 

  20. Paulik C., Gahleitner M., Neißl W. (1996): Flexible, tough and resilient PP copolymers. Kunstst. PlastEurope 86: 1144–1147

    Google Scholar 

  21. Kim G. M., Michler G. H., Gahleitner M., Fiebig J. (1996): Relationship between morphology and micromechanical toughening mechanisms in modified polypropylenes. J. Appl. Polym. Sci. 60: 1391–1403

    Google Scholar 

  22. Starke J. U., Michler G. H., Grellmann W., Seidler S., Gahleitner M., Fiebig J., Nezbedova E. (1997): Fracture toughness of polypropylene copolymers: influence of interparticle distance and temperature. Polymer 39: 75–82

    Article  Google Scholar 

  23. Grellmann W., Seidler S., Kotter I. (2000): Brittle-to-tough transition in toughened polypropylene copolymers. In: Proceedings of the 13th European Conference on Fracture, ECF 13, San Sebastian, Spain, September 6–9, CD-ROM `Polymer and Composites’ No. 17: 1–8

    Google Scholar 

  24. Grellmann W., Michler G. H., Seidler S., Jung K., Kotter I. (1998): Fracture behaviour of propylene copolymers — influence of interparticle distance and temperature. In: Proceedings of the 12th European Conference on Fracture, ECF 12, Sheffield, UK, September 14–18, Vol. III: 1441–1446

    Google Scholar 

  25. Koch T., Grellmann W., Seidler S. (1997): Morphologie und Zähigkeit von Blends auf der Basis von Polypropylen. In: Proceedings of the International Conference Welding Technology, Materials and Materials Testing, Fracture Mechanics and Quality Management, Vienna, Austria, September 22–24: 497–506

    Google Scholar 

  26. Schierjott U. (1990): Bruchmechanische Bewertung der Zähigkeitseigenschaften von Polymerkombinationen auf der Basis Thermoplastischer Polyurethane. PhD thesis, TH LeunaMerseburg, Merseburg

    Google Scholar 

  27. Grellmann W., Seidler S. (1991): unpublished

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lach, R., Grellmann, W. (2001). An Alternative Method Based on JT J and δT δ Stability Assessment Diagrams to Determine Instability Values from Crack Resistance Curves. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics