New Developments in Toughness Evaluation of Polymers and Compounds by Fracture Mechanics

  • W. Grellmann
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The application of fracture mechanics to the estimation of the failure reliability of products made of polymers and compounds, as well as an evaluation method for quality control and material development, requires geometry-independent parameters which react extraordinarily sensitively to structural changes in the materials. An essential prerequisite for a theoretically well-based material optimization is a knowledge about the connections of strength- and toughness-determined deformation and fracture mechanisms to structural quantities.

Keywords

Polyethylene Epoxy Propa Rubber Brittle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson T. L. (1995): Fracture Mechanics. Fundamentals and Application. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Blumenauer H., Pusch G. (1993): Technische Bruchmechanik. Deutscher Verlag fir Grundstoffindustrie, LeipzigGoogle Scholar
  3. 3.
    Friedrich K. (1989): Application of Fracture Mechanics to Composite Materials. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Akay M. (1999): Fracture mechanics properties. In: Brown R. (Ed.) Handbook of Polymer Testing. Marcel Dekker Inc., New York: 533 - 588Google Scholar
  5. 5.
    Kausch H. H. (1987): Polymer Fracture. Springer, Berlin, HeidelbergGoogle Scholar
  6. 6.
    Williams J. G. (1978): Failure in Polymers: Advances in Polymer Science 27, Springer, Berlin, HeidelbergGoogle Scholar
  7. 7.
    Grellmann W., Che M. (1997): Assessment of temperature-dependent fracture behavior with different fracture mechanics concepts on example of unoriented and cold-rolled polypropylene. J. Appl. Polym. Sci. 66: 1237-1249Google Scholar
  8. 8.
    Seidler S., Grellmann W. (1995): Application of the instrumented Charpy impact test to the toughness characterization of high impact thermoplastics. Polym. Test. 14: 453-469Google Scholar
  9. 9.
    Seidler S., Grellmann W. (1999): Application of crack resistance concept to the toughness characterization of high impact thermoplastics. In: Kahovec J. (Ed.) Mechanical Behaviour of Polymeric Materials. Wiley-VCH, Weinheim: 63 - 71Google Scholar
  10. 10.
    Grellmann W., Seidler S., Jung K., Kotter I. (2001): Crack-resistance behavior of polypropylene copolymers. J. Appl. Polym. Sci. 79: 2317-2325Google Scholar
  11. 11.
    Niebergall U., Bohse J., Seidler S., Grellmann W., Schürmann B. L. (1999): Relationship of fracture behaviour and morphology in polyolefin blends. Polym. Engng. Sci. 39: 1109-1118Google Scholar
  12. 12.
    Han Y., Lach R., Grellmann W. (1999): Effects of rubber content and temperature on ductile tearing stability in ABS materials. Appl. Macromol. Chem. Phys. 270: 5-12Google Scholar
  13. 13.
    Raab M., Kotek J., Baldrian J., Grellmann W. (1998): Toughness profile of injection-molded polypropylene specimens: the effect of the ft-modification. J. Appl. Polym. Sci. 69: 2255-2259Google Scholar
  14. 14.
    Will P., Michel B., Schaper M. (1990): Justification of nonlinear J-resistance curves. Engng. Fract. Mech. 37, 2: 275 - 281CrossRefGoogle Scholar
  15. 15.
    Will P. (1994): R-curves of energy dissipative materials. J. Mat. Sci. 29: 2335 - 2340CrossRefGoogle Scholar
  16. 16.
    Will P., Helbig S. (1997): A local cumulative damage measure for composites. In: Proceedings of MicroMat ’97, Berlin, Germany, April 16 - 18: 348-351Google Scholar
  17. 17.
    Paris P. C., Johnson R. E. (1983): Fracture Resistance Curves and Engineering Applications. ASTM STP 803 Vol. II: 5Google Scholar
  18. 18.
    Seidler S. (1998): Anwendung des Rißwiderstandskonzeptes zur Ermittlung strukturbezogener bruchmechanischer Werkstoftkenngróßen bei dynamischer Beanspruchung. Fortschritt-Berichte, VDI-Series 18: Mechanik/Bruchmechanik No. 231, VDI, DüsseldorfGoogle Scholar
  19. 19.
    Grellmann W., Seidler S., Lach R. (2000): Expressiveness of crack toughness as resistance against the intrinsic rate of fracture mechanics parameters for polymeric materials. In: Proceedings of the 3rd International Conference on Mechanics of Time Dependent Materials, Erlangen, Germany, September 17 - 20: 226-228Google Scholar
  20. 20.
    ASTM E 813-81 (1981): Standard Test Method for Jig, a Measure of Fracture Toughness. Annual Book of ASTM Standards, Philadelphia, Vol. 03. 01Google Scholar
  21. 21.
    ASTM E 813-89 (1989): Standard Test Method for J1, a Measure of Fracture Toughness. Annual Book of ASTM Standards, Philadelphia, Vol. 03. 01Google Scholar
  22. 22.
    ASTM E 1737-96 (1996): Standard Test Method for J-Integral Characterization of Fracture Toughness. Annual Book of ASTM Standards, Philadelphia, Vol. 03. 01Google Scholar
  23. 23.
    ESIS P2-92 (1992): Procedure for Determining the Fracture Behaviour of Materials.Google Scholar
  24. 24.
    Standard Draft ESIS TC 4 (1995): A Testing Protocol for Conducting J-Crack Growth Resistance Curve Tests on Plastics.Google Scholar
  25. 25.
    Seidler S., Grellmann W. (1996): Instrumented impact test: determination of crack resistance curves of polymers. In: Proceedings of the Eleventh Conference on Fracture, PoitiersFuturoscope, France, September 3-6, Vol. III: 1839 - 1844Google Scholar
  26. 26.
    Grellmann W., Seidler S. (1999): Possibilities and limits of standards and drafts for JR-curve determination on polymers. In: Winkler T., Schubert A. (Eds.) Material Mechanics — Fracture Mechanics — Micromechanics. DDP Goldenbogen, Dresden, Germany: 336 - 341Google Scholar
  27. 27.
    ASTM E 1152 (1987): Test Method for Determining J-R Curves. Annual Book of ASTM Standards, Philadelphia, Vol. 03. 01Google Scholar
  28. 28.
    Grellmann W., Seidler S. (1994): Determination of geometry-independent fracture mechanics values of Polymers. Int. J. Fracture 68: R19 — R22CrossRefGoogle Scholar
  29. 29.
    Seidler S., Grellmann W. (1999): Determination of geometry independent J-integral values of tough polymers. Int. J. Fracture, Lett. Fracture. Micromech. 96: L17 — L22CrossRefGoogle Scholar
  30. 30.
    Barry D. B., Delatycki O. (1989): The strain rate dependency of fracture in polyethylene: fracture initiation. J. Appl. Polym. Sci. 38: 339-350Google Scholar
  31. 31.
    Rimnac C. M., Wright T. M., Klein R. W. (1988): J integral measurements of ultra high molecular weight polyethylene. Polym. Engng. Sci. 28: 1586-1589Google Scholar
  32. 32.
    Huang D. D. (1989): A comparison of multispecimen J-integral methods as applied to toughened polymers. In: Proceedings of ICF 7, University of Houston, TX: 2725 - 2732Google Scholar
  33. 33.
    Lee C.-B., Lu M.-L., Chang F. C. (1992): A new approach in J-integral method based on hysteresis on ductile polymeric materials. Polym. Mater. Sci. Engng. 669: 510-511Google Scholar
  34. 34.
    Bernal C. R., Frontini P. M. (1992): Fracture toughness determination of ABS polymers using the J-method. Polym. Test. 11: 271-288Google Scholar
  35. 35.
    Reese E. D. (1996): Zur Anwendung des R-Kurven-Verfahrens der elastisch-plastischen Bruchmechanik auf Polymere. Herbert Utz Verlag Wissenschaft, MünchenGoogle Scholar
  36. 36.
    Lach R., Grellmann W., Schröder K., Donth E. (1999): Temperature dependence of dynamic yield stress in amorphous polymers as an indicator for the dynamic glass transition at negative pressure. Polymer 40: 1481 - 1485CrossRefGoogle Scholar
  37. 37.
    Grellmann W., Lach R. (1997): Toughness and relaxation behaviour of poly (methyl methacrylate), polystyrene and polycarbonate. Appl. Macromol. Chem. Phys. 253: 27-49Google Scholar
  38. 38.
    Seidler S., Grellmann W. (1997): Fracture behaviour and morphology of polymers. In: Proceedings of the `Ninth International Conference on Fracture’, ICF 9, Sydney, Australia, April 1-5, Vol. 2: 1021 - 1027Google Scholar
  39. 39.
    Hoffmann H., Grellmann W., Hille E. (1987): Explorations of the influence of material orientation of the fracture behaviour of polymers. In: Proceedings of Plastco, Gottwaldov, Poland, April 7-9: L14/1—L14/6Google Scholar
  40. 40.
    Witt F. I., Mager T. R. (1971): Nucl. Engng. 17: 91Google Scholar
  41. 41.
    Beerbaum H., Seidler S., Grellmann W. (1999): Microstructure and toughness behaviour of high density polyethylene under impact load. In: Proceedings of Technomer ’99, Chemnitz, Germany, November 11-13: P42/1-8Google Scholar
  42. 42.
    Starke J. U., Michler G. H., Grellmann W., Seidler S., Gahleitner M., Fiebig I., Nezbedova E. (1998): Fracture toughness of polypropylene copolymers: influence of interparticle distance and temperature. Polymer 39: 75 - 82CrossRefGoogle Scholar
  43. 43.
    Beerbaum, H. Grellmann, W. (1999): The influence of morphology and structure on the crack growth of linear polyethylene. In: Williams J. G., Pavan A. (Eds.) Fracture of Polymers, Composites and Adhesives. ESIS Publication 27, Elsevier Science Ltd, Oxford: 163 - 174CrossRefGoogle Scholar
  44. 44.
    Clisar T., Seidler S., Grellmann W. (1998): Bruchmechanische Zähigkeitsbewertung des Rißinitiierungsverhaltens von Ethylen-Propylen-Random-Copolymerisaten. In: Grellmann W., Seidler S. (Eds.) Deformation and Bruchverhalten von Kunststoffen. Springer, Berlin, Heidelberg: 271 - 284Google Scholar
  45. 45.
    Lach R., Grellmann W., Weidisch R., Altstädt V., Kirschnick T., Ott H., Stadler R., Mehler C. (2000): Poly(styrene-block-butadiene-block-methylmethacrylat) copolymers as compatibilizers in PPO/SAN blends, I. Morphology and fracture. J. Appl. Polym. Sci. 78: 2037-2045Google Scholar
  46. 46.
    Han Y., Lach R., Grellmann W. (1999): The Charpy impact fracture behaviour in ABS materials. Appl. Macromol. Chem. Phys. [Angew. Makromol. Chem.] 270: 13-21Google Scholar
  47. 47.
    Han Y., Lach R., Grellmann W. (1999): Effects of rubber content and temperature on dynamic fracture toughness of ABS materials. J. Appl. Polym. Sci. 75: 1605-1614Google Scholar
  48. 48.
    Han Y., Lach R., Grelimann W. (2001): Effects of rubber content and temperature on unstable fracture behaviour in ABS materials with different particle sizes. J. Appl. Polym. Sci. 79: 9-20Google Scholar
  49. 49.
    Grellmann W., Jung K., Kotter I. (2000): Zusammenhang zwischen Morphologie und Zähigkeit von Polyolefinblends unter besonderer Berücksichtigung des Rissinitiierungsprozesses. In: Michler G. H. (Ed.) Innovationskolleg `New polymer materials by purposeful modification of interface structures/properties in heterogeneous systems’: 105 - 117Google Scholar
  50. 50.
    Kim G.-M., Michler G. H., Gahleitner H., Fiebig J. (1996): Relationship between morphology and micromechanical toughening mechanisms in modified polypropylenes. J. Appl. Polym. Sci. 60: 1391-1403Google Scholar
  51. 51.
    Grellmann, W., Bierögel, C. (1999): Verfahren, Lichtextensometer und Prüfkörper zur berührungslosen Bestimmung der Querkontraktion. German Patent Pi9936249. 1 (31.07.99)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • W. Grellmann
    • 1
  1. 1.MerseburgGermany

Personalised recommendations