Photonics pp 489-581 | Cite as

Nonlinear Optical Spectroscopy

  • Ralf Menzel
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

The nonlinear optical effects described in Chaps. 4 and 5 have to be characterized for a given material up to a certain level before they can be applied in photonics. The already wide range of applications in science, technology and medicine contains analytic aspects, questions of the structure of matter, reaction mechanisms on all time scales and the production of new states, phases or even of new matter. Thus two main questions are asked in nonlinear optics:
  • Which nonlinear optical effect is, for a given material suitable for a new laser analytic method (analytic tasks)?

  • Which nonlinear optical effect is most suitable for a desired photonic application (material and light modification tasks)?

The second question can be related to the problems:
  • Which material is most suitable for a given nonlinear optical application or which kind of light is most suitable for a given material?

  • And thus nonlinear optical spectroscopy deals finally with the questions:

  • Which nonlinear optical properties does a given material have?

  • What are the reasons for this nonlinear optical behavior and how can materials with more useful nonlinear optical properties, such as e.g. higher nonlinear coefficients at certain wavelengths and smaller losses, be designed?

Keywords

Attenuation Rubber Coherence CHCl3 Fluores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [7.1] {Sect. 7.1.5.1]}
    J. Kusba, J.R. Lakowicz: Definition and properties of the emission anisotropy in the absence of cylindrical symmetry of the emission field: Application to the light quenching experiments, J Chem Phys 111, p.89–99 (1999)ADSGoogle Scholar
  2. [7.2] {Sect. 7.1.5.1]}
    I.S. Osad’ko, S.L. Soldatov, A.U. Jalmukhambetov: The intensity and polarization aspects of photochemical hole burning, Chem. Phys. Lett. 118, p.97–100 (1985)ADSGoogle Scholar
  3. [7.3] {Sect. 7.1.5.1]}
    F. Pellegrino, A. Dagen, R.R. Alfano: Fluorescence polarization anisotropy and kinetics of malachite green measured as a function of solvent viscosity, Chem. Phys. 67, p.111–117 (1982)Google Scholar
  4. [7.4] {Sect. 7.1.5.1]}
    D. Reiser, A. Laubereau: Picosecond Polarization Spectroscopy of Dye Molecules, Ber. Bunsenges. Phys. Chem. 86, p.1106–1114 (1982)Google Scholar
  5. [7.5] {Sect. 7.1.5.1]}
    M.D. Barkley, A.A. Kowalczyk, L. Brand: Fluorescence decay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75, p.3581–3593 (1981)ADSGoogle Scholar
  6. [7.6] {Sect. 7.1.5.1]}
    D.P. Millar, R. Shah, A.H. Zewail: Picosecond saturation spectroscopy of cresyl violet: Rotational diffusion by a “sticking” boundary condition in the liquid phase, Chem. Phys. Lett. 66, p.435–440 (1979)ADSGoogle Scholar
  7. [7.7] {Sect. 7.1.5.1]}
    A. v. Jena, H.E. Lessing: Rotational Diffusion of Prolate and Oblate Molecules from Absorption Relaxation, Ber. Bunsenges. Phys. Chem. 83, p.181–191 (1979)Google Scholar
  8. [7.8] {Sect. 7.1.5.1]}
    H.E. Lessing, A. von Jena: Orientation of S1-Sn transition moments of oxazine dyes from continuous picosecond photometry, Chem. Phys. Lett. 59, p.249–254 (1978)ADSGoogle Scholar
  9. [7.9] {Sect. 7.1.5.1]}
    H.E. Lessing, A. von Jena: Separation of rotational diffusion and level kinetics in transient absorption spectroscopy, Chem. Phys. Lett. 42, p.213–217 (1976)ADSGoogle Scholar
  10. [7.10] {Sect. 7.1.5.1]}
    H.E. Lessing, A. von Jena, M. Reichert: Orientational aspect of transient absorption in solutions, Chem. Phys. Lett. 36, p.517–522 (1975)ADSGoogle Scholar
  11. [7.11] {Sect. 7.1.5.1]}
    D.W. Vahey: The effects of molecular reorientation on the absorption of intense light by organic-dye solutions, Chem. Phys. 10, p.261–270 (1975)ADSGoogle Scholar
  12. [7.12] {Sect. 7.1.5.1]}
    T.J. Chuang, K.B. Eisenthal: Theory of Fluorescence Depolarization by Anisotropic Rotational Diffusion, J. Chem. Phys. 57, p.5094–5097 (1972)ADSGoogle Scholar
  13. [7.13] {Sect. 7.1.5.1]}
    R. Antoine, A.A. TamburelloLuca, P. Hebert, P.F. Brevet, H.H. Girault: Picosecond dynamics of Eosin B at the air/water interface by time- resolved second harmonic generation: orientational randomization and rotational relaxation, Chem Phys Lett 288, p.138–146 (1998)ADSGoogle Scholar
  14. [7.14] {Sect. 7.1.5.1]}
    R.E. Dipaolo, J.O. Tocho: Polarization anisotropy applied to the determination of structural changes in the photoisomerization of DODCI, Chem Phys 206, p.375–382 (1996)ADSGoogle Scholar
  15. [7.15] {Sect. 7.1.5.1]}
    J.J. Larsen, H. Sakai, C.P. Safvan, I. WendtLarsen, H. Stapelfeldt: Aligning molecules with intense nonresonant laser fields, J Chem Phys 111, p.7774–7781 (1999)ADSGoogle Scholar
  16. [7.16] {Sect. 7.1.5.1]}
    D.S. Wiersma, A. Muzzi, M. Colocci, R. Righini: Time-resolved anisotropic multiple light scattering in nematic liquid crystals, Phys Rev Lett 83, p.4321–4324 (1999)ADSGoogle Scholar
  17. [7.17] {Sect. 7.1.5.1]}
    Th. Kühne, P. Vöhringer: Transient Anisotropy and Fragment Rotational Excitation in the Femtosecond Photodissociation of Triiodide in Solution, J. Phys. Chem. A 102, p.4177–4185 (1998)Google Scholar
  18. [7.18] {Sect. 7.1.5.2]}
    S. Ashihara, K. Kuroda, Y. OkadaShudo, K. Jarasiunas: Autocorrelation of picosecond pulses in bacteriorhodopsin film using light self-diffraction from intensity and polarization holograms, Opt Commun 165, p.83–89 (1999)ADSGoogle Scholar
  19. [7.19] {Sect. 7.1.5.2]}
    J.M. Dudley, L.P. Barry, J.D. Harvey, M.D. Thomson, B.C. Thomsen, P.G. Bollond, R. Leonhardt: Complete characterization of ultrashort pulse sources at 1550 nm, IEEE J QE-35, p.441–450 (1999)Google Scholar
  20. [7.20] {Sect. 7.1.5.2]}
    L. Gallmann, D.H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, I.A. Walmsley: Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction, Optics Letters 24, p.1314–1316 (1999)ADSGoogle Scholar
  21. [7.21] {Sect. 7.1.5.2]}
    D.J. Kane: Recent progress toward real-time measurement of ultrashort laser pulses, IEEE J QE-35, p.421–431 (1999)Google Scholar
  22. [7.22] {Sect. 7.1.5.2]}
    J.W. Nicholson, F.G. Omenetto, D.J. Funk, A.J. Taylor: Evolving FROGS: phase retrieval from frequency-resolved optical gating measurements by use of genetic algorithms, Optics Letters 24, p.490–492 (1999)ADSGoogle Scholar
  23. [7.23] {Sect. 7.1.5.2]}
    F.G. Omenetto, J.W. Nicholson, A.J. Taylor: Second-harmonic generation-frequency-resolved optical gating analysis of low-intensity shaped femtosecond pulses at 1.55 mu m, Optics Letters 24, p. 1780–1782 (1999)ADSGoogle Scholar
  24. [7.24] {Sect. 7.1.5.2]}
    P.J. Bennett, A. Malinowski, B.D. Rainford, I.R. Shatwell, Y.P. Svirko, N.I. Zheludev: Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel, Opt Commun 147, p.148–152 (1998)ADSGoogle Scholar
  25. [7.25] {Sect. 7.1.5.2]}
    M. Drabbels, G.M. Lankhuijzen, L.D. Noordam: Demonstration of a far-infrared streak camera, IEEE J QE-34, p.2138–2144 (1998)Google Scholar
  26. [7.26] {Sect. 7.1.5.2]}
    J.K. Ranka, A.L. Gaeta, A. Baltuska, M.S. Pshenichnikov, D.A. Wiersma: Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode, Optics Letters 22, p.1344–1346 (1997)ADSGoogle Scholar
  27. [7.27] {Sect. 7.1.5.2]}
    K.W. Delong, D.N. Fittinghoff, R. Trebino: Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating, IEEE J QE-32, p.1253–1264 (1996)Google Scholar
  28. [7.28] {Sect. 7.1.5.2]}
    Y.M. Li, R. Fedosejevs: Visible single-shot autocorrelator in BaF2 for subpicosecond KrF laser pulses, Appl Opt 35, p.2583–2586 (1996)ADSGoogle Scholar
  29. [7.29] {Sect. 7.1.5.2]}
    B. LutherDavies, M. Samoc, J. Swiatkiewicza, A. Samoc, M. Woodruff, R. Trebino, K.W. Delong: Diagnostics of femtosecond laser pulses using films of poly (p-phenylenevinylene), Opt Commun 131, p. 301–306 (1996)ADSGoogle Scholar
  30. [7.30] {Sect. 7.1.5.2]}
    A.V. Vinogradov, J. Janszky, T. Kobayashi: A single-molecule interferometer for measurement of femtosecond laser pulse duration, Opt Commun 127, p.223–229 (1996)ADSGoogle Scholar
  31. [7.31] {Sect. 7.1.5.2]}
    I. Will, P. Nickles, M. Schnuerer, M. Kalashnikov, W. Sander: Compact FROG system useful for measurement of multiterawatt laser pulses, Opt Commun 132, p.101–106 (1996)ADSGoogle Scholar
  32. [7.32] {Sect. 7.1.5.2]}
    D.R. Yankelevich, P. Pretre, A. Knoesen, G. Taft, M.M. Murnane, H.C. Kapteyn, R.J. Twieg: Molecular engineering of polymer films for amplitude and phase measurements of Ti:sapphire femtosecond pulses, Optics Letters 21, p.1487–1489 (1996)ADSGoogle Scholar
  33. [7.33] {Sect. 7.1.5.2]}
    A. Braun, J.V. Rudd, H. Cheng, G. Mourou, D. Kopf, I.D. Jung, K.J. Weingarten, U. Keller: Characterization of short-pulse oscillators by means of a high-dynamic-range autocorrelation measurement, Optics Letters 20, p.1889–1891 (1995)ADSGoogle Scholar
  34. [7.34] {Sect. 7.1.5.2]}
    G. Taft, A. Rundquist, M.M. Murnane, H.C. Kapteyn, K.W. Delong, R. Trebino, I.P. Christov: Ultrashort optical waveform measurements using frequency resolved optical gating, Optics Letters 20, p.743–745 (1995)ADSGoogle Scholar
  35. [7.35] {Sect. 7.1.5.2]}
    G. Szabo, A. Müller: A sensitive single shot method to determine duration and chirp of ultrashort pulses with a streak camera, Opt. Comm. 82, p.56–62 (1991)ADSGoogle Scholar
  36. [7.36] {Sect. 7.1.5.2]}
    S.A. Arakelian, R.N. Gyuzalian, S.B. Sogomonian: Comments of the Picosecond Pulse Width Measurement by the Single-Shot Second Harmonic Beam Technique, Opt. Comm. 44, p.67–72 (1982)ADSGoogle Scholar
  37. [7.37] {Sect. 7.1.5.3]}
    Z. Cheng, A. Furbach, S. Sartania, M. Lenzner, C. Spielmann, F. Krausz: Amplitude and chirp characterization of high-power laser pulses in the 5-fs regime, Optics Letters 24, p.247–249 (1999)ADSGoogle Scholar
  38. [7.38] {Sect. 7.1.5.3]}
    T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch: Accurate measurement of large optical frequency differences with a mode-locked laser, Optics Letters 24, p.881–883 (1999)ADSGoogle Scholar
  39. [7.39] {Sect. 7.1.6.2]}
    W.T. Simpson, D.L. Peterson: Coupling Strength for Resonance Force Transfer of Electronic Energy in Van der Waals Solids, J. Chem. Phys. 26, p.588–593 (1957)ADSGoogle Scholar
  40. [7.40] {Sect. 7.1.6.2]}
    F. Rotermund, R. Weigand, A. Penzkofer: J-aggregation and disaggregation of indocyanine green in water, Chem Phys 220, p.385–392 (1997)Google Scholar
  41. [7.41] {Sect. 7.2.0]}
    H.-H. Perkampus: UV-VIS Spectroscopy and Its Applications (Springer, Berlin, Heidelberg, New York, 1992)Google Scholar
  42. [7.42] {Sect. 7.2.0]}
    S. Svanberg: Atomic and Molecular Spectroscopy (Springer, Berlin, Heidelberg, New York, 1997)Google Scholar
  43. [7.43] {Sect. 7.2.0]}
    Y.B. He, B.J. Orr: Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity, Chem Phys Lett 319, p.131–137 (2000)ADSGoogle Scholar
  44. [7.44] {Sect. 7.2.0]}
    D.G. Lancaster, R. Weidner, D. Richter, F.K. Tittel, J. Limpert: Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3, Opt Commun 175, p.461–468 (2000)ADSGoogle Scholar
  45. [7.45] {Sect. 7.2.0]}
    T.J. Latz, G. Weirauch, V.M. Baev, P.E. Toschek: External photoacoustic detection of a trace vapor inside a multimode laser, Appl Opt 38, p.2625–2629 (1999)ADSGoogle Scholar
  46. [7.46] {Sect. 7.2.0]}
    A. Garnache, A. Campargue, A.A. Kachanov, F. Stoeckel: Intra-cavity laser absorption spectroscopy near 9400 cm (-1) with a Nd:glass laser: application to (N20)-N-14–0–16, Chem Phys Lett 292, p.698–704 (1998)ADSGoogle Scholar
  47. [7.47] {Sect. 7.2.0]}
    U. Willamowski, D. Ristau, E. Welsch: Measuring the absolute absorptance of optical laser components, Appl Opt 37, p.8362–8370 (1998)ADSGoogle Scholar
  48. [7.48] {Sect. 7.2.0]}
    C. Zander, K.H. Drexhage, K.T. Han, J. Wolfrum, M. Sauer: Single-molecule counting and identification in a microcapillary, Chem Phys Lett 286, p.457–465 (1998)ADSGoogle Scholar
  49. [7.49] {Sect. 7.2.0]}
    M.S. Baptista, C.D. Tran: Near-infrared thermal lens spectrometer based on an erbium-doped fiber amplifier and an acousto-optic tunable filter, and its application in the determination of nucleotides, Appl Opt 36, p.7059–7065 (1997)ADSGoogle Scholar
  50. [7.50] {Sect. 7.2.0]}
    M.J. Fernee, P.F. Barker, A.E.W. Knight, H. RubinszteinDunlop: Infrared seeded parametric four-wave mixing for sensitive detection of molecules, Phys Rev Lett 79, p.2046–2049 (1997)ADSGoogle Scholar
  51. [7.51] {Sect. 7.2.0]}
    L. Lehr, P. Hering: Quantitative nonlinear spectroscopy: A direct comparison of degenerate four-wave mixing with cavity ring-down spectroscopy applied to NaH, IEEE J QE-33, p.1465–1473 (1997)Google Scholar
  52. [7.52] {Sect. 7.2.0]}
    Y. Oki, K. Furukawa, M. Maeda: Extremely sensitive Na detection in pure water by laser ablation atomic fluorescence spectroscopy, Opt Commun 133, p.123–128 (1997)ADSGoogle Scholar
  53. [7.53] {Sect. 7.2.0]}
    D. Romanini, A.A. Kachanov, F. Stoeckel: Diode laser cavity ring down spectroscopy, Chem Phys Lett 270, p.538–545 (1997)ADSGoogle Scholar
  54. [7.54] {Sect. 7.2.1]}
    I. Derzy, V.A. Lozovsky, S. Cheskis: Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames, Chem Phys Lett 313, p.121–128 (1999)ADSGoogle Scholar
  55. [7.55] {Sect. 7.2.1]}
    A.C.R. Pipino: Ultrasensitive surface spectroscopy with a miniature optical resonator, Phys Rev Lett 83, p.3093–3096 (1999)ADSGoogle Scholar
  56. [7.56] {Sect. 7.2.1]}
    P.H.S. Ribeiro, C. Schwob, A. Maitre, C. Fabre: Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams, Optics Letters 22, p.1893–1895 (1997)ADSGoogle Scholar
  57. [7.57] {Sect. 7.2.1]}
    C.T. Hansen, S.C. Wilks, P.E. Young: Spectral evidence for collisionless absorption in subpicosecond laser- solid interactions, Phys Rev Lett 83, p.5019–5022 (1999)ADSGoogle Scholar
  58. [7.58] {Sect. 7.2.4]}
    R. Menzel, W. Kessler: Band Shape Analysis of the Absorption Bands of Four Triphenylmethane Dyes Using a Self Starting Routine, J. Mol. Liquids 39, p.279–298 (1988)Google Scholar
  59. [7.59] {Sect. 7.2.4]}
    J. Humlicek: Optimized Computation of the Voigt and Complex Probability Functions, J. Quant. Spectrosc. Radiat. Transfer 27, p.437–444 (1982)ADSGoogle Scholar
  60. [7.60] {Sect. 7.2.4]}
    R. Kubo: A stochastic theory of line shape, Adv. Chem. Phys. 15, p.101–127 (1969)Google Scholar
  61. [7.61] {Sect. 7.2.4]}
    B.H. Armstrong: Spectrum Line Profiles: The Voigt Function, J. Quant. Spectrosc. Radiat. Transfer 7, p.61–88 (1967)ADSGoogle Scholar
  62. [7.62] {Sect. 7.2.4]}
    D. Biswas, B. Ray, S. Dutta, P.N. Ghosh: Diode laser spectroscopic measurement of line shape of (1 + 3 3) band transitions of acetylene, Appl. Phys. B 68, p.1125–1130 (1999)ADSGoogle Scholar
  63. [7.63] {Sect. 7.2.4]}
    Y. Makdisi: Spectral line broadening of Sr under the influence of collisions with foreign gas perturbers, Opt Commun 142, p.215–219 (1997)ADSGoogle Scholar
  64. [7.64] {Sect. 7.2.4]}
    R. Sander, R. Menzel, K.-H. Naumann: Solvent Induced Broadening of Fluorescent Electronic Transitions of Para-Terphenyl, Ber. Bunsen-ges. Phys. Chem. 96, p.188–194 (1992)Google Scholar
  65. [7.65] {Sect. 7.2.4]}
    E.T.J. Nibbering, D.A. Wiersma, K. Duppen: Femtosecond Non-Markovian Optical Dynamics in Solution, Phys. Rev. Lett. 66, p.2464–2467 (1991)ADSGoogle Scholar
  66. [7.66] {Sect. 7.2.4]}
    E.T.J. Nibbering, K. Duppen, D.A. Wiersma: Optical dephasing in solution: A line shape and resonance light scattering study of azulene in isopentane and cyclohexane, J. Chem. Phys. 93, p.5477–5484 (1990)ADSGoogle Scholar
  67. [7.67] {Sect. 7.2.4]}
    E.G. Myers, H.S. Margolis, J.K. Thompson, M.A. Farmer, J.D. Silver, M.R. Tarbutt: Precision measurement of the ls2p P-3 (2)-P-3 (1) fine structure interval in heliumlike fluorine, Phys Rev Lett 82, p.4200–4203 (1999)ADSGoogle Scholar
  68. [7.68] {Sect. 7.2.4]}
    B. Abel, A. Charvat, S.F. Deppe: Lifetimes of the lowest triplet state of ozone by intracavity laser absorption spectroscopy, Chem Phys Lett 277, p.347–355 (1997)ADSGoogle Scholar
  69. [7.69] {Sect. 7.2.4]}
    K.S.E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst: Precision measurements in helium at 58 nm: Ground state lamb shift and the 1 (l)S-2 (1)P transition isotope shift, Phys Rev Lett 76, p.1216–1219 (1996)ADSGoogle Scholar
  70. [7.70] {Sect. 7.3.0]}
    J. R. Lakowicz: Principles of Fluorescence Spectroscopy (Plenum Press, New York, London, 1983)Google Scholar
  71. [7.71] {Sect. 7.3.0]}
    J. R. Lakowicz: Topics in Fluorescence Spectroscopy, Vol. 1: Techniques (Plenum Press New York, London, 1991)Google Scholar
  72. [7.72] {Sect. 7.3.0]}
    J. R. Lakowicz: Topics in Fluorescence Spectroscopy, Vol. 2: Principles (Plenum Press New York, London, 1991)Google Scholar
  73. [7.73] {Sect. 7.3.0]}
    J. R. Lakowicz: Topics in Fluorescence Spectroscopy, Vol. 3; Biomedical Applications (Plenum Press New York, London, 1992)Google Scholar
  74. [7.74] {Sect. 7.3.2]}
    J. Enderlein: New approach to fluorescence spectroscopy of individual molecules on surfaces, Phys Rev Lett 83, p.3804–3807 (1999)ADSGoogle Scholar
  75. [7.75] {Sect. 7.3.2]}
    K. Palewska, Z. Ruziewicz, H. Chojnacki: Shpolskii spectra and photophysical properties of dinaphtho (1,2-a;l′,2′-h)Anthracene — A Strongly non-planar, overcrowded aromatic hydrocarbon, J. Luminesc. 39, p.75–85 (1987)Google Scholar
  76. [7.76] {Sect. 7.3.2]}
    G. Swiatkowski, R. Menzel, W. Rapp: Hindrance of the Rotational Relaxation in the Excited Singlet State of Biphenyl and Para-Terphenyl in Cooled Solutions by Methyl Substituents, J. Luminesc. 37, p.183–189 (1987)Google Scholar
  77. [7.77] {Sect. 7.3.2]}
    R.A. Lampert, S.R. Meech, J. Metcalfe, D. Phillips: The Refractive Index Correction to the Radiative Rate Constant in Fluorescence Lifetime Measurements, Chem. Phys. Lett. 94, p.137–140 (1983)ADSGoogle Scholar
  78. [7.78] {Sect. 7.3.2]}
    F.J. Busselle, N.D. Haig, C. Lewis: Reply to the comment on the refractive index correction in luminescence spectroscopy, Chem. Phys. Lett. 88, p.128–130 (1982)ADSGoogle Scholar
  79. [7.79] {Sect. 7.3.2]}
    L.A. Bykovskaya, R.I. Personov, B.M. Kharlamov: Luminescence of solutions of 9-aminoacridine at 4.2 K: Sharp narrowing of spectral bands with laser excitation, Chem. Phys. Lett. 27, p.80–83 (1974)ADSGoogle Scholar
  80. [7.80] {Sect. 7.3.2]}
    R.I. Personov, E.I Al’Shits, L.A. Bykovskaya: The effect of fine structure appearance in laser-excited fluorescence spectra of organic compounds in solid solutions, Opt. Comm. 6, p. 169–173 (1972)ADSGoogle Scholar
  81. [7.81] {Sect. 7.3.2]}
    J.L. Richards, S.A. Rice: Study of Impurity-Host Coupling in Shpolskii Matrices, J. Chem. Phys. 54, p.2014–2023 (1971)ADSGoogle Scholar
  82. [7.82] {Sect. 7.3.2]}
    J.M.G. Levins, D.M. Benton, J. Billowes, P. Campbell, T.G. Cooper, P. Dendooven, D.E. Evans, D.H. Forest, I.S. Grant, J.A.R. Griffith et al.: First on-line laser spectroscopy of radioisotopes of a refractory element, Phys Rev Lett 82, p.2476–2479 (1999)ADSGoogle Scholar
  83. [7.83] {Sect. 7.3.2]}
    A.I. Lvovsky, S.R. Hartmann, F. Moshary: Omnidirectional superfluorescence, Phys Rev Lett 82, p.4420–4423 (1999)ADSGoogle Scholar
  84. [7.84] {Sect. 7.3.2]}
    M. Fukushima: Laser induced fluorescence spectroscopy of AlNC/AlCN in supersonic free expansions, Chem Phys Lett 283, p.337–344 (1998)ADSGoogle Scholar
  85. [7.85] {Sect. 7.3.3]}
    K. Ohta, T.J. Kang, K. Tominaga, K. Yoshihara: Ultrafast relaxation processes from a higher excited electronic state of a dye molecule in solution: a femtosecond time-resolved fluorescence study, Chem Phys 242, p.103–114 (1999)Google Scholar
  86. [7.86] {Sect. 7.3.3]}
    T.J. Kang, K. Ohta, K. Tominaga, K. Yoshihara: Femtosecond relaxation processes from a higher excited electronic state of a dye molecule in solution, Chem Phys Lett 287, p.29–34 (1998)ADSGoogle Scholar
  87. [7.87] {Sect. 7.3.3]}
    G. Berden, J. Vanrooy, W.L. Meerts, K.A. Zachariasse: Rota-tionally resolved electronic spectroscopy of 4-aminobenzonitrile, Chem Phys Lett 278, p.373–379 (1997)ADSGoogle Scholar
  88. [7.88] {Sect. 7.3.3]}
    T.M. Woudenberg, S.K. Kulkarni, J.E. Kenny: Internal conversion rates for single vibronic levels of S2 in azulene, J. Chem. Phys. 89, p.2789–2796 (1988)ADSGoogle Scholar
  89. [7.89] {Sect. 7.3.3]}
    Z.S. Ruzevich: Fluorescence and Absorption Spectra of Azulene in Frozen Crystalline Solutions, Opt. Spektrosk. 15, p.191–193 (1962)Google Scholar
  90. [7.90] {Sect. 7.3.3]}
    M. Kasha: Characterization of Electronic Transitions in Complex Molecules, Disc. Farady Soc. 9, p.14–19 (1950)Google Scholar
  91. [7.91] {Sect. 7.3.4.0]}
    E.S. Medvedev, V.I. Osherov: Radiationless Transitions in Polyatomic Molecules, Springer Ser. in Chem. Phys. 57 (Springer-Verlag 1995)Google Scholar
  92. [7.92] {Sect. 7.3.4.1]}
    N. Ito, O. Kajimoto, K. Hara: Picosecond time-resolved fluorescence depolarization of p-terphenyl at high pressures, Chem. Phys. Lett. 318, p.118–124 (2000)ADSGoogle Scholar
  93. [7.93] {Sect. 7.3.4.1]}
    S.D. Pack, M.W. Renfro, G.G. King, N.M. Laurendeau: Photon-counting technique for rapid fluorescence-decay measurement, Optics Letters 23, p.1215–1217 (1998)ADSGoogle Scholar
  94. [7.94] {Sect. 7.3.4.1]}
    A.N. Watkins, Ch.M. Ingersoll, G.A. Baker, F.V. Bright: A Parallel Multiharmonic Frequency-Domain Fluorometer for Measuring Excited-State Decay Kinetics Following One-, Two-, or Three-Photon Excitation, Anal. Chem. 70, p.3384–3396 (1998)Google Scholar
  95. [7.95] {Sect. 7.3.4.1]}
    R. Muller, C. Zander, M. Sauer, M. Deimel, D.S. Ko, S. Siebert, J. Ardenjacob, G. Deltau, N.J. Marx, K.H. Drexhage, et al.: Time-resolved identification of single molecules in solution with a pulsed semiconductor diode laser, Chem Phys Lett 262, p.716–722 (1996)ADSGoogle Scholar
  96. [7.96] {Sect. 7.3.4.1]}
    W. Nadler, R.A. Marcus: Mean relaxation time description of quasi-dissipative behavior in finite-state quantum systems, Chem. Phys. Lett. 144, p.509–514 (1988)ADSGoogle Scholar
  97. [7.97] {Sect. 7.3.4.1]}
    W. Rettig, M. Vogel, E. Lippert: The dynamics of adiabatic photoreactions as studied by means of the time structure of synchrotron radiation, Chem. Phys. 103, p.381–390 (1986)Google Scholar
  98. [7.98] {Sect. 7.3.4.1]}
    G. Calzaferri, Th. Hugentobler: Time-resolved fluorescence spectra derived from multiple frequency phase fluorimetry, Chem. Phys. Lett. 121, p.147–153 (1985)ADSGoogle Scholar
  99. [7.99] {Sect. 7.3.4.1]}
    K.N. Swamy, W.L. Hase: The heavy-atom effect in intramolecular vibrational energy transfer, J. Chem. Phys. 82, p. 123–133 (1985)ADSGoogle Scholar
  100. [7.100] {Sect. 7.3.4.1]}
    W. Wild, A. Seilmeier, N.H. Gottfried, W. Kaiser: Ultrafast investigation of vibrational hot molecules after internal conversion in solution, Chem. Phys. Lett. 119, p.259–263 (1985)ADSGoogle Scholar
  101. [7.101] {Sect. 7.3.4.1]}
    J. Chesnoy, G.M. Gale: Vibrational energy relaxation in liquids, Ann. Phys. Fr. 9, p.893–949 (1984)ADSGoogle Scholar
  102. [7.102] {Sect. 7.3.4.1]}
    N.H. Gottfried, A. Seilmeier, W. Kaiser: Transient internal temperature on anthracene after picosecond infrared excitation, Chem. Phys. Lett. 111, p.326–332 (1984)ADSGoogle Scholar
  103. [7.103] {Sect. 7.3.4.1]}
    J.R. Lakowicz: Time-Dependent Rotational Rates of Excited Fluorophores — A Linkage Between Fluorescence Depolarization and Solvent Relaxation, Biophys. Chem. 19, p.13–23 (1984)Google Scholar
  104. [7.104] {Sect. 7.3.4.1]}
    J.R. Lakowicz, G. Laczko, H. Cherek: Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46, p.463–477 (1984)Google Scholar
  105. [7.105] {Sect. 7.3.4.1]}
    V. Sundström, T. Gillbro: Effects of solvent on TMP pho-tophysics. Transition from no barrier to barrier case, induced by solvent properties, J. Chem. Phys. 81, p.3463–3474 (1984)ADSGoogle Scholar
  106. [7.106] {Sect. 7.3.4.1]}
    F. Wondrazek, A. Seilmeier, W. Kaiser: Ultrafast intramolecular redistribution and intermolecular relaxation of vibrational energy in large molecules, Chem. Phys. Lett. 104, p.121–128 (1984)ADSGoogle Scholar
  107. [7.107] {Sect. 7.3.4.1]}
    W. Zinth, C. Kolmeder, B. Benna, A. Irgens-Defregger, S.F. Fischer, W. Kaiser: Fast and exceptionally slow vibrational energy transfer in acetylene and phenylacetylene in solution, J. Chem. Phys.78, p.3916–3921 (1983)ADSGoogle Scholar
  108. [7.108] {Sect. 7.3.4.1]}
    V. Lopez, R.A. Marcus: Heavy mass barrier to intramolecular energy transfer, Chem. Phys. Lett. 93, p.232–234 (1982)ADSGoogle Scholar
  109. [7.109] {Sect. 7.3.4.1]}
    D.P. Millar, R.J. Robbins, A.H. Zewail: Torsion and bending of nucleic acids studied by subnanosecond time-resolved fluorescence depolarization of intercalated dyes, J. Chem. Phys. 76, p.2080–2094 (1982)ADSGoogle Scholar
  110. [7.110] {Sect. 7.3.4.1]}
    W. Sibbett, J.R. Taylor, D. Welford: Substituent and Environmental Effects on the Picosecond Lifetimes of the Polymethine Cyanine Dyes, IEEE J. QE-17, p.500–509 (1981)Google Scholar
  111. [7.111] {Sect. 7.3.4.1]}
    J.R. Taylor, M.C. Adams, W. Sibbett: Investigation of Viscosity Dependent Fluorescence Lifetime Using a Synchronously Operated Picosecond Streak Camera, App Phys 21, p.13–17 (1980)ADSGoogle Scholar
  112. [7.112] {Sect. 7.3.4.1]}
    Th. Förster: Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. 6, p.55–75 (1948)Google Scholar
  113. [7.113] {Sect. 7.3.4.1]}
    D.V. O’Connor, D. Phillips: Time-Correlated Single-Photon Counting (Academic, New York 1989)Google Scholar
  114. [7.114] {Sect. 7.3.4.1]}
    M. Ameloot, H. Hendrikckx: Extension of the Performance of Laplace Deconvolution in the Analysis of Fluorescence Dacay Curves, Biophys. J. 44, p.27–38 (1983)Google Scholar
  115. [7.115] {Sect. 7.3.4.1]}
    D. Welford, W. Sibbett, J.R. Taylor: Dual component fluorescence lifetime of some polymethine saturable absorbing dyes, Opt. Comm. 34, p.175–180 (1980)ADSGoogle Scholar
  116. [7.116] {Sect. 7.3.4.1]}
    A. Polimeno, P.L. Nordio, G. Moro: Master Equation Representation of Fokker-Planck Operators in the Energy Diffusion Regime: Strong Collision Versus Random Walk Processes, Chem. Phys. Lett. 144, p.357–361 (1988)ADSGoogle Scholar
  117. [7.117] {Sect. 7.3.4.1]}
    B. Bagchi, G.R. Fleming, D.W. Oxtoby: Theory of electronic relaxation in solution in the absence of an activation barrier, J. Chem. Phys. 78, p.7375–7385 (1983)ADSGoogle Scholar
  118. [7.118] {Sect. 7.3.4.3]}
    D.F. Eaton: Reference Materials for Fluorescence Measurement, J. Photochem. and Photobiol. B: Biology 2, p.523–531 (1988)Google Scholar
  119. [7.119] {Sect. 7.3.4.3]}
    M. Sonnenschein, A. Amirav, J. Jortner: Absolute fluorescence quantum yields of large molecules in supersonic expansions, J. Phys. Chem. 88, p.4214–4218 (1984)Google Scholar
  120. [7.120] {Sect. 7.3.4.3]}
    S. Hamal, F. Hirayama: Actinometric Determination of Absolute Fluorescence Quantum Yields, J. Phys. Chem. 87, p.83–89 (1983)Google Scholar
  121. [7.121] {Sect. 7.3.4.3]}
    A.I. Akimov, A.N. Solov’ev, V.I. Yuzhakov, M.A. Kir-pichenok: Luminescence spectra and lasing characteristics of some new coumarins, Sov. J. Quantum Electron. 22, p.999–1001 (1992)ADSGoogle Scholar
  122. [7.122] {Sect. 7.3.4.3]}
    M. Vogel, W. Rettig, R. Sens, K.H. Drexhage: Structural relaxation of rhodamine dyes with different n-substitution patterns: A study of fluorescence decay times and quantum yields, Chem. Phys. Lett. 147, p.452–460 (1988)ADSGoogle Scholar
  123. [7.123] {Sect. 7.3.4.3]}
    I. Lopez Arbeloa: Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism, Chem. Phys. Lett. 129, p.607–614 (1986)ADSGoogle Scholar
  124. [7.124] {Sect. 7.3.4.3]}
    D.C. Dong, M.A. Winnik: The Py scale of solvent polarities. Solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with Er and Y values, Photochem. and Photobiol. 35, p.17–21 (1982)Google Scholar
  125. [7.125] {Sect. 7.3.4.3]}
    J.R. Lakowicz, G. Weber: Quenching of Fluorescence by Oxygen. A Probe for Structural Fluctuations in Macromolecules, Biochem. 12, p.4161–4170 (1973)Google Scholar
  126. [7.126] {Sect. 7.3.4.3]}
    Th. Förster, G. Hoffmann: Die Viskositätsabhängigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme, Z. Physik Chem. NF 75, p.63–76 (1971)Google Scholar
  127. [7.127] {Sect. 7.3.4.3]}
    W. Siebrand: Nonradiative processes in molecular systems, in Dynamics of Molecular Collisions, ed. W.H. Miller, Modern Theoretical Chemistry, Vol. 1, Part A (Plenum, New York 1976), p. 249–302Google Scholar
  128. [7.128] {Sect. 7.4.2]}
    F. Li, Y.L. Song, K. Yang, S.T. Liu, C.F. Li, Y.Q. Wu, X. Zuo, C.X. Yu, P.W. Zhu: Determination of nonlinear absorption mechanisms using a single pulse width laser, J Appl Phys 82, p.2004–2006 (1997)ADSGoogle Scholar
  129. [7.129] {Sect. 7.4.2]}
    T. Robl, A. Seilmeier: Ground State Recovery of Electronically Excited Malachite Green via Transient Vibrational Heating, Chem. Phys. Lett. 147, p.544–550 (1988)ADSGoogle Scholar
  130. [7.130] {Sect. 7.4.2]}
    M.J. Rosker, F.W. Wiese, C.L. Tang: Femtosecond Relaxation Dynamics of Large Molecules, Phys. Rev. Lett. 57, p.321–324 (1986)ADSGoogle Scholar
  131. [7.131] {Sect. 7.4.2]}
    D. Leupold, M. Scholz: Determination of the energy level scheme of saturable absorbers by variation of excitation pulse duration. Demonstration with chlorophyll, Chem. Phys. Lett. 115, p.434–436 (1985)ADSGoogle Scholar
  132. [7.132] {Sect. 7.4.2]}
    S. Oberländer, D. Leupold: Information contained in non-linear absorption curves with extrema, Opt. Comm. 52, p.57–62 (1984)ADSGoogle Scholar
  133. [7.133] {Sect. 7.4.2]}
    R. Trebino, A.E. Siegman: Subpicosecond relaxation study of malachite green using a three-laser frequency-domain technique, J. Chem. Phys. 79, p.3621–3626 (1983)ADSGoogle Scholar
  134. [7.134] {Sect. 7.4.2]}
    R.W. Eason, R.C. Greenhow, J.A.D. Matthew: Modeling of Picosecond Pump and Probe Photobleaching Experiments on Fast Saturable Absorbers, IEEE J. QE-17, p.95–102 (1981)Google Scholar
  135. [7.135] {Sect. 7.4.2]}
    A. Penzkofer: Generation of picosecond and subpicosecond light pulses with saturable absorbers, Opto-Electr. 6, p.87–98 (1974)Google Scholar
  136. [7.136] {Sect. 7.4.2]}
    G. Girard, M. Michon: Transmission of a Kodak 9740 Dye Solution Under Picosecond Pulses, IEEE J. QE-9, p.979–984 (1973)Google Scholar
  137. [7.137] {Sect. 7.4.2]}
    G. Mourou, B. Drouin, M. Bergeron, M. M. Denariez-Roberge: Kinetics of Bleaching in Polymethine Cyanine Dyes, IEEE J. QE-9, p.745–748 (1973)Google Scholar
  138. [7.138] {Sect. 7.4.2]}
    A. Zunger, K. Bar-Eli: Nonlinear Behavior of Solutions Illuminated by a Ruby Laser, J. Chem. Phys. 57, p.3558–3567 (1972)ADSGoogle Scholar
  139. [7.139] {Sect. 7.4.2]}
    H. Schüller, H. Puell: Investigations of non-linear absorption of light in solutions of cryptocyanine, Opt. Comm. 3, p.352–356 (1971)ADSGoogle Scholar
  140. [7.140] {Sect. 7.4.2]}
    M. Andorn, K.H. Bar-Eli: Optical Bleaching and Deviations from Beer-Lambert’s Law of Solutions Illuminated by Ruby Laser. I. Cry-tocyanine Solutions, J. Chem. Phys. 55, p.5008–5015 (1970)ADSGoogle Scholar
  141. [7.141] {Sect. 7.4.2]}
    L. Huff, L.G. DeShazer: Saturation of Optical Transitions in Organic Compounds by Laser Flux, J. Opt. Soc. Am. 60, p. 157–165 (1970)ADSGoogle Scholar
  142. [7.142] {Sect. 7.4.2]}
    M. Hercher: An Analysis of Saturable Absorbers, Appl. Opt. 6, p.947–954 (1967)ADSGoogle Scholar
  143. [7.143] {Sect. 7.4.5]}
    D. Leupold, R. König, B. Voigt, R. Menzel: Modell des sättigbaren Absorbers Crytocyanin/Methanol, Opt. Commun. 11, p.78–82 (1974)ADSGoogle Scholar
  144. [7.144] {Sect. 7.5.0]}
    G. Battaglin, P. Calvelli, E. Cattaruzza, R. Polioni, E. Borsella, T. Cesca, F. Gonella, P. Mazzoldi: Laser-irradiation effects during Z-scan measurement on metal nanocluster composite glasses, J Opt Soc Am B Opt Physics 17, p.213–218 (2000)ADSGoogle Scholar
  145. [7.145] {Sect. 7.5.0]}
    A.G. Bezerra, I.E. Borissevitch, A.S.L. Gomes, C.B. deAraujo: Exploitation of the Z-scan technique as a method to optically probe pK (A) in organic materials: application to porphyrin derivatives, Optics Letters 25, p.323–325 (2000)ADSGoogle Scholar
  146. [7.146] {Sect. 7.5.0]}
    A.G. Bezerra, A.S.L. Gomes, D.A. daSilva, L.H. Acioli, C.B. deAraujo, C.P. deMelo: Molecular hyperpolarizabilities of retinal derivatives, J Chem Phys 111, p.5102–5106 (1999)ADSGoogle Scholar
  147. [7.147] {Sect. 7.5.0]}
    J.A. Hermann, T. Bubner, T.J. Mckay, P.J. Wilson, J. Starom-lynska, A. Eriksson, M. Lindgren, S. Svensson: Optical limiting capability of thick nonlinear absorbers, J Nonlinear Opt Physics Mat 8, p.253–275 (1999)ADSGoogle Scholar
  148. [7.148] {Sect. 7.5.0]}
    T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda: Measurement of nonlinear refractive index by time-resolved z-scan technique, Opt Commun 160, p.125–129 (1999)ADSGoogle Scholar
  149. [7.149] {Sect. 7.5.0]}
    R. QuinteroTorres, M. Thakur: Measurement of the nonlinear refractive index of polydiacetylene using Michelson interferometry and z-scan, J Appl Phys 85, p.401–403 (1999)ADSGoogle Scholar
  150. [7.150] {Sect. 7.5.0]}
    W.F. Zhang, M.S. Zhang, Z. Yin, Y.Z. Gu, Z.L. Du, B.L. Yu: Large third-order optical nonlinearity in SrBi2Ta209 thin films by pulsed laser deposition, Appl Phys Lett 75, p.902–904 (1999)ADSGoogle Scholar
  151. [7.151] {Sect. 7.5.0]}
    G. Xiao, J.H. Lim, E.V. Stryland, M. Bass, L. Weichman: Z-Scan Measurement of the Ground and Excited State Absorption Cross Sections of Cr4+ in Yttrium Aluminum Garnet, IEEE J. QE-35, p.1086–1091 (1999)Google Scholar
  152. [7.152] {Sect. 7.5.0]}
    X. Chen, B. Lavorel, T. Dreier, N. Genetier, H. Misserey, X. Michaut: Self-focusing in Terbium Gallium Garnet using Z-scan, Opt Commun 153, p.301–304 (1998)ADSGoogle Scholar
  153. [7.153] {Sect. 7.5.0]}
    M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattel, P. Mazzoldi, M. Piovesan, G. Battaglin, R. Polioni: Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica, Appl Phys Lett 73, p.288–290 (1998)ADSGoogle Scholar
  154. [7.154] {Sect. 7.5.0]}
    F.E. Hernandez, A. Marcano, Y. Alvarado, A. Biondi, H. Maillotte: Measurement of nonlinear refraction index and two-photon absorption in a novel organometallic compound, Opt Commun 152, p.77–82 (1998)ADSGoogle Scholar
  155. [7.155] {Sect. 7.5.0]}
    B.M. Patterson, W.R. White, T.A. Robbins, R.J. Knize: Linear optical effects in Z-scan measurements of thin films, Appl Opt 37, p. 1854–1857 (1998)ADSGoogle Scholar
  156. [7.156] {Sect. 7.5.0]}
    T.H. Wei, T.H. Huang, M.S. Lin: Signs of nonlinear refraction in chloroamminum phthalocyanine solution, Appl Phys Lett 72, p.2505–2507 (1998)ADSGoogle Scholar
  157. [7.157] {Sect. 7.5.0]}
    O.V. Prhonska, J.H. Lim, D.J. Hagan, E.W. Vanstryland, M.V. Bondar, Y.L. Slominski: Nonlinear light absorption of polamethine dyes in liquid and solid media, J. Opt. Soc. Am. B15 p.802–809 (1998)ADSGoogle Scholar
  158. [7.158] {Sect. 7.5.0]}
    S. Bian, J. Frejlich, K.H. Ringhofer: Photorefractive saturable Kerr-type nonlinearity in photovoltaic crystals, Phys Rev Lett 78, p.4035–4038 (1997)ADSGoogle Scholar
  159. [7.159] {Sect. 7.5.0]}
    S. Bian: Estimation of photovoltaic field in LiNbO3 crystal by Z- scan, Opt Commun 141, p.292–297 (1997)ADSGoogle Scholar
  160. [7.160] {Sect. 7.5.0]}
    K. Kandasamy, P.N. Puntambekar, B.P. Singh, S.J. Shetty, T.S. Srivastava: Resonant nonlinear optical studies on porphyrin derivatives, J Nonlinear Opt Physics Mat 6, p.361–375 (1997)ADSGoogle Scholar
  161. [7.161] {Sect. 7.5.0]}
    F. Li, Y.L. Song, K. Yang, S.T. Liu, C.F. Li: Measurements of the triplet state nonlinearity of C-60 in toluene using a Z-scan technique with a nanosecond laser, Appl Phys Lett 71, p.2073–2075 (1997)ADSGoogle Scholar
  162. [7.162] {Sect. 7.5.0]}
    V. Pilla, P.R. Impinnisi, T. Catunda: Measurement of saturation intensities in ion doped solids by transient nonlinear refraction, Appl Phys Lett 70, p.817–819 (1997)ADSGoogle Scholar
  163. [7.163] {Sect. 7.5.0]}
    M. Terazima, H. Shimizu, A. Osuka: The third-order nonlinear optical properties of porphyrin oligomers, J Appl Phys 81, p.2946–2951 (1997)ADSGoogle Scholar
  164. [7.164] {Sect. 7.5.0]}
    F. Michelotti, F. Caiazza, G. Liakhou, S. Paoloni, M. Bertolotti: Effects of nonlinear Fabry-Perot resonator response on Z- scan measurements, Opt Commun 124, p.103–110 (1996)ADSGoogle Scholar
  165. [7.165] {Sect. 7.5.0]}
    R.E. Bridges, G.L. Fischer, R.W. Boyd: Z-scan measurement technique for non-Gaussian beams and arbitrary sample thicknesses, Optics Letters 20, p.1821–1823 (1995)ADSGoogle Scholar
  166. [7.166] {Sect. 7.5.0]}
    T.H. Wei, D.J. Hagan, M.J. Sence, E.W. Van Stryland, J.W. Perry, D.R. Coulter: Direct Measurement of Nonlinear Absorption and Refraction in Solutions of Phthalocyannines, Appl. Phys. B 54, p.46–51 (1992)ADSGoogle Scholar
  167. [7.167] {Sect. 7.5.0]}
    P. Klovekorn, J. Munch: Investigation of transient nonlinear optical mechanisms using a variable pulselength laser, IEEE J QE-35, p. 187–197 (1999)Google Scholar
  168. [7.168] {Sect. 7.5.0]}
    W.F. Sun, C.C. Byeon, C.M. Lawson, G.M. Gray, D.Y. Wang: Third-order susceptibilities of asymmetric pentaazadentate porphyrin- like metal complexes, Appl Phys Lett 74, p.3254–3256 (1999)ADSGoogle Scholar
  169. [7.169] {Sect. 7.5.0]}
    M.O. Martin, L. Canioni, L. Sarger: Measurements of complex third-order optical susceptibility in a collinear pump-probe experiment, Optics Letters 23, p.1874–1876 (1998)ADSGoogle Scholar
  170. [7.170] {Sect. 7.5.0]}
    J. Vanhanen, V.P. Leppanen, T. Haring, V. Kettunen, T. Jaaskelainen, S. Parkkinen, J.P.S. Parkkinen: Nonlinear refractive index change of photoactive yellow protein, Opt Commun 155, p.327–331 (1998)ADSGoogle Scholar
  171. [7.171] {Sect. 7.5.0]}
    S. Dhanjal, S.V. Popov, I.R. Shatwell, Y.P. Svirko, N.I. Zheludev, V.E. Gusev: Femtosecond optical nonlinearity of metallic indium across the solid-liquid transition, Optics Letters 22, p. 1879–1881 (1997)ADSGoogle Scholar
  172. [7.172] {Sect. 7.5.0]}
    H.J. Huang, G. Gu, S.H. Yang, J.S. Fu, P. Yu, G.K.L. Wong, Y.W. Du: Nonlinear optical response of the higher fullerene C-90 — A comparison with C-60, Chem Phys Lett 272, p.427–432 (1997)ADSGoogle Scholar
  173. [7.173] {Sect. 7.5.0]}
    I. Kang, T. Krauss, F. Wise: Sensitive measurement of nonlinear refraction and two- photon absorption by spectrally resolved two-beam coupling, Optics Letters 22, p.1077–1079 (1997)ADSGoogle Scholar
  174. [7.174] {Sect. 7.5.0]}
    P. Klovekorn, J. Munch: Variable stimulated Brillouin scattering pulse compressor for nonlinear optical measurements, Appl Opt 36, p.5913–5917 (1997)ADSGoogle Scholar
  175. [7.175] {Sect. 7.5.0]}
    J.Y. Wu, J. Yan, D.C. Sun, F.M. Li, L.W. Zhou, M. Sun: Third-order nonlinear optical property of a polyphenylene oligomer: Poly (2,5-dialkozyphenylene), Opt Commun 136, p.35–38 (1997)ADSGoogle Scholar
  176. [7.176] {Sect. 7.5.0]}
    J. Yan, J.Y. Wu, H.Y. Zhu, X.T. Zhang, D.C. Sun, Y.M. Hu, F.M. Li, M. Sun: Excited state enhancement of the third order nonlinear optical susceptibility of nonether polyphenylquinoxaline, Optics Letters 20, p.255–257 (1995)ADSGoogle Scholar
  177. [7.177] {Sect. 7.5.0]}
    N.I. Zheludev, P.J. Bennett, H. Loh, S.V. Popov, I.R. Shatwell, Y.P. Svirko, V.E. Gusev, V.F. Kamalov, E.V. Slobodchikov: Cubic optical nonlinearity of free electrons in bulk gold, Optics Letters 20, p. 1368–1370 (1995)ADSGoogle Scholar
  178. [7.178] {Sect. 7.5.0]}
    H. Fei, Z. Wei, Q. Yang, Y. Che: Low-power phase conjugation in push-pull azobenzene compounds, Opt. Lett. 20, p. 1518–1520 (1995)ADSGoogle Scholar
  179. [7.179] {Sect. 7.5.0]}
    A. Marcano OL. Aranguren: Absolute values of the nonlinear susceptibility of dye solutions measured by polarization spectroscopy, J. Appl. Phys. 62, p.3100–3103 (1987)ADSGoogle Scholar
  180. [7.180] {Sect. 7.5.0]}
    E.J. Heilweil, R.M. Hochstrasser: Nonlinear spectroscopy and picosecond transient grating study of colloidal gold, J. Chem. Phys. 82, p.4762–4770 (1985)ADSGoogle Scholar
  181. [7.181] {Sect. 7.5.0]}
    J.P. Hermann, J. Ducuing: Third-order polarizabilities of long-chain molecules, J. Appl. Phys. 45, p.5100–5102 (1974)ADSGoogle Scholar
  182. [7.182] {Sect. 7.5.0]}
    M.D. Levenson, N. Bloembergen: Dispersion of the nonlinear optical susceptibilities of organic liquids and solutions, J.Chem. Phys. 60, p.1323–1327 (1974)ADSGoogle Scholar
  183. [7.183] {Sect. 7.5.0]}
    M.D. Levenson, N. Bloembergen: Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media, Phys. Rev. B 10, p.4447–4463 (1974)Google Scholar
  184. [7.184] {Sect. 7.5.0]}
    K.C. Rustagi, J. Ducuing: Third-order optical polarizability of conjugated organic molecules, Opt. Coram. 10, p.258–261 (1974)ADSGoogle Scholar
  185. [7.185] {Sect. 7.5.0]}
    J.P. Hermann, D. Ricard: Optical nonlinearities in conjugated systems: beta-carotene, Appl. Phys. Lett. 23, p. 178–180 (1973)Google Scholar
  186. [7.186] {Sect. 7.5.0]}
    A. Owyoung, R.W. Hellwarth, N. George: Intensity-Induced Changes in Optical Polarizations in Glasses, Phys. Rev. B 5, p.628–633 (1972)Google Scholar
  187. [7.187] {Sect. 7.5.0]}
    J.J. Wynne: Nonlinear Optical Spectroscopy of X (3) in LiNbO3, Phys. Rev. Lett. 29, p.650–653 (1972)ADSGoogle Scholar
  188. [7.188] {Sect. 7.5.2]}
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland: Sensitive Measurement of Optical Nonlinearities Using a Single Beam, IEEE J. QE-26, p.760–769 (1990)Google Scholar
  189. [7.189] {Sect. 7.5.2]}
    M. Martinelli, S. Bian, J.R. Leite, R.J. Horowicz: Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam, Appl Phys Lett 72, p.1427–1429 (1998)ADSGoogle Scholar
  190. [7.190] {Sect. 7.5.2]}
    P.B. Chappie, J. Staromlynska, J.A. Hermann, T.J. Mckay, R.G. Mcduff: Single-beam Z-scan: Measurement techniques and analysis, J Nonlinear Opt Physics Mat 6, p.251–293 (1997)ADSGoogle Scholar
  191. [7.191] {Sect. 7.5.2]}
    C.R. Mendonca, L. Misoguti, S.C. Zilio: Z-scan measurements with Fourier analysis in ion-doped solids, Appl Phys Lett 71, p.2094–2096 (1997)ADSGoogle Scholar
  192. [7.192] {Sect. 7.5.2]}
    P.B. Chappie, P.J. Wilson: Z-scans with near-Gaussian laser beams, J Nonlinear Opt Physics Mat 5, p.419–436 (1996)ADSGoogle Scholar
  193. [7.193] {Sect. 7.5.2]}
    W. Zhao, P. Palffy-Muhoray: Z-scan measurement of X (3) using top-hat beams, Appl. Phys. Lett. 65, p.673–675 (1994)ADSGoogle Scholar
  194. [7.194] {Sect. 7.5.3]}
    G. Xiao, J.H. Lim, E.V. Stryland, M. Bass, L. Weichman: Z-Scan Measurement of the Ground and Excited State Absorption Cross Sections of Cr4+ in Yttrium Aluminum Garnet, IEEE J. QE-35, p.1086–1091 (1999)Google Scholar
  195. [7.195] {Sect. 7.5.3]}
    H.S. Loka, S.D. Benjamin, P.W.E. Smith: Optical Characterization of Low-Temperature-Grown GaAs for Ultrafast All-Optical Switching Devices, IEEE J. QE-34, p.1426–1436 (1998)Google Scholar
  196. [7.196] {Sect. 7.6.1]}
    D. Leupold, I.E. Kochevar: Multiphoton Photochemistry in Biological Systems: Introduction, Photochem. and Photobiol. 66, p.562–565 (1997)Google Scholar
  197. [7.197] {Sect. 7.6.1]}
    S. Oberländer, D. Leupold: Instantaneous fluorescence quantum yield of organic molecular systems: information content of ist intensity dependence, J. Luminesc. 59, p.125–133 (1994)Google Scholar
  198. [7.198] {Sect. 7.6.1]}
    K.R. Naqvi, D.K. Sharma, G.J. Hoytink: Measurements of Sub-Nanosecond Lifetimes from Biphotonic Fluorescence Produced by Nanosecond Laser Pulses, Chem. Phys. Lett. 22, p.222–225 (1973)ADSGoogle Scholar
  199. [7.199] {Sect. 7.6.2]}
    N. Kamiya, M. Ishikawa, K. Kasahara, M. Kaneko, N. Yamamoto, H. Ohtani: Picosecond fluorescence spectroscopy of the purple membrane of Halobacterium halobium in alkaline suspension, Chem Phys Lett 265, p.595–599 (1997)ADSGoogle Scholar
  200. [7.200] {Sect. 7.6.2]}
    S. Reindl, A. Penzkofer: Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation, Chem Phys 213, p.429–438 (1996)Google Scholar
  201. [7.201] {Sect. 7.6.2]}
    T. Doust: Picosecond Fluorescence Decay Kinetics of Crystal Violet in Low-Viscosity Solvents, Chem. Phys. Lett. 96, p.522–525 (1983)ADSGoogle Scholar
  202. [7.202] {Sect. 7.6.2]}
    E.F. Hilinski, P.M Rentzepis: Chemical Applications of Picosecond Spectroscopy, Acc. Chem. Res. 16, p.224–232 (1983)Google Scholar
  203. [7.203] {Sect. 7.6.2]}
    V. Sundström, T. Gillbro, H. Bergström: Picosecond Kinetics of Radiationless Relaxations of Triphenyl Methane Dyes. Evidence for a Rapid Excited-State Equilibrium Between States of Differing Geometry, Chem. Phys. 73, p.439–458 (1982)Google Scholar
  204. [7.204] {Sect. 7.6.2]}
    G.R. Fleming, A.E.W. Knight, J.M. Morris, R.J. Robbins, G.W. Robinson: Picosecond spectroscopic studies of spontaneous and stimulated emission in organic dye molecules, Chem. Phys. 23p.61–70 (1977)Google Scholar
  205. [7.205] {Sect. 7.6.2]}
    S.H. Lee, I.C. Chen: Non-exponential decays of the S-1 vibronic levels of acetaldehyde, Chem Phys 220, p.175–189 (1997)ADSGoogle Scholar
  206. [7.206] {Sect. 7.6.2]}
    V. Sundström, T. Gillbro: A Discussion of the Problem of Detemining Multiple Lifetimes from Picosecond Absorption Recovery Data as Encountered in Two Carbocyanine Dyes, Appl. Phys. B 31, p.235–247 (1983)Google Scholar
  207. [7.207] {Sect. 7.6.2]}
    J.R. Torga, J.I. Etcheverry, M.C. Marconi: Design of a fluorescence technique using double laser pulse excitation for the measurement of molecular Brownian dynamics, Opt Commun 143, p.230–234 (1997)ADSGoogle Scholar
  208. [7.208] {Sect. 7.6.2]}
    B.D. Fainberg, B. Zolotov, D. Huppert: Nonlinear laser spectroscopy of nonlinear solvation, J Nonlinear Opt Physics Mat 5, p.789–807 (1996)ADSGoogle Scholar
  209. [7.209] {Sect. 7.6.2]}
    J.R. Lakowicz, A. Balter: Differential-Wavelength Deconvolution of Time-Resolved Fluorescence Intensities, Biophys. Chem. 16, p.223–240 (1982)Google Scholar
  210. [7.210] {Sect. 7.6.3]}
    H. Kano, S. Kawata: Two-photon-excited fluorescence enhanced by a surface plasmon, Optics Letters 21, p. 1848–1850 (1996)ADSGoogle Scholar
  211. [7.211] {Sect. 7.6.3]}
    J. Mertz, C. Xu, W.W. Webb: Single-molecule detection by two-photon-excited fluorescence, Optics Letters 20, p.2532–2534 (1995)ADSGoogle Scholar
  212. [7.212] {Sect. 7.6.4]}
    D. Klemp, B. Nickel: Relative quantum yield of the S2–S1 fluorescence from azulene, Chem. Phys. Lett. 130, p.493–497 (1986)ADSGoogle Scholar
  213. [7.213] {Sect. 7.6.4]}
    Y. Kurabayashi, K. Kikuchi, H. Kokubun, Y. Kaizu, H. Kobayashi: S2–S0 Fluorescence of Some Metallotetraphenylporphyrins, J. Phys. Chem. 88, p.1308–1310 (1984)Google Scholar
  214. [7.214] {Sect. 7.6.4]}
    G.J. Hoytink: The “anomalous” fluorescence of 1,12-benzperyl-ene in n-heptane, Chem. Phys. Lett. 22, p.10–12 (1983)ADSGoogle Scholar
  215. [7.215] {Sect. 7.6.4]}
    A. Maciejewski, R.P. Steer: Effect of solvent on the subnanosec-ond decay of the second excited singlet state of tetramethylindanethione, Chem. Phys. Lett. 100, p.540–545 (1983)ADSGoogle Scholar
  216. [7.216] {Sect. 7.6.4]}
    A.A. Krasheninnikov, A.V. Shablya: Determination of luminescence quantum yield from highly excited electronic states of moleculaes by the photo-acoustic effect, Opt. Spectrosc. (USSR) 52, p.159–162 (1982)ADSGoogle Scholar
  217. [7.217] {Sect. 7.6.4]}
    S. Muralidharan, G. Ferraudi, L.K. Patterson: Luminescence from Upper Electronic Excited States of Phthalocyanines, Inorganica Chim-ica Acta 65, p.L235–L236 (1982)Google Scholar
  218. [7.218] {Sect. 7.6.4]}
    B.S. Vogt, S.G. Schulman: Anomalous Fluorescence of 9-Aminofluorene, Chem. Phys. Lett. 89, p.320–323 (1982)ADSGoogle Scholar
  219. [7.219] {Sect. 7.6.4]}
    V.L. Bogdanov, V.P. Klochkov: Secondary emission of coronene molecules with excitation of higher electronic states, Opt. Spectrosc. (USSR) 50, p.479–484 (1981)ADSGoogle Scholar
  220. [7.220] {Sect. 7.6.4]}
    K. Teuchner, S. Dähne: The anomalous blue fluorescence of pseudoisocyanine dyes, J. Luminesc. 23, p.413–422 (1981)ADSGoogle Scholar
  221. [7.221] {Sect. 7.6.4]}
    E.N. Kaliteevskaya, T.K. Razumova: Photochemical conversions and short-wavelength luminescence of polymethine dyes. Studies of short-wavelength luminescence, Opt. Spectrosc. (USSR) 48, p.269–273 (1980)ADSGoogle Scholar
  222. [7.222] {Sect. 7.6.4]}
    M. Orenstein, S. Kimel, S. Speiser: Laser excited S2–S1 and S1–S0 emission spectra and the S2-Sn absorption spectrum of azulene in solution, Chem. Phys. Lett. 58, p.582–585 (1978)ADSGoogle Scholar
  223. [7.223] {Sect. 7.6.4]}
    J.R. Huber, M. Mahaney: S2–S0 fluorescence in an aromatic thioketone, xanthione, Chem. Phys. Lett. 30, p.410–412 (1975)ADSGoogle Scholar
  224. [7.224] {Sect. 7.6.4]}
    J.B. Birks: Dual fluorescence of isolated aromatic molecules, Chem. Phys. Lett. 25, p.315–460 (1974)ADSGoogle Scholar
  225. [7.225] {Sect. 7.6.4]}
    L. Bajema, M. Gouterman: Porphyrens XXIII. Fluorescence of the Second Excited Singlet and Quasiline Structure of Zinc Tetrabenz-porphin, J. Mol. Spectr. 39, p.421–431 (1971)ADSGoogle Scholar
  226. [7.226] {Sect. 7.7.1]}
    M. Assel, R. Laenen, A. Laubereau: Retrapping and solvation dynamics after femtosecond UV excitation of the solvated electron in water, J Chem Phys 111, p.6869–6874 (1999)ADSGoogle Scholar
  227. [7.227] {Sect. 7.7.1]}
    V.V. Lozovoy, O.M. Sarkisov, A.S. Vetchinkin, S.Y. Umanskii: Coherent control of the molecular iodine vibrational dynamics by chirped femtosecond light pulses: theoretical simulation of the pump- probe experiment, Chem Phys 243, p.97–114 (1999)Google Scholar
  228. [7.228] {Sect. 7.7.1]}
    F. Stienkemeier, F. Meier, A. Hagele, H.O. Lutz, E. Schreiber, C.P. Schulz, I.V. Hertel: Coherence and relaxation in potassium-doped helium droplets studied by femtosecond pump-probe spectroscopy, Phys Rev Lett 83, p.2320–2323 (1999)ADSGoogle Scholar
  229. [7.229] {Sect. 7.7.1]}
    S. Hashimoto: Diffuse reflectance laser photolytic studies of pyrene included in zeolites — Formation of pyrene anion radicals via excited-state electron transfer between guest molecules, Chem Phys Lett 252, p. 236–242 (1996)ADSGoogle Scholar
  230. [7.230] {Sect. 7.7.1]}
    J.N. Heyman, K. Unterrainer, K. Craig, J. Williams, M.S. Sherwin, K. Campman, P.F. Hopkins, A.C. Gossard, B.N. Murdin, C.J.G.M. Langerak: Far-infrared pump-probe measurements of the intersubband lifetime in an AlGaAs/GaAs coupled-quantum well, Appl Phys Lett 68, p.3019–3021 (1996)ADSGoogle Scholar
  231. [7.231] {Sect. 7.7.1]}
    P. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer, R. Kettner, S. Mais, T. Basche: Pump-probe experiments with a single molecule: ac-Stark effect and nonlinear optical response, Phys Rev Lett 75, p.1514–1517 (1995)ADSGoogle Scholar
  232. [7.232] {Sect. 7.7.1]}
    D.S. Kliger, A.C. Albrecht: Polarized Spectroscopy of Excites States of Substituted Anthracenes on a Nanosecond Time Scale, J. Chem. Phys. 53, p.4059–4065 (1970)ADSGoogle Scholar
  233. [7.233] {Sect. 7.7.1]}
    G. Porter, F.R.S. Topp, M.R. Topp: Nanosecond flash photolysis, Proc. Roy. Soc. Lond. A. 315, p.163–184 (1970)ADSGoogle Scholar
  234. [7.234] {Sect. 7.7.1]}
    H. Takahashi (ed.): Transient Vibrational Spectroscopy, Springer Proc. Phys, Vol. 68 (Springer, Berlin, Heidelberg 1992)Google Scholar
  235. [7.235] {Sect. 7.7.1]}
    G. Haran, W.D. Sun, K. Wynne, R.M. Hochstrasser: Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases, Chem Phys Lett 274, p.365–371 (1997)ADSGoogle Scholar
  236. [7.236] {Sect. 7.7.1]}
    E. Budiarto, J. Margolies, S. Jeong, J. Son, J. Bokor: High-intensity terahertz pulses at 1-kHz repetition rate, IEEE J QE-32, p. 1839–1846 (1996)Google Scholar
  237. [7.237] {Sect. 7.7.2]}
    N. Zhavoronkov, V. Petrov, F. Noack: Transient excited-state absorption measurements in chromium-doped forsterite, Phys Rev B 61, p.1866–1870 (2000)ADSGoogle Scholar
  238. [7.238] {Sect. 7.7.2]}
    G.M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, J.C. Leicknam: Femtosecond dynamics of hydrogen bonds in liquid water: A real time study, Phys Rev Lett 82, p. 1068–1071 (1999)ADSGoogle Scholar
  239. [7.239] {Sect. 7.7.2]}
    J.P. Likforman, M. Joffre, D. Hulin: Hyper-Raman gain due to excitons coherently driven with femtosecond pulses, Phys Rev Lett 79, p.3716–3719 (1997)ADSGoogle Scholar
  240. [7.240] {Sect. 7.7.2]}
    D. Tittelbachhelmrich, R.P. Steer: Subpicosecond population decay time of the first excited singlet state of thioxanthione in fluid solution, Chem Phys Lett 262, p.369–373 (1996)ADSGoogle Scholar
  241. [7.241] {Sect. 7.7.2]}
    T. Okada, N. Mataga, W. Baumann, A. Siemiarczuk: Picosecond Laser Spectroscopy of 4- (9-Anthryl)-N,N-dimethylaniline and Related Compounds, J. Phys. Chem. 91, p.4490–4495 (1987)Google Scholar
  242. [7.242] {Sect. 7.7.2]}
    T. Okada, N. Mataga, W. Baumann: Sn-Sl Absorption Spectra of 4- (N,N-Dimethylamino)benzonitrile in Various Solvents: Confirmation of the Intramolecular Ion Pair State in Polar Solvents, J. Phys. Chem. 91, p.760–762 (1987)Google Scholar
  243. [7.243] {Sect. 7.7.2]}
    E. Morikawa, K. Shikichi, R. Katoh, M. Kotani: Transient photoabsorption by singlet excitons in p-terphenyl single crystals, Chem. Phys. Lett. 131, p.209–212 (1986)ADSGoogle Scholar
  244. [7.244] {Sect. 7.7.2]}
    C.V. Shank, R. Yen, J. Orenstein, G.L. Baker: Femtosecond excited-state relaxation in polyacetylene, Phys. Rev. B 28, p.6095–6096 (1983)ADSGoogle Scholar
  245. [7.245] {Sect. 7.7.2]}
    S.K. Chattopadhyay, P.K. Das: Singlet-singlet absorption spectra of Diphenylpolyenes, Chem. Phys. Lett. 87, p.145–150 (1982)ADSGoogle Scholar
  246. [7.246] {Sect. 7.7.2]}
    T. Okada, N. Tashita, N. Mataga: Direct observation of intermediate heteroexcimer in the photoinduced hydrogen-atom transfer reaction by picosecond laser spectroscopy, Chem. Phys. Lett. 75, p.220–223 (1980)ADSGoogle Scholar
  247. [7.247] {Sect. 7.7.2]}
    C.V. Shank, E.P. Ippen, R.L. Fork, A. Migus, T. Kobayashi: Application of subpicosecond optical techniques to molecular dynamics, Phil. Trans. R. Soc. Lond. A 298, p.303–308 (1980)ADSGoogle Scholar
  248. [7.248] {Sect. 7.7.2]}
    S. Tagawa, W. Schnabel: Laser flash photolysis studies on excited singlet states of benzene, toluene, p-xylene, polystyrene, and poly-alpha-methylstyrene, Chem. Phys. Lett. 75, p.120–122 (1980)ADSGoogle Scholar
  249. [7.249] {Sect. 7.7.2]}
    A. Müller, J. Schulz-Hennig, H. Tashiro: Excited State Absorption of 1,3,3,1′,3′,3′-Hexamethylindotricarboncyanine Iodide: A Quantitative Study by Ultrafast Absorption Spectroscopy, Appl. Phys. 12, p.333–339 (1977)ADSGoogle Scholar
  250. [7.250] {Sect. 7.7.2]}
    D. Magde, M.W. Windsor, D. Holten, M. Gouterman: Picosecond flash photolysis: transient absorption in Sn (IV), Pd (II), and Cu (II) porphyrins, Chem. Phys. Lett. 29, p.183–188 (1974)ADSGoogle Scholar
  251. [7.251] {Sect. 7.7.3]}
    A.B. Myers, R.M. Hochstrasser Comparision of Four-Wave Mixing Techniques for Studying Orientational Relaxation, IEEE J. QE-22, p.1482–1492 (1986)Google Scholar
  252. [7.252] {Sect. 7.7.3]}
    T.F. Heinz, S.L. Palfrey, K.B. Eisenthal: Coherent Coupling Effects in pump-probe measurements with collinear, copropagating beams, Opt. Lett. 9, p.359–361 (1984)ADSGoogle Scholar
  253. [7.253] {Sect. 7.7.3]}
    A. v. Jena, H.E. Lessing: Coherent Coupling Effects in Picosecond Absorption Experiments, Appl. Phys. 19, p.131–144 (1979)ADSGoogle Scholar
  254. [7.254] {Sect. 7.7.5]}
    C. Brunei, B. Lounis, P. Tamarat, M. Orrit: Triggered source of single photons based on controlled single molecule fluorescence, Phys Rev Lett 83, p.2722–2725 (1999)ADSGoogle Scholar
  255. [7.255] {Sect. 7.7.5]}
    A. Leitenstorfer, C. Furst, A. Laubereau: Widely tunable two color mode locked Ti:sapphire laser with pulse jitter of less than 2 fs, Optics Letters 20, p.916–918 (1995)ADSGoogle Scholar
  256. [7.256] {Sect. 7.7.5]}
    N. Karasawa, R. Morita, H. Shigekawa, M. Yamashita: Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide, Optics Letters 25, p. 183–185 (2000)ADSGoogle Scholar
  257. [7.257] {Sect. 7.7.5]}
    A. Brodeur, S.L. Chin: Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J Opt Soc Am B Opt Physics 16, p.637–650 (1999)ADSGoogle Scholar
  258. [7.258] {Sect. 7.7.5]}
    A.A. Zozulya, S.A. Diddams, A.G. VanEngen, T.S. Clement: Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation, Phys Rev Lett 82, p. 1430–1433 (1999)ADSGoogle Scholar
  259. [7.259] {Sect. 7.7.5]}
    J.U. Kang, R. Posey: Demonstration of supercontinuum generation in a long-cavity fiber ring laser, Optics Letters 23, p. 1375–1377 (1998)ADSGoogle Scholar
  260. [7.260] {Sect. 7.7.5]}
    J.P. Likforman, A. Alexandrou, M. Joffre: Intracavity white-light continuum generation in a femtosecond Ti: sapphire oscillator, Appl Phys Lett 73, p.2257–2259 (1998)ADSGoogle Scholar
  261. [7.261] {Sect. 7.7.5]}
    E.T.J. Nibbering, O. Duhr, G. Korn: Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide, Optics Letters 22, p.1335–1337 (1997)ADSGoogle Scholar
  262. [7.262] {Sect. 7.7.5]}
    A. Brodeur, F.A. Ilkov, S.L. Chin: Beam filamentation and the white light continuum divergence, Opt Commun 129, p. 193–198 (1996)ADSGoogle Scholar
  263. [7.263] {Sect. 7.7.5]}
    M. Wittmann, A. Penzkofer: Spectral superbroadening of femtosecond laser pulses, Opt Commun 126, p.308–317 (1996)ADSGoogle Scholar
  264. [7.264] {Sect. 7.7.5]}
    H. Nishioka, W. Odajima, K. Ueda, H. Takuma: Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses, Optics Letters 20, p.2505–2507 (1995)ADSGoogle Scholar
  265. [7.265] {Sect. 7.7.5]}
    I.A. Bufetov, M.V. Grekov, K.M. Golant, E.M. Dianov, R.R. Khrapko: Ultraviolet-light generation in nitrogen-doped silica fiber, Optics Letters 22, p.1394–1396 (1997)ADSGoogle Scholar
  266. [7.266] {Sect. 7.7.5]}
    I. Ilev, H. Kumagai, K. Toyoda, I. Koprinkov: Highly efficient wideband continuum generation in a single- mode optical fiber by powerful broadband laser pumping, Appl Opt 35, p.2548–2553 (1996)ADSGoogle Scholar
  267. [7.267] {Sect. 7.7.5]}
    R.R. Alfano, Q.X. Li, T. Jimbo, J.T. Manassah, P.P. Ho: Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse, Opt. Lett. 11, p.626–628 (1986)ADSGoogle Scholar
  268. [7.268] {Sect. 7.7.5]}
    R. Menzel, C.W. Hoganson, M.W. Windsor: Picosecond Bleaching Behavior of the Ground-State Absorption and Excited-State Absorptions of Crystal Violet between 455 and 720 nm, Chem. Phys. Lett. 120, p.29–34 (1985)ADSGoogle Scholar
  269. [7.269] {Sect. 7.7.5]}
    A. Borghese, S.S. Merola: Time-resolved spectral and spatial description of laser-induced breakdown in air as a pulsed, bright, and broadband ultraviolet-visible light source, Appl Opt 37, p.3977–3983 (1998)ADSGoogle Scholar
  270. [7.270] {Sect. 7.7.5]}
    S.V. Chernikov, Y. Zhu, J.R. Taylor, V.P. Gapontsev: Super-continuum self-Q-switched ytterbium fiber laser, Optics Letters 22, p.298–300 (1997)ADSGoogle Scholar
  271. [7.271] {Sect. 7.7.5]}
    R. Menzel, W. Rapp: Excited Singlet- and Triplet-Absorptions of Pentaphene, Chem. Phys. 89, p.445–455 (1984)Google Scholar
  272. [7.272] {Sect. 7.7.5]}
    S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, K. Kurosawa: A vacuum ultraviolet flash lamp with extremely broadened emission spectra, Appl Phys Lett 69, p.452–454 (1996)ADSGoogle Scholar
  273. [7.273] {Sect. 7.7.5]}
    T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch: Absolute optical frequency measurement of the cesium D-1 line with a mode-locked laser, Phys Rev Lett 82, p.3568–3571 (1999)ADSGoogle Scholar
  274. [7.274] {Sect. 7.7.5]}
    B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist: Visible lasers with subhertz linewidths, Phys Rev Lett 82, p.3799–3802 (1999)ADSGoogle Scholar
  275. [7.275] {Sect. 7.7.5]}
    B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, J.J. Zondy: Absolute frequency measurement of the 2S–8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant, Phys Rev Lett 78, p.440–443 (1997)ADSGoogle Scholar
  276. [7.276] {Sect. 7.7.7]}
    P.A. Blanche, P.C. Lemaire, M. Dumont, M. Fischer: Photoin-duced orientation of azo dye in various polymer matrices, Optics Letters 24, p.1349–1351 (1999)ADSGoogle Scholar
  277. [7.277] {Sect. 7.7.7]}
    E.L. Quitevis, K.G. Casey, T.W. Sinor: Picosecond rotational reorientation of cresyl violet in polymer solution, Chem. Phys. Lett. 132, p.77–82 (1986)ADSGoogle Scholar
  278. [7.278] {Sect. 7.7.7]}
    G.J. Blanchard, M.J. Wirth: A critical comparision of molecular reorientation in the ground and excited states: Cresyl violet in methanol, J. Chem. Phys. 82, p.39–44 (1985)ADSGoogle Scholar
  279. [7.279] {Sect. 7.7.7]}
    L.A. Philips, S.P. Webb, J.H. Clark: High-pressure studies of rotational reorientation dynamics: The role of dielectric friction, J. Chem. Phys. 83, p.5810–5821 (1985)ADSGoogle Scholar
  280. [7.280] {Sect. 7.7.7]}
    D. Reiser, A. Laubereau: Effect of electronic excitation on ultrafast rotational motion of dye molecules, Chem. Phys. Lett. 92, p.297–301 (1982)ADSGoogle Scholar
  281. [7.281] {Sect. 7.7.7]}
    A. v. Jena, H.E. Lessing: Rotational Diffusion of Dyes in Solvents of Low Viscosity from Transient-Dichroism Experiments, Chem. Phys. Lett. 78, p.187–193 (1981)ADSGoogle Scholar
  282. [7.282] {Sect. 7.7.7]}
    A. Penzkofer, J. Wiedmann: Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption, Opt. Comm. 35, p.81–86 (1980)ADSGoogle Scholar
  283. [7.283] {Sect. 7.7.7]}
    A. Penzkofer, W. Falkenstein: Photoinduced dichroism and vibronic relaxation of rhodamine dyes, Chem. Phys. Lett. 44, p.547–552 (1976)ADSGoogle Scholar
  284. [7.284] {Sect. 7.7.7]}
    H.E. Lessing, A. von Jena, M. Reichert: Orientational aspect of transient absorption in solutions, Chem. Phys. Lett. 36, p.517–522 (1975)ADSGoogle Scholar
  285. [7.285] {Sect. 7.7.8]}
    D. Magde, S.T. Gaffney, B.F. Campbell: Excited Singlet Absorption in Blue Laser Dyes: Measurement by Picosecond Falsh Photolysis, IEEE J. QE-17, p.489–495 (1981)Google Scholar
  286. [7.286] {Sect. 7.7.8]}
    J.F. Shepanski, R.W. Anderson, Jr.: Chlorophyll-a excited singlet state absorption measured in the picosecond time regime, Chem. Phys. Lett. 78, p.165–173 (1981)ADSGoogle Scholar
  287. [7.287] {Sect. 7.7.8]}
    F.E. Doany, B.I. Greene, R.M. Hochstrasser: Excitation energy effects in the photophysics of trans-stilbene in solution, Chem. Phys. Lett. 75, p.206–208 (1980)ADSGoogle Scholar
  288. [7.288] {Sect. 7.7.8]}
    H.E. Lessing, A. von Jena: Separation of rotational diffusion and level kinetics in transient absorption spectroscopy, Chem. Phys. Lett. 42, p.213–217 (1976)ADSGoogle Scholar
  289. [7.289] {Sect. 7.7.8]}
    N. Nakashima, N. Mataga: Picosecond flash photolysis and transient spectral measurements over the entire visible, near ultraviolet and near infrared regions, Chem. Phys. Lett. 35, p.487–492 (1975)ADSGoogle Scholar
  290. [7.290] {Sect. 7.7.8]}
    D. Magde, M.W. Windsor: Picosecond flash photolysis and spectroscopy: 3,3′-diethyloxadicarbocyanine iodide (DODCI), Chem. Phys. Lett. 27, p.31–36 (1974)ADSGoogle Scholar
  291. [7.291] {Sect. 7.7.8]}
    H. Tashiro, T. Yajima: Picosecond absorption spectroscopy of excited states of dye molecules, Chem. Phys. Lett. 25, p.582–586 (1974)ADSGoogle Scholar
  292. [7.292] {Sect. 7.7.8]}
    E. Sahar, I. Wieder: Excited singlet state absorption spectrum with tunable dye lasers, Chem. Phys. Lett. 23, p.518–521 (1973)ADSGoogle Scholar
  293. [7.293] {Sect. 7.7.8]}
    H. Masuhara, N. Mataga: Fluorescence spectra and excited singlet-singlet absorption spectra of s-tetracyanobenzene EDA complexes by laser excitation, Chem. Phys. Lett. 6, p.608–610 (1970)ADSGoogle Scholar
  294. [7.294] {Sect. 7.7.8]}
    D.S. Kliger, A.C. Albrecht: Nanosecond Excited-State Polarized Absorption Spectroscopy of Anthracene in the Visible Region, J. Chem. Phys. 50, p.4109–4111 (1969)ADSGoogle Scholar
  295. [7.295] {Sect. 7.7.8]}
    G. Porter, M.R. Topp: Nanosecond Flash Photolysis and the Absorption Spectra of Excited Singlet States, Nature 220, p. 1228–1229 (1968)ADSGoogle Scholar
  296. [7.296] {Sect. 7.7.8]}
    R.S. Taylor, S. Mihailov: Excited Singlet-State Absorption in Laser Dyes at the XeCl Wavelength, Appl. Phys. B 38, p. 131–137 (1985)ADSGoogle Scholar
  297. [7.297] {Sect. 7.7.8]}
    R. Menzel, W. Rapp: Excited Singlet- and Triplet-Absorptions of Pentaphene, Chem. Phys. 89, p.445–455 (1984)Google Scholar
  298. [7.298] {Sect. 7.7.8]}
    A. Penzkofer, W. Blau: Theoretical analysis of S1-state lifetime measurements of dyes with picosecond laser pulses, Opt. Quantum Electr. 15, p.325–347 (1983)Google Scholar
  299. [7.299] {Sect. 7.7.8]}
    Yu.I. Kiryukhin, Z.A. Sinitsyna, Kh. S. Bagdasaryan: Spectra and extinction coefficients for the Sn-S1 absorption of naphthalene and pyrene in the UV region, Opt. Spectrosc. (USSR) 46, p.517–519 (1979)ADSGoogle Scholar
  300. [7.300] {Sect. 7.7.8]}
    A.V. Aristov, Yu.S. Maslyukov: Effect of the solvent on the cross section and absorption spectra of the excited states of organic luminor molecules, Opt. Spectrosc. 41, p.240–243 (1976)ADSGoogle Scholar
  301. [7.301] { Sect.7.12.1.1}
    J.-P. Fouassier, D.-J. Lougnot, J. Faure: Transient absorptions in a polymethine laser dye, Chem. Phys. Lett. 35, p. 189–193 (1975)ADSGoogle Scholar
  302. [7.302]{ Sect.7.12.1.1}
    R.M. Hochstrasser, H. Lutz, G.W. Scott: The dynamics of populating the lowest triplet state of benzophenone following singlet excitation, Chem. Phys. Lett. 24, p.162–167 (1974)ADSGoogle Scholar
  303. [7.303]{ Sect.7.12.1.1}
    J. Shah, R.F. Leheny: Excited-state absorption spectrum of cresyl violet Perchlorate, Appl. Phys. Lett. 24, p.562–564 (1974)Google Scholar
  304. [7.304]{ Sect.7.12.1.1}
    D. Lavalette, C.J. Werkhoven, D. Bebelaar, J. Langelaar, J.D.W. van Voorst: Excited singlet state polarization and absorption spectra of 1,2-benzcoronene, 1,12-benzperylene and 1,2:3,4-dibenzanthracene, Chem. Phys. Lett. 9, p.230–233 (1971)ADSGoogle Scholar
  305. [7.305]{ Sect.7.12.1.1}
    J.M. Larkin, W.R. Donaldson, T.H. Foster, R.S. Knox: Reverse intersystem crossing from a triplet state of rose bengal populated by sequential 532-+1064-nm laser excitation, Chem Phys 244, p.319–330 (1999)Google Scholar
  306. [7.306]{ Sect.7.12.1.1}
    S. Reindl, A. Penzkofer: Higher excited-state triplet-singlet intersystem crossing of some organic dyes, Chem Phys 211, p.431–439 (1996)Google Scholar
  307. [7.307]{ Sect.7.12.1.1}
    N. Kanamaru, J. Tanaka: Nanosecond Laser Photolysis of N-Methylindole in Acetonitrile, Bull. Chem. Soc. Jpn. 59, p.569–573 (1986)Google Scholar
  308. [7.308]{ Sect.7.12.1.1}
    Sya Koshihara, T. Kobayashi: Sn-S1 and Tn-T1 absorption spectra of highly purified chrysene in solution, Chem. Phys. Lett. 124, p.331–335 (1986)ADSGoogle Scholar
  309. [7.309]{ Sect.7.12.1.1}
    M.R. Wasielewski: Direct measurement of the lowest excited singlet state lifetime of all-trans-beta-carotene and related carotenoids, Chem. Phys. Lett. 128, p.238–243 (1986)ADSGoogle Scholar
  310. [7.310]{ Sect.7.12.1.1}
    S. Mory, H.-J. Weigmann, A. Rosenfeld, M. Siegmund, R. Mitzner, J. Bendig: The S1 and T1 transient absorptions of 10-substituted acridin-9-ones measured by nanosecond laser spectroscopy, Chem. Phys. Lett. 115, p.201–204 (1985)ADSGoogle Scholar
  311. [7.311]{ Sect.7.12.1.1}
    R.S. Taylor, S. Mihailov: Excited Singlet-State Absorption in Laser Dyes at the XeCl Wavelength, Appl. Phys. B 38, p. 131–137 (1985)Google Scholar
  312. [7.312]{ Sect.7.12.1.1}
    D. Leupold, J. Ehlert, S. Oberländer, B. Wiesner: S1 absorption of chlorophyll-a in the red region, Chem. Phys. Lett. 100, p.345–350 (1983)ADSGoogle Scholar
  313. [7.313]{ Sect.7.12.1.1}
    J.S. Horwitz, R.A. Goldbeck, D.S. Kliger: Excited-state absorption spectroscopy and state ordering in polyenes. 1,3,5,7-octatetraene, Chem. Phys. Lett. 80, p.229–234 (1981)ADSGoogle Scholar
  314. [7.314]{ Sect.7.12.1.1}
    G.W. Scott, L.D. Talley: Excited state absorption spectra and intersystem crossing kinetics in diazanaphthalenes, J. Chem. Phys. 72, p.5002–5013 (1980)ADSGoogle Scholar
  315. [7.315]{ Sect.7.12.1.1}
    E.L. Russell, A.J. Twarowski, D.S. Kliger, E. Switkes: The excited singlet state absorption spectrum of 1,4-diphenylnaphthalene, J. Chem. Phys. 22p.l67–173 (1977)Google Scholar
  316. [7.316]{ Sect.7.12.1.1}
    N. Mataga, T. Okada, H. Masuhara, N. Nakashima, Y. Sakata, S. Misumi: Electonic structure and dynamical behvior of some intramolecular exciplexes, J. Luminesc. 12/13, p. 159–168 (1976)Google Scholar
  317. [7.317]{ Sect.7.12.1.1}
    A. Mueller, J. Schulz-Hennig, H. Tashiro: Ultrafast absorption spectroscopy of laser dyes using a streak camera, Opt. Comm. 18, p. 152–153 (1976)ADSGoogle Scholar
  318. [7.318]{ Sect.7.12.1.1}
    M.A. Slifkin, A.O. Al-Chalabi: S1-Sn transitions of some polycyclic aromatic hydrocarbons observed by modulation excitation spectrophotometry, Chem. Phys. Lett. 29, p.405–409 (1974)ADSGoogle Scholar
  319. [7.319]{ Sect.7.12.1.1}
    Ch.R. Goldschmidt, M. Ottolenghi: Excited singlet-singlet spectra of anthracene, N,N-diethylaniline and their CT complex, Chem. Phys. Lett. 4, p.570–572 (1970)ADSGoogle Scholar
  320. [7.320]{ Sect.7.12.1.1}
    J.R. Novak, M.W. Windsor: Laser Photolysis and Spectroscopy in the Nanosecond Time Range: Excited Singlet State Absorption in Coronene, J. Chem. Phys. 47, p.3075–3076 (1967)ADSGoogle Scholar
  321. [7.321]{ Sect.7.12.1.1}
    N. Tamai, T. Asahi, H. Masuhara: Intersystem crossing of benzophenone by femtosecond transient grating spectroscopy, Chem. Phys. Lett. 198, p.413–418 (1992)ADSGoogle Scholar
  322. [7.322]{ Sect.7.12.1.1}
    C. Kryschi, H. Kupka, H.-H. Perkampus: Triplet-triplet absorption spectra of phenanthrene and azaanalogues, Chem. Phys. 116, p.53–60 (1987)Google Scholar
  323. [7.323]{ Sect.7.12.1.1}
    I. Carmichael, G.L. Hug: Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases, J. Phys. Chem. Ref. Data 15, p.1–250 (1986)ADSGoogle Scholar
  324. [7.324]{ Sect.7.12.1.1}
    K. Kikuchi, H. Fukumura, H. Kokubun: The Sm-T1 absorption spectrum of 9,10-dibromoanthracene, Chem. Phys. Lett. 123, p.226–228 (1986)ADSGoogle Scholar
  325. [7.325]{ Sect.7.12.1.1}
    J. Saltiel, G.R. Marchand, R. Dabestani, J.M. Pecha: The quenching of anthracene triplets by ground-state anthracene, Chem. Phys. Lett. 100, p.219–222 (1983)ADSGoogle Scholar
  326. [7.326]{ Sect.7.12.1.1}
    L.M. Bolotko, V.V. Gruzinskii, V.I. Danilova, T.N. Kopylova: Triplet-triplet absorption of organic compounds lasing efficiency in the ultraviolet, Opt. Spectrosc. (USSR) 52, p.379–381 (1982)ADSGoogle Scholar
  327. [7.327]{ Sect.7.12.1.1}
    A.P. Darmanyan: Laser photolysis study of the mechanism of rubrene quenching by molecular oxygen, Chem. Phys. Lett. 86, p.405–410 (1982)ADSGoogle Scholar
  328. [7.328]{ Sect.7.12.1.1}
    H. Fukumura, K. Kikuchi, H. Kokubun: Temperature effect on inverse (Tn-S1) intersystem crossing, Chem. Phys. Lett. 92, p.29–32 (1982)ADSGoogle Scholar
  329. [7.329]{ Sect.7.12.1.1}
    H. Görner: Triplet States of Phenylethylenes in Solution. Energies, Lifetimes, and Absorption Spectra of 1,1-Diphenyl-, Triphenyl-, and Tetraphenylethylene Triplets, J. Phys. Chem. 86, p.2028–2035 (1982)Google Scholar
  330. [7.330]{ Sect.7.12.1.1}
    H. Hirano, T. Azumi: A new method to determine the quantum yield of intersystem crossing, Chem. Phys. Lett. 86, p.109–112 (1982)ADSGoogle Scholar
  331. [7.331]{ Sect.7.12.1.1}
    H.E. Lessing, D. Richardt, A. von Jena: Quantitative Triplet Photophysics by Picosecond Photometry, J. Mol. Struct. 84, p.281–292 (1982)ADSGoogle Scholar
  332. [7.332]{ Sect.7.12.1.1}
    L. J.A. Martins, T.J. Kemp: Triplet State of 2-Nitrothiophen, J. Chem. Soc, Faraday Trans. I 78, p.519–531 (1982)Google Scholar
  333. [7.333]{ Sect.7.12.1.1}
    G.J. Smith: Enhanced Intersystem Crossing in the Oxygen Quenching of Aromatic Hydrocarbon Triplet States with High Energies, J. Chem. Soc, Faraday Trans. 2 78, p.769–773 (1982)Google Scholar
  334. [7.334]{ Sect.7.12.1.1}
    M.A. El-Sayed: Double Resonance and the Properties of the Lowest Excited Triplet State of Organic Molecules, Annu. Rev. Phys. Chem. 26, p.235–258 (1975)ADSGoogle Scholar
  335. [7.335]{ Sect.7.12.1.1}
    R.W. Anderson, R.M. Hochstrasser, H. Lutz, G.W. Scott: Measurements of intersystem crossing kinetics using 3545 A picosecond pulses: nitronaphthalenes and benzophenone, Chem. Phys. Lett. 28, p. 153–157 (1974)ADSGoogle Scholar
  336. [7.336]{ Sect.7.12.1.1}
    J.L. Laporte, Y. Rousset, P. Peretti, P. Ranson: Triplet-singlet radiationless energy transfer between benzophenone and perylene in vitreous solution, Chem. Phys. Lett. 29, p.444–446 (1974)ADSGoogle Scholar
  337. [7.337]{ Sect.7.12.1.1}
    A.R. Horrocks, F. Wilkinson: Triplet state formation efficiencies of aromatic hydrocarbons in solution, Proc. Roy. Soc. Lond. A. 306, p.257–273 (1968)ADSGoogle Scholar
  338. [7.338]{ Sect.7.12.1.1}
    B. Dick: Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an indo CI study, Chem. Phys. 78, p.1–16 (1983)ADSGoogle Scholar
  339. [7.339]{ Sect.7.7.9}
    T. Freudenberg, V. Stert, W. Radloff, J. Ringling, J. Gudde, G. Korn, I.V. Hertel: Ultrafast dynamics of ammonia clusters excited by femtosecond VUV laser pulses, Chem Phys Lett 269, p.523–529 (1997)ADSGoogle Scholar
  340. [7.340]{ Sect.7.7.9}
    A. Grofcsik, M. Kubinyi, W.J. Jones: Intermolecular photoin-duced proton transfer in nile blue and oxazine 720, Chem Phys Lett 250, p.261–265 (1996)ADSGoogle Scholar
  341. [7.341]{ Sect.7.7.9}
    J. Dobler, W. Zinth, W. Kaiser, D. Oesterhelt: Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy, Chem. Phys. Lett. 144, p.215–220 (1988)ADSGoogle Scholar
  342. [7.342]{ Sect.7.7.9}
    T. Elsaesser, W. Kaiser: Visible and infrared spectroscopy of intramolecular proton transfer using picosecond laser pulses, Chem. Phys. Lett. 128, p.231–237 (1986)ADSGoogle Scholar
  343. [7.343]{ Sect.7.7.9}
    R.W. Yip, D.K. Sharma, R. Giasson, D. Gravel: Picosecond Excited-State Absorption of Alkyl Nitrobenzenes in Solution, J. Phys. Chem. 88, p.5770–5772 (1984)Google Scholar
  344. [7.344]{ Sect.7.7.9}
    T. Doust: Picosecond flourescence decay kinetics of crystal violet in low-viscosity solvents, Chem. Phys. Lett. 96, p.522–515 (1983)ADSGoogle Scholar
  345. [7.345]{ Sect.7.7.9}
    R. Trebino, A.E. Siegman: Subpicosecond relaxation study of malachite green using a three-laser frequency-domain technique, J. Chem. Phys. 79, p.3621–3626 (1983)ADSGoogle Scholar
  346. [7.346]{ Sect.7.7.9}
    T. Kobayashi: Picosecond time-resolved Sn-Sl absorption spectrum on the tetracyanobenzene-toluene complex, Chem. Phys. Lett. 85, p.170–174 (1982)ADSGoogle Scholar
  347. [7.347]{ Sect.7.7.9}
    B. Kopainsky, W. Kaiser: Ultrafast transient processes of monomers, dimers, and aggregates of pseudoisocyanine chloride (PIC), Chem. Phys. Lett. 88, p.337–361 (1982)ADSGoogle Scholar
  348. [7.348]{ Sect.7.7.9}
    S.K. Rentsch, D. Fassler, P. Hampe, R.V. Danielius, R.A. Gadonas: Picosecond time-resolved spectroscopic studies of a monomer-dimer system of 3.3’-diethyl thiacarcocyanine iodide in aqueous solution, Chem. Phys. Lett. 89, p.249–253 (1982)ADSGoogle Scholar
  349. [7.349]{ Sect.7.7.9}
    V. Sundström, T. Gillbro, H. Bergström: Picosecond kinetics of radiationless relaxations of triphenyl methane dyes. Evidence for a rapid excited-state equilibrium between states of differing geometry, Chem. Phys. 73, p.439–458 (1982)Google Scholar
  350. [7.350]{ Sect.7.7.9}
    Y. Wang, E.V. Sitzmann, F. Novak, C. Dupuy, K.B. Eisenthal: Reactions of Excited Triplet Diphenylcarbene Studied with Picosecond Lasers, J. Am. Chem. Soc. 104, p.3238–3239 (1982)Google Scholar
  351. [7.351]{ Sect.7.7.9}
    D. Huppert, S.D. Rand, P.M. Rentzepis, P.F. Barbara, W.S. Struve, Z.R. Grabowski: Picosecond kinetics of p-dimethylaminobenzonitrile, J. Chem. Phys. 75, p.5714–5719 (1981)ADSGoogle Scholar
  352. [7.352]{ Sect.7.7.9}
    S.K. Rentsch, R.V. Danielius, R.A. Gadonas, A. Piskarskas: Picosecond kinetics of transient spectra of pseudoisocyanine monomers and J-aggregates in aqueous solution, Chem. Phys. Lett. 84, p.446–449 (1981)ADSGoogle Scholar
  353. [7.353]{ Sect.7.7.9}
    M.C. Adams, D.J. Bradley, W. Sibbett, J.R. Taylor: Application of the synchroscan streak camera to real time picosecond measurements of molecular energy transfer, J. Mol. Struct. 61, p.5–10 (1980)ADSGoogle Scholar
  354. [7.354]{ Sect.7.7.9}
    T. Kobayashi, E.O. Degenkolb, R. Bersohn, P.M. Rentzepis, R. MacColl, D.S. Berns: Energy Transfer among the Chromophores in Phycocyanins Measured by Picosecond Kinetics, Biochem. 18, p.5073–5078 (1979)Google Scholar
  355. [7.355]{ Sect.7.7.9}
    R. Menzel, C.W. Hoganson, M.W. Windsor: Picosecond Bleaching Behavior of the Ground-State Absorption and Excited-State Absorptions of Crystal Violet between 455 and 720 nm, Chem. Phys. Lett. 120, p.29–34 (1985)ADSGoogle Scholar
  356. [7.356]{ Sect.7.8.1}
    B.S. Ham, S.M. Shahriar, P.R. Hemmer: Electromagneti-cally induced transparency over spectral hole-burning temperature in a rare-earth-doped solid, J Opt Soc Am B Opt Physics 16, p.801–804 (1999)ADSGoogle Scholar
  357. [7.357]{ Sect.7.12.1.1}
    S.T. Li, G.K. Liu, W. Zhao: Converting Eu3+ between defect sites in BaFCl for persistent spectral hole burning, Optics Letters 24, p.838–840 (1999)ADSGoogle Scholar
  358. [7.358]{ Sect.7.12.1.1}
    J. Pieper, K.D. Irrgang, M. Ratsep, T. Schrotter, J. Voigt, G.J. Small, G. Renger: Effects of aggregation on trimeric light-harvesting complex II of green plants: A hole-burning study, J Phys Chem A 103, p.2422–2428 (1999)Google Scholar
  359. [7.359]{ Sect.7.12.1.1}
    Z. Hasan, L. Biyikli, P.I. Macfarlane: Power-gated spectral holeburning in MgS:Eu2+, Eu3+: A case for high- density persistent spectral holeburning, Appl Phys Lett 72, p.3399–3401 (1998)ADSGoogle Scholar
  360. [7.360]{ Sect.7.12.1.1}
    Z. Hasan, M. Solonenko, P.I. Macfarlane, L. Biyikli, V.K. Mathur, F.A. Karwacki: Persistent high density spectral holeburning in CaS:Eu and CaS: Eu,Sm phosphors, Appl Phys Lett 72, p.2373–2375 (1998)ADSGoogle Scholar
  361. [7.361]{ Sect.7.12.1.1}
    A. Muller, W. Richter, L. Kador: Persistent spectral hole burning in the few-molecule limit: terrylene in p-terphenyl, Chem Phys Lett 285, p.92–98 (1998)ADSGoogle Scholar
  362. [7.362]{ Sect.7.12.1.1}
    H. Sasaki, K. Karaki: Optical parallel pattern recognition of multiple stored images in a persistent spectral holeburning memory, Opt Commun 153, p.9–13 (1998)ADSGoogle Scholar
  363. [7.363]{ Sect.7.12.1.1}
    Z. Hasan, L. Biyikli, P.I. Macfarlane: Power-gated spectral holeburning in MgS:Eu2+, Eu3+: A case for high-density persistent hole-burning, Appl. Phys. Lett. 72, p.3399–3401 (1998)Google Scholar
  364. [7.364]{ Sect.7.12.1.1}
    Z. Hasan, M. Solonenko, P.L Macfarlane, L. Biyikli: Persistent high density spectral holeburning in CaS:Eu and CaS:Eu,Sm phosphors, Appl. Phys. Lett. 72, p.2373–2375 (1998)Google Scholar
  365. [7.365]{ Sect.7.12.1.1}
    M. Nogami, Y. Abe: High-temperature persistent spectral hole burning of Eu3+- doped SiO2 glass prepared by the sol-gel process, Appl Phys Lett 71, p.3465–3467 (1997)ADSGoogle Scholar
  366. [7.366]{ Sect.7.12.1.1}
    M. Tian, F. Grelet, D. Pavolini, J.P. Galaup, J.L. LeGouet: Four-wave hole burning spectroscopy with a broadband laser source, Chem Phys Lett 274, p.518–524 (1997)ADSGoogle Scholar
  367. [7.367]{ Sect.7.12.1.1}
    J. Valenta, J. Moniatte, P. Gilliot, R. Levy, B. Honerlage, A.I. Ekimov: Hole-filling of persistent spectral holes in the excitonic absorption band of CuBr quantum dots, Appl Phys Lett 70, p.680–682 (1997)ADSGoogle Scholar
  368. [7.368]{ Sect.7.12.1.1}
    M. Nogami, Y. Abe: High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process, Appl. Phys. Lett. 71, p.3465–3467 (1997)Google Scholar
  369. [7.369]{ Sect.7.12.1.1}
    Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W.H. Grodkiewicz: Persistent spectral hole burning at liquid nitrogen temperature in Eu (3+)-doped aluminosilicate glass, Appl Phys Lett 68, p.3677–3679 (1996)ADSGoogle Scholar
  370. [7.370]{ Sect.7.12.1.1}
    M. Nogami, Y. Abe, K. Hirao, D.H. Cho: Room temperature persistent spectra hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process, Appl. Phys. Lett. 66, p.2952–2954 (1995)Google Scholar
  371. [7.371]{ Sect.7.12.1.1}
    Y.-L Pan, Y.-Y. Zhao, Y.Yin, L.-b. Chen, R.-s. Wang, F.-m. Li: The observation of photoproducts and multiple photon-gated spectral hole burning in a donor-acceptor and a donor1+donor2-acceptor system, Opt. Comm. 119, p.538–544 (1995)Google Scholar
  372. [7.372]{ Sect.7.12.1.1}
    R.B. Altmann, I. Renge, L. Kador, D. Haarer: Dipole moment differences of nonpolar dyes in polymeric matrices: Stark effect and photochemical hole burning. I, J. Chem. Phys. 97, p.5316–5322 (1992)ADSGoogle Scholar
  373. [7.373]{ Sect.7.12.1.1}
    W.P. Ambrose, A.J. Sievers: Persistent infrared spectral hole burning of the fundamental stretching mode of SH- in alkali halides, J. Opt. Soc. Am. B 9, p.753–762 (1992)ADSGoogle Scholar
  374. [7.374]{ Sect.7.12.1.1}
    S. Arnold, J. Comunale: Room-temperature microparticle-based persistent hole-burning spectroscopy, J. Opt. Soc. Am. B 9, p.819–824 (1992)ADSGoogle Scholar
  375. [7.375]{ Sect.7.12.1.1}
    Th. Basché, W.R Ambrose, W.E. Moerner: Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning, J. Opt. Soc. Am. B 9, p.829–836 (1992)ADSGoogle Scholar
  376. [7.376]{ Sect.7.12.1.1}
    R.L. Cone, P.C. Hansen, M.J.M. Leask: Eu3+ optically detected nuclear quadrupole resonance in stoichiometric europium vanadate, J. Opt. Soc. Am. B 9, p.779–783 (1992)ADSGoogle Scholar
  377. [7.377]{ Sect.7.12.1.1}
    R. Hirschmann, J. Friedrich: Hole burning of long-chain molecular aggregates: homogeneous line broadening, spectral-diffusion broadening, and pressure broadening, J. Opt. Soc. Am. B 9, p.811–815 (1992)ADSGoogle Scholar
  378. [7.378]{ Sect.7.12.1.1}
    H. Inoue, T. Iwamoto, A. Makishima, M. Ikemoto, K. Horie: Preperation and properties of sol-gel thin films with porphins, J. Opt. Soc. Am. B 9, p.816–818 (1992)ADSGoogle Scholar
  379. [7.379]{ Sect.7.12.1.1}
    L. Kümmerl, H. Wolfrum, D. Haarer: Hole Burning with Chelate Complexes of Quinizarin in Alcohol Glasses, J. Phys. Chem. 96, p.10688–10693 (1992)Google Scholar
  380. [7.380]{ Sect.7.12.1.1}
    S.P. Love, C.E. Mungan, A.J. Sievers: Persistant infrared spectral hole burning of Tb3+ in the glasslike mixed crystal Bal-x-yLaxTbyF2+x+y, J. Opt. Soc. Am. B 9, p.794–799 (1992)ADSGoogle Scholar
  381. [7.381]{ Sect.7.12.1.1}
    C.E. Mungan, A.J. Sievers: Persistent infrared spectral hole burning of the fundamental stretching mode of SH- in alkali halides, J. Opt. Soc. Am. B 9, p.746–752 (1992)ADSGoogle Scholar
  382. [7.382]{ Sect.7.12.1.1}
    D. Redman, S. Brown, S.C. Rand: Origin of persistent hole burning of N-V centers in diamond, J. Opt. Soc. Am. B 9, p.768–774 (1992)ADSGoogle Scholar
  383. [7.383]{ Sect.7.12.1.1}
    R.J. Reeves, R.M. Macfarlane: Persistent spectral hole burning induced by ion motion in DaF2:Pr3+:D- and SrF2:Pr3+:D- crystals, J. Opt. Soc. Am. B 9, p.763–767 (1992)ADSGoogle Scholar
  384. [7.384]{ Sect.7.12.1.1}
    I. Renge: Relationship between electron-phonon coupling and intermolecular interaction parameters in dye-doped organic glasses, J. Opt. Soc. Am. B 9, p.719–723 (1992)ADSGoogle Scholar
  385. [7.385]{ Sect.7.12.1.1}
    W. Richter, M. Lieberth, D. Haarer: Frequency dependence of spectral diffusion in hole-burning systems: resonant effects of infrared radiation, J. Opt. Soc. Am. B 9, p.715–718 (1992)ADSGoogle Scholar
  386. [7.386]{ Sect.7.12.1.1}
    N.E. Rigby, N.B. Manson: Spectral hole burning in emerald, J. Opt. Soc. Am. B 9, p.775–778 (1992)ADSGoogle Scholar
  387. [7.387]{ Sect.7.12.1.1}
    B. Sauter, Th. Basché, C. Bräuchle: Temperature-dependent spectral hole-burning study of dye-surface and mixed matrix-dye-surface systems, J. Opt. Soc. Am. B 9, p.804–810 (1992)ADSGoogle Scholar
  388. [7.388]{ Sect.7.12.1.1}
    L. Shu, G.J. Small: Mechanism of nonphotochemical hole burning: Cresyl Violet in polyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.724–732 (1992)ADSGoogle Scholar
  389. [7.389]{ Sect.7.12.1.1}
    L. Shu, G.J. Small: Dispersive kinetics of nonphotochemical hole burning and spontaneous hole filling: Cresyl Violet in polyvinyl films, J. Opt. Soc. Am. B 9, p.733–737 (1992)ADSGoogle Scholar
  390. [7.390]{ Sect.7.12.1.1}
    L. Shu, G.J. Small: Laser-induced hole filling: Cresyl Violet in polyvinyl alcohol films, J. Opt. Soc. Am. B 9, p.738–745 (1992)ADSGoogle Scholar
  391. [7.391]{ Sect.7.12.1.1}
    H. Talon, L. Fleury, J. Bernard, M. Orrit: Fluorescence excitation of single molecules, J. Opt. Soc. Am. B 9, p.825–827 (1992)ADSGoogle Scholar
  392. [7.392]{ Sect.7.12.1.1}
    L.L. Wald, E.L. Hahn, M. Lukac: Variation of the Pr3+ nuclear quadrupole resonance spectrum across the inhomogeneous optical line in Pr3+:LaF3, J. Opt. Soc. Am. B 9, p.789–793 (1992)ADSGoogle Scholar
  393. [7.393]{ Sect.7.12.1.1}
    D. Wang, L. Hu, H. He, J. Rong, J. Xie, J. Zhang: Systems of organic photon-gated photochemical hole burning, J. Opt. Soc. Am. B 9, p.800–803 (1992)ADSGoogle Scholar
  394. [7.394]{ Sect.7.12.1.1}
    K.-R Müller, D. Haarer: Spectral Diffusion of Optical Transitions in Doped Polymer Glasses below 1 K, Phys. Rev. Lett. 66, p.2344–2347 (1991)ADSGoogle Scholar
  395. [7.395]{ Sect.7.12.1.1}
    L. Kador, S. Jahn, D. Haarer: Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy, Phys. Rev. B 41, p. 12215–12226 (1990)ADSGoogle Scholar
  396. [7.396]{ Sect.7.12.1.1}
    R.F. Mahrt, H. Bässler: Vibronic hole burning in acene-doped MTHF glasses, Chem. Phys. Lett. 165, p.125–130 (1990)ADSGoogle Scholar
  397. [7.397]{ Sect.7.12.1.1}
    U.P. Wild, A. Renn: Spectral hole burning and holographic image storage, Mol. Cryst. Liq. Cryst. 183, p.119–129 (1990)Google Scholar
  398. [7.398]{ Sect.7.12.1.1}
    J.K. Gillie, G.J. Small, J.H. Golbeck: Nonphotochemical Hole Burning of the Native Antenna Complex of Photosystem I (PSI-200), J. Phys. Chem. 93, p.1620–1627 (1989)Google Scholar
  399. [7.399]{ Sect.7.12.1.1}
    R. Jankowiak, D. Tang, G.J. Small: Transient and Persistant Hole Burning of the Reaction Center of Photosystem II, J. Phys. Chem. 93, p.1649–1654 (1989)Google Scholar
  400. [7.400]{ Sect.7.12.1.1}
    A.J. Meixner, A. Renn, U.P. Wild: Spectral hole-burning and holography. I. Transmission and holographic detection of spectral holes, J. Chem. Phys. 91, p.6728–6736 (1989)ADSGoogle Scholar
  401. [7.401]{ Sect.7.12.1.1}
    A. Renn, S.E. Bucher, A.J. Meixner, E.C. Meister, U.P. Wild: Spectral hole burning: electric field effect on resorufin, oxazine-4 and cre-sylviolet in polyvinylbutyral, J. Luminesc. 39, p. 181–187 (1988)Google Scholar
  402. [7.402]{ Sect.7.12.1.1}
    A. Elschner, H. Bässler: Site-selective fluorescence and hole-burning spectroscopy of MTHF glasses doped with tetracene or pentacene, Chem. Phys. 112, p.285–291 (1987)ADSGoogle Scholar
  403. [7.403]{ Sect.7.12.1.1}
    J.K. Gillie, B.L. Fearey, J.M. Hayes, G.J. Small: Persistent hole burning of the primary donor state of photosystem I: Strong linear electron-phonon coupling, Chem. Phys. Lett. 134, p.316–322 (1987)ADSGoogle Scholar
  404. [7.404]{ Sect.7.12.1.1}
    J.K. Gillie, J.M. Hayes, G.J. Small, J.H. Golbeck: Hole Burning Spectroscopy of a Core Antenna Complex, J. Phys. Chem. 91, p.5524–5527 (1987)Google Scholar
  405. [7.405]{ Sect.7.12.1.1}
    R. Jankowiak, G.J. Small: Hole-Burning Spectroscopy and Relaxation Dynamics of Amorphous Solids at Low Temperatures, Science 237, p.618–625 (1987)ADSGoogle Scholar
  406. [7.406]{ Sect.7.12.1.1}
    R.F. Loring, Y.J. Yan, S. Mukamel: Hole-Burning Spectroscopy of Polar Molecules in Polar Solvents: Solvation Dynamics and Vibrational Relaxation, J. Phys. Chem. 91, p.1302–1305 (1987)Google Scholar
  407. [7.407]{ Sect.7.12.1.1}
    R.M. Macfarlane, R.M. Shelby: Homogeneous line broadening of optical transitions of ions and molecules in glasses, J. Luminesc. 36, p.179–207 (1987)ADSGoogle Scholar
  408. [7.408]{ Sect.7.12.1.1}
    K.K. Rebane, A.A. Gorokhovskii: Hole-Burning Study of Zero-Phonon Linewidths in Organic Glasses, J. Luminesc. 36, p.237–250 (1987)ADSGoogle Scholar
  409. [7.409]{ Sect.7.12.1.1}
    S. Völker: Optical linewidth and dephasing of organic amorphous and semi-crystalline solids studied by hole burning, J. Luminesc. 36, p.251–262 (1987)Google Scholar
  410. [7.410]{ Sect.7.12.1.1}
    A. Gorokhovskii, V. Korrovits, V. Palm, M. Trummal: Temperature broadening of a photochemical hole in the spectrum of H2-octaethylporphin in polystyrene between 0.05 and 1.5 K, Chem. Phys. Lett. 125, p.355–359 (1986)ADSGoogle Scholar
  411. [7.411]{ Sect.7.12.1.1}
    H.W.H. Lee, A.L. Huston, M. Gehrtz, W.E. Moerner: Photochemical hole-burning in a protonated phthalocynine with GaAlAs diode lasers, Chem. Phys. Lett. 114, p.491–496 (1985)ADSGoogle Scholar
  412. [7.412]{ Sect.7.12.1.1}
    M. Romagnoli, W.E. Moerner, F.M. Schellenberg, M.D. Levenson, G.C. Bjorklund: Beyond the bottleneck: submicrosecond hole burning in phthalocyanine, J. Opt. Soc. Am. B 1, p.343–348 (1984)ADSGoogle Scholar
  413. [7.413]{ Sect.7.12.1.1}
    J. Friedrich, D. Haarer: Reversible and irreversible broadening of photochemical holes in amorphous solids, Chem. Phys. Lett. 95, p.119–123 (1983)ADSGoogle Scholar
  414. [7.414]{ Sect.7.12.1.1}
    H.P.H. Thijssen, R. van den Berg, S. Völker: Thermal broadening of optical homogeneous linewidths in organic glasses adn polymers studied via photochemical hole-burning, Chem. Phys. 97, p.295–302 (1983)ADSGoogle Scholar
  415. [7.415]{ Sect.7.12.1.1}
    R.M. Shelby, D.P. Burum, R.M. Macfarlane: Nonphotochemical hole burning and antihole production in the mixed molecular crystal pentacene in benzoic acid, J. Chem. Phys. 77, p.2283–2289 (1982)ADSGoogle Scholar
  416. [7.416]{ Sect.7.12.1.1}
    J.M.J. Vankan, W.S. Veeman: Inhomogeneous triplet absorption in 1,4-dibromonaphthalene, Chem. Phys. Lett. 91, p.358–361 (1982)ADSGoogle Scholar
  417. [7.417]{ Sect.7.12.1.1}
    A.I.M. Dicker, M. Noort, H.P.H. Thijssen, S. Völker, J.H. Van der Waals: Zeeman effect of the S1-S0 transition of the two tautomeric forms of chlorin: A study by photochemical hole burning in an n-hexane host at 4.2 K, Chem. Phys. Lett. 78, p.212–218 (1981)ADSGoogle Scholar
  418. [7.418]{ Sect.7.12.1.1}
    R.M. Macfarlane, R.M. Shelby: Sub-Kilohertz Optical Line-width of the 7F0–5D0 Transition in Y203:Eu3+, Opt. Comm. 39, p.169–171 (1981)ADSGoogle Scholar
  419. [7.419]{ Sect.7.12.1.1}
    S. Völker, R.M. Macfarlane, A.Z. Genack, H.P. Trommsdorf:, J. Chem. Phys. 67, p.1759–1765 (1977)ADSGoogle Scholar
  420. [7.420]{ Sect.7.8.2.3}
    H.W. Song, T. Hayakawa, M. Nogami: Room temperature spectral hole burning and electron transfer in Sm- doped aluminosilicate glasses, J Appl Phys 86, p.5619–5623 (1999)ADSGoogle Scholar
  421. [7.421]{ Sect.7.8.2.3}
    K. Fujita, K. Tanaka, K. Hirao, N. Soga: Room-temperature persistent spectral hole burning of EU3+ in sodium aluminosilicate glasses, Optics Letters 23, p.543–545 (1998)ADSGoogle Scholar
  422. [7.422]{ Sect.7.8.2.3}
    M. Benhmida, V. Netiksis, M. Robino, J.B. Grun, M. Pe-trauskas, B. Honerlage: Picosecond spectral hole burning in ZnCdTe layers, J Appl Phys 80, p.4632–4636 (1996)ADSGoogle Scholar
  423. [7.423]{ Sect.7.8.2.3}
    K. Hirao, S. Todoroki, N. Soga: Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses, J. Luminesc. 55, p.217–219 (1993)Google Scholar
  424. [7.424]{ Sect.7.8.2.3}
    C.H. Brito Cruz, R.L. Fork, W.H. Knox, C.V. Shank: Spectral hole burning in large molecules probed with 10 fs optical pulses, Chem. Phys. Lett. 132, p.341–344 (1986)ADSGoogle Scholar
  425. [7.425]{ Sect.7.8.2.3}
    G. Mourou: Spectral Hole Burning in Dye Solutions, IEEE J. QE-11, p.1–8 (1975)Google Scholar
  426. [7.426]{ Sect.7.8.2.3}
    D. Leupold, R. König, B. Voigt, R. Menzel: Modell des sättigbaren Absorbers Crytocyanin/Methanol, Opt. Commun. 11, p.78–82 (1974)ADSGoogle Scholar
  427. [7.427]{ Sect.7.8.2.3}
    G. Mourou, B. Drouin, M.M. Denariez-Roberge: Observation du “Hole-burning” dans une solution de cryptocyanine dans le methanol, Opt. Comm. 8, p.56–59 (1973)ADSGoogle Scholar
  428. [7.428]{ Sect.7.8.2.3}
    B.H. Soffer, B.B. McFarland: Frequency locking and dye spectral hole burning in Q-spoiled lasers, Appl. Phys. Lett. 8, p. 166–169 (1966)ADSGoogle Scholar
  429. [7.429]{ Sect.7.8.4}
    B. Voigt, F.R. Nowak, W. Beenken: A new set-up for nonlinear polarization spectroscopy in the frequency domain: experimental examples and theoretical background, Meas. Sci. Technol. 10, p.N7-N11 (1999)Google Scholar
  430. [7.430]{ Sect.7.8.4}
    W. Beenken, J. Ehlert: Subband analysis of molecular electronic transitions by nonlinear polarization spectroscopy in the frequency domain, J. Chem. Phys. 109, p.10126–10137 (1998)ADSGoogle Scholar
  431. [7.431]{ Sect.7.8.4}
    W. Beenken, V. May: Strong-field theory of nonlinear polarization spectroscopy. Fundamentals and the two-level system, J. Opt. Soc. Am B 14, p.2804–2810 (1997)ADSGoogle Scholar
  432. [7.432]{ Sect.7.8.4}
    B. Voigt, F. Nowak, J. Ehlert, W. Beenken, D. Leupold, W. Sandner: Substructures and different energy relaxation time within the first electronic transition of pinacyanol, Chem. Phys. Lett. 278, p.380–390 (1997)ADSGoogle Scholar
  433. [7.433]{ Sect.7.10.1}
    D.T. Reid, M. Padgett, C. Mcgowan, W.E. Sleat, W. Sibbett: Light-emitting diodes as measurement devices for femtosecond laser pulses, Optics Letters 22, p.233–235 (1997)ADSGoogle Scholar
  434. [7.434]{ Sect.7.11.1}
    P.R. Spyak: Beam expander, pinhole, and crosshair alignment to laser beams, Appl Opt 36, p.9111–9112 (1997)ADSGoogle Scholar
  435. [7.435]{ Sect.7.11.2}
    T. Baumert, G. Gerber: Femtosecond spectroscopy of molecules and clusters, Adv. Atom, Mol. and Opt. Phys. 35, p. 163–208 (1995)ADSGoogle Scholar
  436. [7.436]{ Sect.7.11.2}
    M. Dantus, M. Rosker, A.H. Zewail: Real-time-femtosecond probing of “transition states” in chemical reactions, J. Chem. Phys. 87, p.2395–2397 (1987)ADSGoogle Scholar
  437. [7.437]{ Sect.7.11.2}
    C.V. Shank, B.I. Greene: Femtosecond Spectroscopy and Chemistry:, J. Phys. Chem. 87, p.732–734 (1983)Google Scholar
  438. [7.438]{ Sect.7.11.2}
    C.V. Shank: Measurement of Ultrafast Phenomena in the Femtosecond Time Domain, Science 219, p.1027–1031 (1983)ADSGoogle Scholar
  439. [7.439]{ Sect.7.11.2}
    A. Bartels, T. Dekorsy, H. Kurz: Femtosecond Ti: sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy, Optics Letters 24, p.996–998 (1999)ADSGoogle Scholar
  440. [7.440]{ Sect.7.12.1.1}
    Y.L.S. Zhang, J. Cheng: Theoretical study of transient thermal conduction and temperature distribution generated by pulsed laser, Appl. Phys. B 70p. 85–90 (2000)Google Scholar
  441. [7.441]{ Sect.7.12.1.1}
    C. Tietz, O. Chekhlov, A. Drabenstedt, J. Schuster, J. Wrachtrup: Spectroscopy on single light-harvesting complexes at low temperature, J Phys Chem B 103, p.6328–6333 (1999)Google Scholar
  442. [7.442]{ Sect.7.12.1.1}
    S.C. Chen, C.P. Grigoropoulos: Noncontact nanosecond-time-resolution temperature measurement in excimer laser heating of Ni-P disk substrates, Appl Phys Lett 71, p.3191–3193 (1997)ADSGoogle Scholar
  443. [7.443]{ Sect.7.11.2.1}
    K. Teuchner, M. Schulzevers, D. Leupold, D. Strehlow, W. Rudiger: The complex excited state dynamics of the early photocycle of phytochrome, Chem Phys Lett 268, p.157–162 (1997)ADSGoogle Scholar
  444. [7.444]{ Sect.7.12.1.1}
    M. Pirotta, A. Renn, M.H.V. Werts, U.P. Wild: Single molecule spectroscopy, perylene in the Shpol’skii matrix n-nonane, Chem Phys Lett 250, p.576–582 (1996)ADSGoogle Scholar
  445. [7.445]{ Sect.7.12.1.1}
    W. Ketterle, N.J. van Druten: Evaporative cooling of trapped atoms, Adv. Atom, Mol. and Opt. Phys. 37, p. 181–236 (1996)ADSGoogle Scholar
  446. [7.446]{ Sect.7.12.1.1}
    H. Lueck, R. Menzel, R. Sander: Inherent sample heating and temperature calibration in excited state absorption (ESA) measurements between room temperature and 77 kelvin, Opt. Commun. 108, p. 258–264 (1994)ADSGoogle Scholar
  447. [7.447]{ Sect.7.12.1.1}
    M. Pirotta, F. Guttler, H. Gygax, A. Renn, J. Sepiol, U.P. Wild: Single molecule spectroscopy. Fluorescence-lifetime measurements of pentacene in p-terphenyl, Chem. Phys. Lett. 208, p.379–384 (1993)ADSGoogle Scholar
  448. [7.448]{ Sect.7.12.1.1}
    U.P. Wild, F. Güttier, M. Pirotta, A. Renn: Single molecule spectroscopy: Stark effect of pentacene in p-terphenyl, Chem. Phys. Lett. 193, p.451–455 (1992)ADSGoogle Scholar
  449. [7.449]{ Sect.7.12.1.1}
    D. Ben-Amotz, C.B. Harris: Torsional dynamics of molecules on barrierless potentials in liquids. I. Temperature and wavelength dependent picosecond studies of triophenyl-methane dyes, J. Chem. Phys. 86, p.4856–4870 (1987)ADSGoogle Scholar
  450. [7.450]{ Sect.7.12.1.1}
    D. Ben-Amotz, C.B. Harris: Torsional dynamics of molecules on barrierless potentials in liquids. II. Test of theoretical models, J. Chem. Phys. 86, p.5433–5440 (1987)ADSGoogle Scholar
  451. [7.451]{ Sect.7.12.1.1}
    D. Ben-Amotz, R. Jeanloz, C.B. Harris: Torsional dynamics of molecules on barrierless potentials in liquids. III. Pressure dependent picosecond studies of triphenyl-methane dye solutions in a diamond anvil cell, J. Chem. Phys. 86, p.6119–6127 (1987)ADSGoogle Scholar
  452. [7.452]{ Sect.7.12.1.1}
    H.-H. Perkampus: UV-VIS Atlas of Organic Compounds (VCH, Weinheim, 1992)Google Scholar
  453. [7.453]{ Sect.7.12.1.2}
    B.C. Edwards, J.E. Anderson, R.I. Epstein, G.L. Mills, A.J. Mord: Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration, J Appl Phys 86, p.6489–6493 (1999)ADSGoogle Scholar
  454. [7.454]{ Sect.7.12.1.2}
    T.R. Gosnell: Laser cooling of a solid by 65 K starting from room temperature, Optics Letters 24, p. 1041–1043 (1999)ADSGoogle Scholar
  455. [7.455]{ Sect.7.12.1.2}
    H. Wadi, E. Pollak: Theory of laser cooling of polyatomic molecules in an electronically excited state, J Chem Phys 110, p. 11890–11905 (1999)ADSGoogle Scholar
  456. [7.456]{ Sect.7.12.1.2}
    C.E. Wieman, D.E. Pritchard, D.J. Wineland: Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys. 71, p.253–262 (1999)Google Scholar
  457. [7.457]{ Sect.7.12.1.2}
    G. Lamouche, P. Lavallard, R. Suris, R. Grousson: Low temperature laser cooling with a rare-earth doped glass, J Appl Phys 84, p.509–516 (1998)ADSGoogle Scholar
  458. [7.458]{ Sect.7.12.1.2}
    G. Lei, J.E. Anderson, M.I. Buchwald, B.C. Edwards, R.L Epstein, M.T. Murtagh, G.H. Sigel: Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration, IEEE J QE-34, p. 1839–1845 (1998)Google Scholar
  459. [7.459]{ Sect.7.12.1.2}
    X. Luo, M.D. Eisaman, T.R. Gosnell: Laser cooling of a solid by 21 K starting from room temperature, Optics Letters 23, p.639–641 (1998)ADSGoogle Scholar
  460. [7.460]{ Sect.7.12.1.2}
    T. Esslinger, I. Bloch, T.W. Hänsch: Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap, Phys. Rev. A 58, p.R2664-R2667 (1998)ADSGoogle Scholar
  461. [7.461]{ Sect.7.12.1.2}
    C.E. Mungan, M.I. Buchwald, B.C. Edwards, R.L Epstein, T.R. Gosnell: Laser cooling of a solid by 16 K starting from room temperature, Phys Rev Lett 78, p.1030–1033 (1997)ADSGoogle Scholar
  462. [7.462]{ Sect.7.12.1.2}
    C.E. Mungan, M.I. Buchwald, B.C. Edwards, R.I. Epstein, T.R. Gosnell: Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K, Appl Phys Lett 71, p.1458–1460 (1997)ADSGoogle Scholar
  463. [7.463]{ Sect.7.12.1.2}
    L.A. Riviin, A.A. Zadernovsky: Laser cooling of semiconductors, Opt Commun 139, p.219–222 (1997)ADSGoogle Scholar
  464. [7.464]{ Sect.7.12.1.2}
    G. Morigi, J.I. Cirac, M. Lewenstein, P. Zoller: Ground-state laser cooling beyond the Lamb-Dicke limit, Europhys. Lett. 39, p. 13–18 (1997)Google Scholar
  465. [7.465]{ Sect.7.12.1.2}
    E.G. Bessonov, K.J. Kim: Radiative cooling of ion beams in storage rings by broad- band lasers, Phys Rev Lett 76, p.431–434 (1996)ADSGoogle Scholar
  466. [7.466]{ Sect.7.12.1.2}
    J.L. Clark, G. Rumbles: Laser cooling in the condensed phase by frequency up- conversion, Phys Rev Lett 76, p.2037–2040 (1996)ADSGoogle Scholar
  467. [7.467]{ Sect.7.12.1.2}
    H.J. Lee, C.S. Adams, M. Kasevich, S. Chu: Raman cooling of atoms in an optical dipole trap, Phys Rev Lett 76, p.2658–2661 (1996)ADSGoogle Scholar
  468. [7.468]{ Sect.7.12.1.2}
    M.O. Mewes, M.R. Andrews, N.J. van Druten, D.M. Kurn, D.S. Durfee, W. Ketterle: Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap, Phys. Rev. Lett. 77, p.416–419 (1996)ADSGoogle Scholar
  469. [7.469]{ Sect.7.12.1.2}
    J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, C. Cohentannoudji: Three-dimensional laser cooling of helium beyond the single-photon recoil limit, Phys Rev Lett 75, p.4194–4197 (1995)ADSGoogle Scholar
  470. [7.470]{ Sect.7.12.1.2}
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell: Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, p.198–201 (1995)ADSGoogle Scholar
  471. [7.471]{ Sect.7.12.1.2}
    J. Reichel, F. Bardou, M.B. Dasan, E. Peik, S. Rand, C. Salomon, C. Cohen-Tannoudji: Raman Cooling of Cesium below 3 nK: New Approach Inspired by L’evy Flight Statistics, Phys. Rev. Lett. 75, p.4575–4578 (1995)ADSGoogle Scholar
  472. [7.472]{ Sect.7.12.1.2}
    C.N. Cohen-Tannoudji, W.D. Phillips: New mechanisms for laser cooling, Phys. Today 43, p.33–40 (1990)Google Scholar
  473. [7.473]{ Sect.7.12.1.2}
    A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji: Laser cooling below the one-photon recoil energy by velocity-selctive coherent population trapping: theoretical analysis, J. Opt. Soc. Am B 6, p.2112–2124 (1989)ADSGoogle Scholar
  474. [7.474]{ Sect.7.12.1.2}
    S. Chu, C. Wieman: Laser Cooling and Trapping, J. Opt. Soc. Am. B 6, p.2020 (1989)ADSGoogle Scholar
  475. [7.475]{ Sect.7.12.1.2}
    J. Dalibard, C. Cohen-Tannoudji: Laser cooling below the Doppler limit by polarization gradients: simple theoretical models, J. Opt. Soc. Am B 6, p.2023–2045 (1989)ADSGoogle Scholar
  476. [7.476]{ Sect.7.12.1.2}
    S. Stenholm: The semiclassical theory of laser cooling, Rev. Mod. Phys. 58, p.699–739 (1986)ADSGoogle Scholar
  477. [7.477]{ Sect.7.12.1.2}
    S. Chu, L. Holberg. J.E. Bjorkholm, A. Cable, A. Ashkin: Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett. 55, p.48–51 (1985)ADSGoogle Scholar
  478. [7.478]{ Sect.7.12.1.2}
    J.E. Bjorkholm, R.R. Freeman, A. Ashkin, D.B. Pearson: Experimental observation of the influence of the quantum fluctuations of resonance-radiation pressure, Opt. Lett. 5, p.111–113 (1980)ADSGoogle Scholar
  479. [7.479]{ Sect.7.12.1.2}
    A. Ashkin, J.P. Gordon: Cooling and trapping of atoms by resonance radiation pressure, Opt. Lett. 4, p. 161–163 (1979)ADSGoogle Scholar
  480. [7.480]{ Sect.7.12.1.2}
    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt: Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well, Phys. Rev. Lett. 41, p.233–236 (1978)ADSGoogle Scholar
  481. [7.481]{ Sect.7.12.1.2}
    W. Neuhauser, M. Hohenstatt, P. Toschek: Visiual Observation and Optical Cooling of Electrodynamically Contained Ions, Appl. Phys. 17, p.123 (1978)ADSGoogle Scholar
  482. [7.482]{ Sect.7.12.1.2}
    D.J. Wineland, R.E. Drullinger, F.L. Walls: Radiation-Pressure Cooling of Baound Resonant Absorbers, Phys. Rev. Lett. 40, p.1639–1642 (1978)ADSGoogle Scholar
  483. [7.483]{ Sect.7.12.1.2}
    M. Lorono, H.A. Cruse, P.B. Davies: Infrared laser absorption spectroscopy of the nu (7) band of jet-cooled iron pentacarbonyl, J Mol Struct 519, p. 199–204 (2000)ADSGoogle Scholar
  484. [7.484]{ Sect.7.12.1.3}
    M.M. Ahern, M.A. Smith: Low temperature relaxation of OH in the X-2 Pi and A (2)Sigma states in an argon free-jet, J Chem Phys 110, p.8555–8563 (1999)ADSGoogle Scholar
  485. [7.485]{ Sect.7.12.1.3}
    M.A. Duncan, A.M. Knight, Y. Negishi, S. Nagao, Y. Nakamura, A. Kato, A. Nakajima, K. Kaya: Production of jet-cooled coronene and coronene cluster anions and their study with photoelectron spectroscopy, Chem Phys Lett 309, p.49–54 (1999)ADSGoogle Scholar
  486. [7.486]{ Sect.7.12.1.3}
    D.R. Farley, K.G. Estabrook, S.G. Glendinning, S.H. Glenzer, B.A. Remington, K. Shigemori, J.M. Stone, R.J. Wallace, G.B. Zimmerman, J.A. Harte: Radiative jet experiments of astrophysical interest using intense lasers, Phys Rev Lett 83, p.1982–1985 (1999)ADSGoogle Scholar
  487. [7.487]{ Sect.7.12.1.3}
    P. Farmanara, H.H. Ritze, V. Stert, W. Radioff: Vibrational wavepacket motion in 1–2 excited with femtosecond laser pulses in the 200 nm wavelength region, Chem Phys Lett 307, p. 1–7 (1999)ADSGoogle Scholar
  488. [7.488]{ Sect.7.12.1.3}
    A.L. Mcintosh, Z. Wang, R.R. Lucchese, J.W. Bevan, A.C. Legon: Identification of the OC-IH isomer based on near-infrared diode laser spectroscopy, Chem Phys Lett 305, p.57–62 (1999)ADSGoogle Scholar
  489. [7.489]{ Sect.7.12.1.3}
    M. Decker, A. Schik, U.E. Meier, W. Stricker: Quantitative Raman imaging investigations of mixing phenomena in high- pressure cryogenic jets, Appl Opt 37, p.5620–5627 (1998)ADSGoogle Scholar
  490. [7.490]{ Sect.7.12.1.3}
    T. Ditmire, R.A. Smith: Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet, Optics Letters 23, p.618–620 (1998)ADSGoogle Scholar
  491. [7.491]{ Sect.7.12.1.3}
    S. Ishiuchi, H. Shitomi, K. Takazawa, M. Fujii: Nonresonant ionization detected IR spectrum of jet-cooled phenol. Ionization mechanism and its application to overtone spectroscopy, Chem Phys Lett 283, p.243–250 (1998)ADSGoogle Scholar
  492. [7.492]{ Sect.7.12.1.3}
    G.R. Kennedy, C.L. Ning, J. Pfab: The 355 nm photodissociation of jet-cooled CH3SNO: alignment of the NO photofragment, Chem Phys Lett 292, p.161–166 (1998)ADSGoogle Scholar
  493. [7.493]{ Sect.7.12.1.3}
    A. Kumar, C.C. Hsiao, Y.Y. Lee, Y.P. Lee: Observation of saturation dip in degenerate four-wave mixing and two- color resonant four-wave mixing spectra of jet-cooled CH, Chem Phys Lett 297, p.300–306 (1998)ADSGoogle Scholar
  494. [7.494]{ Sect.7.12.1.3}
    A.M. Little, G.K. Corlett, A.M. Ellis: UV absorption of LiO in a supersonic jet, Chem Phys Lett 286, p.439–445 (1998)ADSGoogle Scholar
  495. [7.495]{ Sect.7.12.1.3}
    Z.A. Liu, R.J. Livingstone, P.B. Davies: Pulse pyrolysis infrared laser jet spectroscopy of free radicals, Chem Phys Lett 291, p.480–486 (1998)ADSGoogle Scholar
  496. [7.496]{ Sect.7.12.1.3}
    G.N. Patwari, S. Doraiswamy, S. Wategaonkar: Hole-burning spectroscopy of jet-cooled hydroquinone, Chem Phys Lett 289, p.8–12 (1998)ADSGoogle Scholar
  497. [7.497]{ Sect.7.12.1.3}
    A. Vdovin, J. Sepiol, J. Jasny, J.M. Kauffman, A. Mordzin-ski: Excited state proton transfer in jet-cooled 2,5-di- (2-benzoxazolyl)phenol, Chem Phys Lett 296, p.557–565 (1998)ADSGoogle Scholar
  498. [7.498]{ Sect.7.12.1.3}
    X. Yang, I. Gerasimov, P.J. Dagdigian: Electronic spectroscopy and excited state dynamics of the Al-N-2 complex, Chem Phys 239, p.207–221 (1998)Google Scholar
  499. [7.499]{ Sect.7.12.1.3}
    A. Zehnacker, F. Lahmani, J.P. Desvergne, H. BouasLau-rent: Conformation-dependent intramolecular exciplex formation in jet-cooled bichromophores, Chem Phys Lett 293, p.357–365 (1998)ADSGoogle Scholar
  500. [7.500]{ Sect.7.12.1.3}
    H.G. Kramer, M. Keil, J. Wang, R.A. Bernheim, W. Demtroder: Intercombination transitions b (3)Pi (u)¡-Chi (1)Sigma (+) (g) in Na-2, Chem Phys Lett 272, p.391–398 (1997)ADSGoogle Scholar
  501. [7.501]{ Sect.7.12.1.3}
    H.Z. Li, P. Dupre, W. Kong: Degenerate four wave mixing and laser induced fluorescence of pyrazine and pyridazine, Chem Phys Lett 273, p.272–278 (1997)ADSGoogle Scholar
  502. [7.502]{ Sect.7.12.1.3}
    K. Tanaka, Y. Tachikawa, T. Tanaka: Time-resolved infrared diode laser spectroscopy of jet-cooled FeCO and Fe (CO) (2) radicals produced by the UV photolysis of Fe (CO) (5), Chem Phys Lett 281, p.285–291 (1997)ADSGoogle Scholar
  503. [7.503]{ Sect.7.12.1.3}
    T. Troxler, B.A. Pryor, M.R. Topp: Spectroscopy and dynamics of jet-cooled 2- methoxynaphthalene, Chem Phys Lett 274, p.71–78 (1997)ADSGoogle Scholar
  504. [7.504]{ Sect.7.12.1.3}
    D.T. Anderson, S. Davis, T.S. Zwier, D.J. Nesbitt: An intense slit discharge source of jet-cooled molecular ions and radicals (T-rot¡30K), Chem Phys Lett 258, p.207–212 (1996)ADSGoogle Scholar
  505. [7.505]{ Sect.7.12.1.3}
    M. Fukushima, K. Obi: Laser-induced fluorescence spectra of jet cooled p- chlorobenzyl radical, Chem Phys Lett 248, p.269–276 (1996)ADSGoogle Scholar
  506. [7.506]{ Sect.7.12.1.3}
    Y. Nibu, D. Sakamoto, T. Satho, H. Shimada: Dispersed phosphorescence spectra in a supersonic free jet by electric discharge excitation, Chem Phys Lett 262, p.615–620 (1996)ADSGoogle Scholar
  507. [7.507]{ Sect.7.12.1.3}
    H.K. Sinha, V.J. Mackenzie, R.P. Steer: Laser-induced fluorescence excitation spectroscopy of jet-cooled tropolone carbon monoxide van der Waals complexes, Chem Phys 213, p.397–411 (1996)Google Scholar
  508. [7.508]{ Sect.7.12.1.3}
    Y. Tang, S.A. Reid: Infrared degenerate four wave mixing spectroscopy of jet- cooled C2H2, Chem Phys Lett 248, p.476–481 (1996)ADSGoogle Scholar
  509. [7.509]{ Sect.7.12.1.3}
    A. Zehnacker, F. Lahmani, E. Breheret, J.P. Desvergne, H. BouasLaurent, A. Germain, V. Brenner, P. Millie: Laser induced fluorescence of jet-cooled non-conjugated bichromophores: Bis-phenoxymethane and bis-2,6-dimethylphenoxymethane, Chem Phys 208, p.243–257 (1996)Google Scholar
  510. [7.510]{ Sect.7.12.1.3}
    E. Zingher, S. Kendler, Y. Haas: The photophysics of a pho-toreactive system in a supersonic jet. Styrene-trimethylamine, Chem Phys Lett 254, p.213–222 (1996)ADSGoogle Scholar
  511. [7.511]{ Sect.7.12.1.3}
    S.A. Wittmeyer, M.R. Topp: Spectral hole burning in free perylene and in small clusters with methane and alcyl halides, Chem. Phys. Lett. 163, p.261–268 (1989)ADSGoogle Scholar
  512. [7.512]{ Sect.7.12.1.3}
    P. Erman, O. Gustafsson, P. Lindblom: A Simple Supersonic Jet Discharge Source for Sub-Doppler Spectroscopy, Phys. Scripta 38, p.789–792 (1988)ADSGoogle Scholar
  513. [7.513]{ Sect.7.12.1.3}
    A.G. Taylor, W.G. Bouwman, A.C. Jones, C. Guo, D. Phillips: Laser-induced fluorescence of jet-cooled 7-diethylamino-4-trifluoro-methyl coumarin, Chem. Phys. Lett. 145, p.71–74 (1988)ADSGoogle Scholar
  514. [7.514]{ Sect.7.12.1.3}
    S. Hirayama: A comparative study of the fluorescence lifetimes of 9-cyanoanthracene in a bulb and supersonic free jet, J. Chem. Phys. 85, p.6867–6873 (1986)ADSGoogle Scholar
  515. [7.515]{ Sect.7.12.1.3}
    J.A. Warren, E.R. Bernstein: The S2-S0 laser photoexcitation spectrum and excited state dynamics of jet-cooled acetophenone, J. Chem. Phys. 85, p.2365–2367 (1986)ADSGoogle Scholar
  516. [7.516]{ Sect.7.12.1.3}
    N.P. Ernsting; The visible spectrum of jet-cooled CCIF2NO, J. Chem. Phys. 80, p.3042–3049 (1984)ADSGoogle Scholar
  517. [7.517]{ Sect.7.12.1.3}
    P.M. Felker, A.H. Zewail: Jet spectroscopy of isoquinoline, Chem. Phys. Lett. 94. p.448–453 (1983)ADSGoogle Scholar
  518. [7.518]{ Sect.7.12.1.3}
    P.M. Felker, A.H. Zewail: Stepwise solvation of molecules as studies by picosecond-jet spectroscopy: Dynamics and spectra, Chem. Phys. Lett. 94, p.454–460 (1983)ADSGoogle Scholar
  519. [7.519]{ Sect.7.12.1.3}
    H.T. Jonkman, D.A. Wiersma: Spectroscopy and dynamics of jet-cooled 1,1′-binaphthyl, Chem. Phys. Lett. 97, p.261–264 (1983)ADSGoogle Scholar
  520. [7.520]{ Sect.7.12.1.3}
    H. Abe, N. Mikami, M. Ito: Fluorescence Excitation Spectra of Hydrogen-Bonded Phenols in a Supersonic Free Jet, J. Chem. Phys. 86, p.1768–1771 (1982)Google Scholar
  521. [7.521]{ Sect.7.12.1.3}
    P.M. Felker, S. R. Lambert, A.H. Zewail: Picosecond excitation of jet-cooled pyrazine: Magnetic field effects on the fluorescence decay and quantum beats, Chem. Phys. Lett. 89, p.309–314 (1982)ADSGoogle Scholar
  522. [7.522]{ Sect.7.12.1.3}
    R.E. Smalley: Vibrational Randomization Measurements with Supersonic Beams, J. Phys. Chem. 86, p.3504–3512 (1982)Google Scholar
  523. [7.523]{ Sect.7.12.1.3}
    M.D. Duncan, P. Österiin, R.L. Byer: Pulsed supersonic molecular-beam coherent anti-Stokes Raman spectroscopy of C2H2, Opt. Lett. 6, p.90–92 (1981)ADSGoogle Scholar
  524. [7.524]{ Sect.7.12.1.3}
    I. Raitt, A.M. Griffiths, P.A. Freedman: Resonance fluorescence from nitrogen dioxide cooled in a supersonic jet, Chem. Phys. Lett. 77, p.433–436 (1981)ADSGoogle Scholar
  525. [7.525]{ Sect.7.12.1.3}
    A. Amirav, U. Even, J. Jortner: Butterfly motion of the isolated pentacene molecule in its first-excited singlet state, Chem. Phys. Lett. 72, p.21–24 (1980)ADSGoogle Scholar
  526. [7.526]{ Sect.7.12.1.3}
    D. Coe, R. Robben, L. Talbot: Interferometric measurements of linewidths and spin doubling in the N2+ first negative band system in free-jet expansions, J. Opt. Soc. Am. 70, p.1238–1144 (1980)ADSGoogle Scholar
  527. [7.527]{ Sect.7.12.1.3}
    N. Mikami, A. Hiraya, I. Fujiwara, M. Ito: The fluorescence spectrum of aniline in a supersonic free jet: Double minimum potential for the inversion vibration in the excited state, Chem. Phys. Lett. 74, p.531–535 (1980)ADSGoogle Scholar
  528. [7.528]{ Sect.7.12.1.3}
    J.J. Valentini, P. Esherick, A. Owoyoung: Use of a free-expansion jet in ultra-high-resolution inverse Raman spectroscopy, Chem. Phys. Lett. 75, p.590–592 (1980)ADSGoogle Scholar
  529. [7.529]{ Sect.7.12.1.3}
    P. Huber-Wälchli, D.M. Guthals, J.W. Nibler: CARS spectra of supersonic molecular beams, Chem. Phys. Lett. 67, p.233–236 (1979)ADSGoogle Scholar
  530. [7.530]{ Sect.7.12.1.3}
    D.H. Levy, L. Wharton, R.E. Smalley: Laser spectroscopy in supersonic jets, in Chemical and Biochemical Applications of Laser, Vol. II, ed. by C.B. Moore (Academic, New York 1977)Google Scholar
  531. [7.531]{ Sect.7.12.2}
    N. Ito, O. Kajimoto, K. Hara: Picosecond time-resolved fluorescence depolarization of p-terphenyl at high pressures, Chem. Phys. Lett. 318, p.118–124 (2000)ADSGoogle Scholar
  532. [7.532]{ Sect.7.12.2}
    Ch. Spitz, S. Dähne: Architecture of J-Aggregates Studied by Pressure-Dependent Absorption and Fluorescence Measurements, Ber. Bunsenges. Phys. Chem. 102, p.738–744 (1998)Google Scholar
  533. [7.533]{ Sect.7.12.2}
    T.P. Russell, T.M. Allen, Y.M. Gupta: Time resolved optical spectroscopy to examine chemical decomposition of energetic materials under static high pressure and pulsed heating conditions, Chem Phys Lett 267, p.351–358 (1997)ADSGoogle Scholar
  534. [7.534]{ Sect.7.12.2}
    A. Anderson, W. Smith, J.F. Wheeldon: Infrared study of sulphur at high pressures, Chem Phys Lett 263, p.133–137 (1996)ADSGoogle Scholar
  535. [7.535]{ Sect.7.12.2}
    J. Liu, Y.K. Vohra: Fluorescence emission from high purity synthetic diamond anvil to 370 GPa, Appl Phys Lett 68, p.2049–2051 (1996)ADSGoogle Scholar
  536. [7.536]{ Sect.7.12.2}
    M. Croci, H.-J. Müschenborn, F. Güttier, A. Renn, U.P. Wild: Single molecule spectroscopy: pressure effect on pentacene in p-terphenyl, Chem. Phys. Lett. 212, p.71–77 (1993)ADSGoogle Scholar
  537. [7.537]{ Sect.7.12.2}
    R. Menzel, M.W. Windsor: Picosecond Kinetics of the Excited State Absorption of 4- (9-Anthryl)-N,N-dimethylaniline in a Pressurized Solution, Chem. Phys. Lett. 184, p.6–10 (1991)ADSGoogle Scholar
  538. [7.538]{ Sect.7.12.2}
    N. Redline, M. Windsor, R. Menzel: The Effect of Pressure on the Secondary Charge Transfer Step in Bacterial Reaction Centers of Rhodobacter Spheroides R-26, Chem. Phys. Lett. 186, p.204–209 (1991)ADSGoogle Scholar
  539. [7.539]{ Sect.7.12.2}
    H. Lueck, M.W. Windsor: Pressure Dependence of the Kinetics of Photoinduced Intramolecular Charge Separation in 9,9’-Bianthryl Monitored by Picosecond Transient Absorption: Comparision with Electron Transfer in Photosynthesis, J. Phys. Chem. 94, p.4550–4559 (1990)Google Scholar
  540. [7.540]{ Sect.7.12.2}
    M.W. Windsor, R. Menzel: Effect of Pressure on the 12 ns Charge Recombination Step in Reduced Bacterial Reaction Centers of Rhodobacter Sphaeroides R-26, Chem. Phys. Lett. 164, p.143–150 (1989)ADSGoogle Scholar
  541. [7.541]{ Sect.7.12.2}
    R. Menzel, H. Lueck, K. Jordan, M.W. Windsor: Pressure Dependence of the Conformational Relaxation Process in the Excited State of Tetra-Methyl-Paraterphenyl in Solution, Chem. Phys. Lett. 145, p.61–66 (1988)ADSGoogle Scholar
  542. [7.542]{ Sect.7.12.2}
    K. M. Sando, Shih-I Chu: Pressure broadening and laser-induced spectral line shapes, Adv. At. Mol. Phys. 25, p.133–161 (1988)ADSGoogle Scholar
  543. [7.543]{ Sect.7.12.2}
    Th. Sesselmann, W. Richter, D. Haarer: Hole-Burning Experiments in Doped Polymers Under Uniaxial and Hydrostatic Pressure, J. Luminesc. 36, p.263–271 (1987)ADSGoogle Scholar
  544. [7.544]{ Sect.7.12.2}
    F.T. Clark, H.G. Drickamer: High-Pressure Study of Triphenylmethane Dyes in Polymeric and Aqueous Media, J. Phys. Chem. 90, p.589–592 (1986)Google Scholar
  545. [7.545]{ Sect.7.12.2}
    H.G. Drickamer: Pressure Tuning Spectroscopy, Accounts of Chem. Research 19, p.329–344 (1986)Google Scholar
  546. [7.546]{ Sect.7.12.2}
    F.T. Clark, H.G. Drickamer: High-pressure studies of rotational isomerism of triphenylmethane dye molecules, Chem. Phys. Lett. 115, p.173–175 (1985)ADSGoogle Scholar
  547. [7.547]{ Sect.7.12.2}
    F.T. Clark, H.G. Drickamer: The effect of pressure on the adsorption of crystal violet on oriented ZnO crystals, J. Chem. Phys. 81, p.1024–1029 (1984)ADSGoogle Scholar
  548. [7.548]{ Sect.7.12.2}
    D. Kirin, S.L. Chaplot, G.A. Mackenzie, G.S. Pawley: The pressure dependence of the low-frequency Raman spectra of crystalline biphenyl and p-terphenyl, Chem. Phys. Lett. 102, p.105–108 (1983)Google Scholar
  549. [7.549]{ Sect.7.12.2}
    R. S. Bradley, ed.: High Pressure Physics and Chemistry (Academic Press, New York, 1963)Google Scholar
  550. [7.550]{ Sect.7.13}
    M. Quack, W. Kutzelnigg: Molecular Spectroscopy and Molecular Dynamics: Theory and Experiment, Ber. Bunsenges. Phys. Chem. 99, p.231–245 (1995)Google Scholar
  551. [7.551]{ Sect.7.13}
    D.C. Harris, M.D. Bertolucci: Symmetry and Spectroscopy. An Introduction to Vibrational and Electronic Spectroscopy (Oxford University Press, New York 1987)Google Scholar
  552. [7.552]{ Sect.7.13}
    A. Longarte, J.A. Fernandez, I. Unamuno, F. Castano: Ground and first electronic excited state vibrational modes of the methyl-p-amino-benzoate molecule, Chem Phys Lett 308, p.516–522 (1999)ADSGoogle Scholar
  553. [7.553]{ Sect.7.13}
    B.A. Zon: Born-Oppenheimer approximation for molecules in a strong light field, Chem Phys Lett 262, p.744–746 (1996)ADSGoogle Scholar
  554. [7.554]{ Sect.7.13}
    G. Hohlneicher, J. Wolf: Interference between Franck-Condon and Herzberg-Teller Contributions in Naphthalene and Phenanthrene, Ber. Bunsenges. Phys. Chem. 99, p.366–370 (1995)Google Scholar
  555. [7.555]{ Sect.7.13}
    L. Kador, S. Jahn, D. Haarer: Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy, Phys. Rev. B 41, p. 12215–12226 (1990)ADSGoogle Scholar
  556. [7.556]{ Sect.7.13}
    M. Maroncelli, G. R. Fleming: Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation, J. Chem. Phys. 86, p.6221–6239 (1987)ADSGoogle Scholar
  557. [7.557]{ Sect.7.13}
    A.C. Borin, F.R. Ornellas: The lowest triplet and singlet electronic states of the molecule SO, Chem Phys 247, p.351–364 (1999)Google Scholar
  558. [7.558]{ Sect.7.13}
    R. Menzel, K.-H. Naumann: Towards a Theoretical Description of UV-Vis Absorption Bands of Organic Molecules, Ber. Bunsenges. Phys. Chem. 95, p.834–837 (1991)Google Scholar
  559. [7.559]{ Sect.7.13}
    A. Smolyar, C.F. Wong: Theoretical studies of the spectroscopic properties of tryptamine, tryptophan and tyrosine, J. Mol. Struct. 488, p.51–67 (1999)Google Scholar
  560. [7.560]{ Sect.7.13}
    M. Aoyagi, Y. Osamura, S. Iwata: An MCSCF study of the low-lying states of trans-butadiene, J. Chem. Phys. 83, p.1140–1148 (1985)ADSGoogle Scholar
  561. [7.561]{ Sect.7.13}
    R.A. Goldbeck, E. Switkes: Localized Excitation Analysis of the Singlet Excited States of Polyenes and Diphenylpolyenes, J. Phys. Chem. 89, p.2585–2591 (1985)Google Scholar
  562. [7.562]{ Sect.7.13}
    R.J. Hemley, U. Dinur, V. Vaida, M. Karplus: Theoretical Study of the Ground and Excited Singlet States of Styrene, J. Am. Chem. Soc. 107, p.836–844 (1985)Google Scholar
  563. [7.563]{ Sect.7.13}
    R.L. Ellis, G. Kuehnlenz, H.H. Jaffé: The Use of the CNDO Method in Spectroscopy, Theoret. chim. Acta (Berl.) 26, p.131–140 (1972)Google Scholar
  564. [7.564]{ Sect.7.13}
    J. Lavalette, C. Tetreau, J. Langelaar: SCF MO Calculations on Excited Singlet-Singlet and Triplet-Triplet Transitions of 1,2:3,4-Dibenzanthracene, 1,12-Benzperylene and 3,4-Benzcoronene, Chem. Phys. Lett. 9, p.319–322 (1971)ADSGoogle Scholar
  565. [7.565]{ Sect.7.13}
    M. Mestechkin, L. Gutyrya, V. Poltavets: Excited states of alternant hydrocarbons in the LCAO MO approximation. II. Singlet and Triplet Absorption Spectra of Condensed Aromatic Systems, p.244–247 (1969)Google Scholar
  566. [7.566]{ Sect.7.13}
    J.J. Bene, H.H. Jaffé: Use of the CNDO Method in Spectroscopy. I. Benzene, Pyridine, and the Diazines, J. Chem. Phys. 48, p. 1807–1810 (1968)ADSGoogle Scholar
  567. [7.567]{ Sect.7.13}
    G.W. Robinson: Intensity Enhancement of Forbidden Electronic Transitions by Weak Intermolecular Interactions, J. Chem. Phys. 46, p.572–585 (1967)ADSGoogle Scholar
  568. [7.568]{ Sect.7.13}
    A. Schweig: Calculation of static electric polarizabilities of closed shell organic Pi-electron systems using a variation method, Chem. Phys. Lett. 1, p.163–166 (1967)ADSGoogle Scholar
  569. [7.569]{ Sect.7.13}
    J.A. Pople, G.A. Segal: Approximate Self-Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap, J. Chem. Phys. 43, p.136–138 (1965)ADSGoogle Scholar
  570. [7.570]{ Sect.7.13}
    K.H.J. Buschow, J. Dieleman, G.J. Hoijtink: Corrrelations between the electronic spectra of alternant hydrocarbon molecules and their mono- and di-valent ions. III. Linear polyphenyls, p. 1–9 (1962)Google Scholar
  571. [7.571]{ Sect.7.13}
    R. Pariser: Theory of the Electronic Spectra and Structure of the Polyacenes and of Alternant Hydrocarbons, J. Chem Phys. 24p.250–268 (1956)ADSGoogle Scholar
  572. [7.572]{ Sect.7.13}
    F. Zerbetto, M.Z. Zgierski: Theoretical Study of the CC Stretching Vibrations in Linked Polyene Chains: Nystatin, Chem. Phys. Lett. 144, p.437–443 (1988)ADSGoogle Scholar
  573. [7.573]{ Sect.7.13}
    G.A. Voth, R.A. Marcus: Semiclassical Theory of Fermi Resonance Between Stretching and Bending Modes in Polyatomic Molecules, J Chem Phys 82, p.4064–4072 (1985)ADSGoogle Scholar
  574. [7.574]{ Sect.7.13}
    S.M. Lederman, R.A. Marcus: Densities of Vibrational States of Given Symmetry Species Linear Molecules and Rovibrational States of Nonlinear Molecules, J Chem Phys 81, p.5601–5607 (1984)ADSGoogle Scholar
  575. [7.575]{ Sect.7.13}
    G.A. Voth, A.H. Zewail, R.A. Marcus: The Highly Excited C H Stretching States of Chd3, Cht3, and Ch3D, J Chem Phys 81, p.5494–5507 (1984)ADSGoogle Scholar
  576. [7.576]{ Sect.7.13}
    A. Warshel, A. Lappicirella: Calculations of Ground- and Excited-State Potential Surfaces for Conjugated Heteroatomic Molecules, J. Am. Chem. Soc. 103, p.4664–4673 (1981)Google Scholar
  577. [7.577]{ Sect.7.13}
    A. Warshel: The QCFF/PI+MCA Program Package Efficiency and Versatility in Molecular Mechanics, Computers & Chemistry 1, p. 195–202 (1977)Google Scholar
  578. [7.578]{ Sect.7.13}
    S. Lifson, A. Warshel: Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloallkane andn n-Alkane Molecules, J. Chem. Phys. 49, p.5116–5129 (1968)ADSGoogle Scholar
  579. [7.579]{ Sect.7.13}
    C.L. Tang: A Simple Molecular-Orbital Theory of the Nonlinear Optical Properties of Group III-V and II-VI Compounds, IEEE J. QE-9, p.755–762 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ralf Menzel
    • 1
  1. 1.Institut für PhysikUniversität PotsdamPotsdamGermany

Personalised recommendations