Advertisement

Photonics pp 151-230 | Cite as

Nonlinear Interactions of Light and Matter Without Absorption

  • Ralf Menzel
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

Nonlinear effects in optics offer the possibility of generating or manipulating light in almost any manner. The laser itself, producing light not available in nature, is the most obvious example. Therefore nonlinear interactions are the basis of photonics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [4.1] {Sect. 4.3}
    C.Y. Fong, Y.R. Shen: Theoretical studies on the dispersion of the nonlinear optical susceptibilities in GaAs, InAs, and InSb, Phys. Rev. B 12, p.2325–2335 (1975)ADSCrossRefGoogle Scholar
  2. [4.2] {Sect. 4.3}
    C.L. Tang, C. Flytzanis: Charge-Transfer Model of the Nonlinear Susceptibilities of Polar Semiconductors, Phys. Rev. B 4, p.2520–2524 (1971)ADSCrossRefGoogle Scholar
  3. [4.3] {Sect. 4.3}
    C. Flytzanis, J. Ducuing: Second-Order Optical Susceptibilities of III-V Semiconductors, Phys. Rev. 178, p.1218–1228 (1969)ADSCrossRefGoogle Scholar
  4. [4.4] {Sect. 4.3}
    B.F. Levine: Electrodynamical Bond-Charge Calculation of Nonlinear Optical Susceptibilities, Phys. Rev. Lett. 22, p.787–790 (1969)ADSCrossRefGoogle Scholar
  5. [4.5] {Sect. 4.3}
    S.S. Jha, N. Bloembergen: Nonlinear Optical Susceptibilities in Group-IV and III-V Semiconductors, Phys. Rev. 171, p.891–898 (1968)ADSCrossRefGoogle Scholar
  6. [4.6] {Sect. 4.3}
    Y.R. Shen: Permutation Symmetry of Nonlinear Susceptibilities and Energy Relation, Phys. Rev. 167, p.818–821 (1968)ADSCrossRefGoogle Scholar
  7. [4.7] {Sect. 4.3}
    P.D. Maker, T.W. Terhune: Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength, Phys. Rev. 137, p.A801–A818 (1965)ADSCrossRefGoogle Scholar
  8. [4.8] {Sect. 4.3}
    G. Rosen, F.C. Whitmore: Experiment for Observing the Vacuum Scattering of Light by Light, Phys. Rev. 137, p.B1357–B1359 (1965)ADSCrossRefGoogle Scholar
  9. [4.9] {Sect. 4.3}
    N. Bloembergen, Y.R. Shen: Quantum-Theoretical Comparision of Nonlinear Susceptibilities in Parametric Media, Lasers, and Raman Lasers, Phys. Rev. 133, p.A37–A49 (1964)ADSCrossRefGoogle Scholar
  10. [4.10] {Sect. 4.3}
    J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan: Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev. 127, p.1918–1939 (1962)ADSCrossRefGoogle Scholar
  11. [4.11] {Sect. 4.3}
    D.A. Kleinman: Nonlinear Dielectric Polarization in Optical Media, Phys. Rev. 126, p.1977–1979 (1962)ADSCrossRefGoogle Scholar
  12. [4.12] {Sect. 4.3}
    P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Generation of Optical Harmonics, Phys. Rev. Lett. 7, p.118–119 (1961)ADSCrossRefGoogle Scholar
  13. [4.13] {Sect. 4.4.1}
    D.W. Kim, G.Y. Xiao, G.B. Ma: Temporal properties of the second-harmonic generation of a short pulse, Appl Opt 36, p.6788–6793 (1997)ADSCrossRefGoogle Scholar
  14. [4.14] {Sect. 4.4.1}
    D.R. White, E.L. Dawes, J.H. Marburger: Theory of Second-Harmonic Generation With High-Conversion Efficiency, IEEE J. QE-6, p. 793–796 (1970)CrossRefGoogle Scholar
  15. [4.15] {Sect. 4.4.1}
    H. Kouta, Y. Kuwano: Attaining 186-nm light generation in cooled beta-BaB2O4 crystal, Optics Letters 24, p.1230–1232 (1999)ADSCrossRefGoogle Scholar
  16. [4.16] {Sect. 4.4.1}
    I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, S. Kubota: Absolute measurement of second-order nonlinear-optical coefficients of beta-BaB2O4 for visible to ultraviolet second-harmonic wavelengths, J Opt Soc Am B Opt Physics 16, p.620–624 (1999)ADSCrossRefGoogle Scholar
  17. [4.17] {Sect. 4.4.1}
    M. Tlidi, P. Mandel: Three-dimensional optical crystals and localized structures in cavity second harmonic generation, Phys Rev Lett 83, p.4995–4998 (1999)ADSCrossRefGoogle Scholar
  18. [4.18] {Sect. 4.4.1}
    S. Yu, A.M. Weiner: Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO3, J Opt Soc Am B Opt Physics 16, p.1300–1304 (1999)ADSCrossRefGoogle Scholar
  19. [4.19] {Sect. 4.4.1}
    G. Ghosh: Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures, Appl Opt 37, p.1205–1212 (1998)ADSCrossRefGoogle Scholar
  20. [4.20] {Sect. 4.4.1}
    M. Sheik-Bahae, M. Ebrahimzadeh: Measurements of nonlinear refraction in the second-order chi ((2)) materials KTiOPO4, KNbO3, beta-BaB2O4, and LiB3O5, Opt Commun 142, p.294–298 (1997)ADSCrossRefGoogle Scholar
  21. [4.21] {Sect. 4.4.1}
    D.J. Armstrong, W.J. Alford, T.D. Raymond, A.V. Smith: Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification, Appl Opt 35, p.2032–2040 (1996)ADSCrossRefGoogle Scholar
  22. [4.22] {Sect. 4.4.1}
    K. Hagimoto, A. Mito: Determination of the second-order susceptibility of ammonium dihydrogen phosphate and alpha-quartz at 633 and 1064 nm, Appl Opt 34, p.8276–8282 (1995)ADSCrossRefGoogle Scholar
  23. [4.23] {Sect. 4.4.1}
    J. Jerphagnon, S.K. Kurtz: Optical Nonlinear Susceptibilities: Accurate Relative Values for Quartz, Ammonium Dihydrogen Phosphate, and Potassium Dihydrogen Phosphate, Phys. Rev. B 1, p.1739–1744 (1970)ADSCrossRefGoogle Scholar
  24. [4.24] {Sect. 4.4.1}
    R.C. Miller, W.A. Nordland: Absolute Signs of Second-Harmonic Generation Coefficients of Piezoelectric Crystals, Phys. Rev. B 2, p.4896–4902 (1970)ADSCrossRefGoogle Scholar
  25. [4.25] {Sect. 4.4.1}
    R.C. Miller: Optical Second Harmonic Generation in Piezoelectric Crystals, Appl. Phys. Lett. 5, p.17–19 (1964)ADSCrossRefGoogle Scholar
  26. [4.26] {Sect. 4.4.1}
    C. Samyn, T. Verbiest, A. Persoons: Second-order non-linear optical polymers, Macromol Rapid Commun 21, p. 1–15 (2000)CrossRefGoogle Scholar
  27. [4.27] {Sect. 4.4.1}
    W.S. Shi, Z.H. Chen, T. Zhao, H.B. Lu, Y.L. Zhou, G.Z. Yang: Second-harmonic generation in Ce : BaTiO2 nanocrystallites grown by pulsed laser deposition, J Opt Soc Am B Opt Physics 17, p.235–238 (2000)ADSCrossRefGoogle Scholar
  28. [4.28] {Sect. 4.4.1}
    B.F. Henson, B.W. Asay, R.K. Sander, S.F. Son, J.M. Robinson, P.M. Dickson: Dynamic measurement of the HMX beta-delta phase transition by second harmonic generation, Phys Rev Lett 82, p. 1213–1216 (1999)ADSCrossRefGoogle Scholar
  29. [4.29] {Sect. 4.4.1}
    R. Masse, J.F. Nicoud, M. BagieuBeucher, C. Bourgogne: Sodium 3-methyl-4-nitrophenolate dihydrate: a crystal engineering route towards new herringbone structures for quadratic non-linear optics, Chem Phys 245, p.365–375 (1999)CrossRefGoogle Scholar
  30. [4.30] {Sect. 4.4.1}
    S.N. Rashkeev, S. Limpijumnong, W.R.L. Lambrecht: Theoretical evaluation of LiGaO2 for frequency upconversion to ultraviolet, J Opt Soc Am B Opt Physics 16, p.2217–2222 (1999)ADSCrossRefGoogle Scholar
  31. [4.31] {Sect. 4.4.1}
    M. Yoshimura, H. Furuya, T. Kobayashi, K. Murase, Y. Mori, T. Sasaki: Noncritically phase-matched frequency conversion in GdxYl-xCa4O (BO3) (3) crystal, Optics Letters 24, p. 193–195 (1999)ADSCrossRefGoogle Scholar
  32. [4.32] {Sect. 4.4.1}
    D.Y. Zhang, H.Y. Shen, W. Liu, G.F. Zhang, W.Z. Chen, G. Zhang, R.R. Zeng, C.H. Huang, W.X. Lin, J.K. Liang: Study of the nonlinear optical properties of 7.5 mol% Nb : KTP crystals, IEEE J QE-35, p.1447–1450 (1999)CrossRefGoogle Scholar
  33. [4.33] {Sect. 4.4.1}
    Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, H. Hatano: Stoichiometric Mg : LiNbO3 as an effective material for nonlinear optics, Optics Letters 23, p.1892–1894 (1998)ADSCrossRefGoogle Scholar
  34. [4.34] {Sect. 4.4.1}
    D. Pureur, A.C. Liu, M.J.F. Digonnet, G.S. Kino: Absolute measurement of the second-order nonlinearity profile in poled silica, Optics Letters 23, p.588–590 (1998)ADSCrossRefGoogle Scholar
  35. [4.35] {Sect. 4.4.1}
    T. Verbiest, S. VanElshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T.J. Katz, A. Persoons: Strong enhancement of nonlinear optical properties through supramolecular chirality, Science 282, p.913–915 (1998)ADSCrossRefGoogle Scholar
  36. [4.36] {Sect. 4.4.1}
    J. Capmany, J.G. Sole: Second harmonic generation in LaB-GeO5:Nd3+, Appl Phys Lett 70, p.2517–2519 (1997)ADSCrossRefGoogle Scholar
  37. [4.37] {Sect. 4.4.1}
    T. Fujiwara, M. Takahashi, A.J. Ikushima: Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation, Appl Phys Lett 71, p.1032–1034 (1997)ADSCrossRefGoogle Scholar
  38. [4.38] {Sect. 4.4.1}
    K. Kato: Second-harmonic and sum-frequency generation in ZnGeP2, Appl Opt 36, p.2506–2510 (1997)ADSCrossRefGoogle Scholar
  39. [4.39] {Sect. 4.4.1}
    Z.D. Li, B.C. Wu, G.B. Su, G.F. Huang: Blue light emission from an organic nonlinear optical crystal of 4-aminobenzophenone pumped by a laser diode, Appl Phys Lett 70, p.562–564 (1997)ADSCrossRefGoogle Scholar
  40. [4.40] {Sect. 4.4.1}
    Y.C. Wu, P.Z. Fu, J.X. Wang, Z.Y. Xu, L. Zhang, Y.F. Kong, C.T. Chen: Characterization of CsB3O5 crystal for ultraviolet generation, Optics Letters 22, p. 1840–1842 (1997)ADSCrossRefGoogle Scholar
  41. [4.41] {Sect. 4.4.1}
    C.T. Chen, Z.Y. Xu, D.Q. Deng, J. Zhang, G.K.L. Wong, B.C. Wu, N. Ye, D.Y. Tang: The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal, Appl Phys Lett 68, p.2930–2932 (1996)ADSCrossRefGoogle Scholar
  42. [4.42] {Sect. 4.4.1}
    G.S.G. Quirino, M.D.I. Castillo, J.J. SanchezMondragon, S. Stepanov, V. Vysloukh: Interferometric measurements of the photoinduced refractive index profiles in photorefractive Bil2TiO20 crystal, Opt Commun 123, p.597–602 (1996)ADSCrossRefGoogle Scholar
  43. [4.43] {Sect. 4.4.1}
    W.L. Zhou, Y. Mori, T. Sasaki, S. Nakai: High-efficiency in-tracavity continuous-wave ultraviolet generation using crystals CsLiB6O10, beta P-BaB2O4 and LiB3O5, Opt Commun 123, p.583–586 (1996)ADSCrossRefGoogle Scholar
  44. [4.44] {Sect. 4.4.1}
    M. Ahlheim, M. Barzoukas, P.V. Bedworth, M. Blancharddesce, A. Fort, Z.Y. Hu, S.R. Marder, J.W. Perry, C. Runser, M. Staehelin, et al.: Chromophores with strong heterocyclic accepters: A poled polymer with a large electro-optic coefficient, Science 271, p.335–337 (1996)ADSCrossRefGoogle Scholar
  45. [4.45] {Sect. 4.4.1}
    F.C. Zumsteg, J.D. Bierlein, T.E. Gier: KxRbl-xTiOPO4: A new nonlinear optical material, J. Appl. Phys. 47, p.4980–4985 (1976)ADSCrossRefGoogle Scholar
  46. [4.46] {Sect. 4.4.1}
    K. Tanaka, A. Narazaki, K. Hirao: Large optical second-order nonlinearity of poled WO3-TeO2 glass, Optics Letters 25, p.251–253 (2000)ADSCrossRefGoogle Scholar
  47. [4.47] {Sect. 4.4.1}
    A.V. Balakin, V.A. Bushuev, N.I. Koroteev, B.I. Mantsyzov, I.A. Ozheredov, A.P. Shkurinov, D. Boucher, P. Masselin: Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light, Optics Letters 24, p.793–795 (1999)ADSCrossRefGoogle Scholar
  48. [4.48] {Sect. 4.4.1}
    S.J. Lin, I.D. Hands, D.L. Andrews, S.R. Meech: Optically induced second harmonic generation by six-wave mixing: A novel probe of solute orientational dynamics, J Phys Chem A 103, p.3830–3836 (1999)CrossRefGoogle Scholar
  49. [4.49] {Sect. 4.4.1}
    P. LozaAlvarez, D.T. Reid, P. Faller, M. Ebrahimzadeh, W. Sibbett: Simultaneous second-harmonic generation and femtosecond-pulse compression in aperiodically poled KTiOPO4 with a RbTiOAsO4-based optical parametric oscillator, J Opt Soc Am B Opt Physics 16, p. 1553–1560 (1999)ADSCrossRefGoogle Scholar
  50. [4.50] {Sect. 4.4.1}
    F. Mougel, K. Dardenne, G. Aka, A. KahnHarari, D. Vivien: Ytterbium-doped Ca4GdO (BO3) (3): An efficient infrared laser and self-frequency doubling crystal, J Opt Soc Am B Opt Physics 16, p. 164–172 (1999)ADSCrossRefGoogle Scholar
  51. [4.51] {Sect. 4.4.1}
    S. Pearl, H. Lotem, Y. Shimony, S. Rosenwaks: Optimization of laser intracavity second-harmonic generation by a linear dispersion element, J Opt Soc Am B Opt Physics 16, p.1705–1711 (1999)ADSCrossRefGoogle Scholar
  52. [4.52] {Sect. 4.4.1}
    A. Piskarskas, V. Smilgevicius, A. Stabinis, V. Jarutis, V. Pasiskevicius, S. Wang, J. Tellefsen, F. Laurell: Noncollinear second-harmonic generation in periodically poled KTiOPO4 excited by the Bessel beam, Optics Letters 24, p.1053–1055 (1999)ADSCrossRefGoogle Scholar
  53. [4.53] {Sect. 4.4.1}
    P. Wang, J.M. Dawes, P. Dekker, D.S. Knowles, J.A. Piper, B.S. Lu: Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal, J Opt Soc Am B Opt Physics 16, p.63–69 (1999)ADSCrossRefGoogle Scholar
  54. [4.54] {Sect. 4.4.1}
    O.S. Brozek, V. Quetschke, A. Wicht, K. Danzmann: Highly efficient cw frequency doubling of 854 nm GaAlAs diode lasers in an external ring cavity, Opt Commun 146, p.141–146 (1998)ADSCrossRefGoogle Scholar
  55. [4.55] {Sect. 4.4.1}
    D. Fluck, P. Gunter: Efficient second-harmonic generation by lens wave-guiding in KNbO3 crystals, Opt Commun 147, p.305–308 (1998)ADSCrossRefGoogle Scholar
  56. [4.56] {Sect. 4.4.1}
    C. Iaconis, I.A. Walmsley: Fundamental-harmonic phase shift compensation in an intracavity frequency doubled Nd: YLF laser, Opt Commun 149, p.61–63 (1998)ADSCrossRefGoogle Scholar
  57. [4.57] {Sect. 4.4.1}
    Y. Wang, V. Petrov, Y.J. Ding, Y. Zheng, J.B. Khurgin, W.P. Risk: Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate, Appl Phys Lett 73, p.873–875 (1998)ADSCrossRefGoogle Scholar
  58. [4.58] {Sect. 4.4.1}
    K.L. Moore, T. Donnelly: Probing nonequilibrium electron distributions in gold by use of second-harmonic generation, Optics Letters 24, p.990–992 (1999)ADSCrossRefGoogle Scholar
  59. [4.59] {Sect. 4.4.2}
    B.A. Richman, S.E. Bisson, R. Trebino, E. Sidick, A. Jacobson: All-prism achromatic phase matching for tunable second-harmonic generation, Appl Opt 38, p.3316–3323 (1999)ADSCrossRefGoogle Scholar
  60. [4.60] {Sect. 4.4.2}
    H. Endoh, M. Kawaharada, E. Hasegawa: Noncritical phase-matched second-harmonic generation with an organic crystal, 4-(isopropyl-carbamoyl)nitrobenzene, Appl Phys Lett 68, p.293–295 (1996)ADSCrossRefGoogle Scholar
  61. [4.61] {Sect. 4.4.2}
    R.S. Adhav, R.W. Wallace: Second Harmonic Generation in 90 Phase-Matched KDP Isomorphs, IEEE J. QE-9, p.855–856 (1973)CrossRefGoogle Scholar
  62. [4.62] {Sect. 4.4.2}
    J.P. Feve, J.J. Zondy, B. Boulanger, R. Bonnenberger, X. Cabirol, B. Menaert, G. Marnier: Optimized blue light generation in optically contacted walk-off compensated RbTiOAsO4 and KTiOPl-yAsyO4, Opt Commun 161, p.359–369 (1999)ADSCrossRefGoogle Scholar
  63. [4.63] {Sect. 4.4.2}
    R. Schiek, Y. Baek, G.I. Stegeman, W. Sohler: One-dimensional quadratic walking solitons, Optics Letters 24, p.83–85 (1999)ADSCrossRefGoogle Scholar
  64. [4.64] {Sect. 4.4.2}
    R.J. Gehr, R.W. Kimmel, A.V. Smith: Simultaneous spatial and temporal walk-off compensation in frequency- doubling femtosecond pulses in beta-BaB2O4, Optics Letters 23, p.1298–1300 (1998)ADSCrossRefGoogle Scholar
  65. [4.65] {Sect. 4.4.2}
    G.D. Boyd, D.A. Kleinman: Parametric Interaction of Focused Gaussian Light Beams, J. Appl. Phys. 39, p.3597–3639 (1968)ADSCrossRefGoogle Scholar
  66. [4.66] {Sect. 4.4.2}
    A.M. Weiner, A.M. Kanan, D.E. Leaird: High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal, Optics Letters 23, p.1441–1443 (1998)ADSCrossRefGoogle Scholar
  67. [4.67] {Sect. 4.4.2}
    K. Mori, Y. Tamaki, M. Obara, K. Midorikawa: Second-harmonic generation of femtosecond high-intensity Ti: sapphire laser pulses, J Appl Phys 83, p.2915–2919 (1998)ADSCrossRefGoogle Scholar
  68. [4.68] {Sect. 4.4.2}
    T.J. Zhang, M. Yonemura: Efficient type I second-harmonic generation of subpicosecond laser pulses with a series of alternating nonlinear and delay crystals, Appl Opt 37, p.1647–1650 (1998)ADSCrossRefGoogle Scholar
  69. [4.69] {Sect. 4.4.2}
    J. Capmany, E. Montoya, V. Bermudez, D. Callejo, E. Dieguez, L.E. Bausa: Self-frequency doubling in Yb3+ doped periodically poled LiNbO3 : MgO bulk crystal, Appl Phys Lett 76, p. 1374–1376 (2000)ADSCrossRefGoogle Scholar
  70. [4.70] {Sect. 4.4.2}
    W. Shi, C.S. Fang, Z.L. Zu, Q.W. Pan, Q.T. Gu, X. Dong, H.Z. Wei, J.Z. Yu: Poling and characterization of nonlinear polymer DCNP/PEK-c thin films, Solid State Commun 113, p.483–487 (2000)ADSCrossRefGoogle Scholar
  71. [4.71] {Sect. 4.4.2}
    R.G. Batchko, V.Y. Shur, M.M. Fejer, R.L. Byer: Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation, Appl Phys Lett 75, p.1673–1675 (1999)ADSCrossRefGoogle Scholar
  72. [4.72] {Sect. 4.4.2}
    C.B.E. Gawith, D.P. Shepherd, J.A. Abernethy, D.C. Hanna, G.W. Ross, P.G.R. Smith: Second-harmonic generation in a direct-bonded periodically poled LiNbO3 buried waveguide, Optics Letters 24, p.481–483 (1999)ADSCrossRefGoogle Scholar
  73. [4.73] {Sect. 4.4.2}
    X.H. Gu, M. Makarov, Y.J. Ding, J.B. Khurgin, W.P. Risk: Backward second-harmonic and third=harmonic generation in a periodically poled potassium titanyl phosphate waveguide, Optics Letters 24, p. 127–129 (1999)ADSCrossRefGoogle Scholar
  74. [4.74] {Sect. 4.4.2}
    I. Juwiler, A. Arie, A. Skliar, G. Rosenman: Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity, Optics Letters 24, p. 1236–1238 (1999)ADSCrossRefGoogle Scholar
  75. [4.75] {Sect. 4.4.2}
    X. Liu, L.J. Qian, F. Wise: Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions, Opt Commun 164, p.69–75 (1999)ADSCrossRefGoogle Scholar
  76. [4.76] {Sect. 4.4.2}
    M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, G. Huber: Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal, Optics Letters 24, p.205–207 (1999)ADSCrossRefGoogle Scholar
  77. [4.77] {Sect. 4.4.2}
    R. Schiek, L. Friedrich, H. Fang, G.I. Stegeman, K.R. Parameswaran, M.H. Chou, M.M. Fejer: Nonlinear directional coupler in periodically poled lithium niobate, Optics Letters 24, p.1617–1619 (1999)ADSCrossRefGoogle Scholar
  78. [4.78] {Sect. 4.4.2}
    S. Wang, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Karlsson: First-order type II quasi-phase-matched UV generation in periodically poled KTP, Optics Letters 24, p.978–980 (1999)ADSCrossRefGoogle Scholar
  79. [4.79] {Sect. 4.4.2}
    F. Laurell: Periodically poled materials for miniature light sources, Opt. Mat. 11, p.235–244 (1999)CrossRefGoogle Scholar
  80. [4.80] {Sect. 4.4.2}
    Y.J.J. Ding, J.U. Kang, J.B. Khurgin: Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium, IEEE J QE-34, p.966–974 (1998)CrossRefGoogle Scholar
  81. [4.81] {Sect. 4.4.2}
    H. Komine, W.H. Long, J.W. Tully, E.A. Stappaerts: Quasi-phase-matched second-harmonic generation by use of a total-internal-reflection phase shift in gallium arsenide and zinc selenide plates, Optics Letters 23, p.661–663 (1998)ADSCrossRefGoogle Scholar
  82. [4.82] {Sect. 4.4.2}
    K. Mizuuchi, K. Yamamato: Waveguide second-harmonic generation device with broadened flat quasi- phase-matching response by use of a grating structure with located phase shifts, Optics Letters 23, p. 1880–1882 (1998)ADSCrossRefGoogle Scholar
  83. [4.83] {Sect. 4.4.2}
    S. Wang, V. Pasiskevicius, F. Laurell, H. Karlsson: Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4, Optics Letters 23, p.1883–1885 (1998)ADSCrossRefGoogle Scholar
  84. [4.84] {Sect. 4.4.2}
    J. Amin, V. Pruneri, J. Webjorn, P.S. Russell, D.C. Hanna, J.S. Wilkinson: Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide, Opt Commun 135, p.41–44 (1997)ADSCrossRefGoogle Scholar
  85. [4.85] {Sect. 4.4.2}
    A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger: Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4, Opt Commun 142, p.265–268 (1997)ADSCrossRefGoogle Scholar
  86. [4.86] {Sect. 4.4.2}
    G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer: 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate, Optics Letters 22, p. 1834–1836 (1997)ADSCrossRefGoogle Scholar
  87. [4.87] {Sect. 4.4.2}
    K. Mizuuchi, K. Yamamoto, M. Kato: Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTa03, Appl Phys Lett 70, p.1201–1203 (1997)ADSCrossRefGoogle Scholar
  88. [4.88] {Sect. 4.4.2}
    J.H. Si, G. Xu, X.C. Liu, Q.G. Yang, P.X. Ye, Z. Li, H. Ma, Y.Q. Shen, L. Qiu, J.X. Zhang, et al.: All-optical poling of a polyimide film with azobenzene chromophore, Opt Commun 142, p.71–74 (1997)CrossRefGoogle Scholar
  89. [4.89] {Sect. 4.4.2}
    S. Sonoda, I. Tsuruma, M. Hatori: Second harmonic generation in electric poled X-cut MgO- doped LiNbO3 waveguides, Appl Phys Lett 70, p.3078–3080 (1997)ADSCrossRefGoogle Scholar
  90. [4.90] {Sect. 4.4.2}
    A. Harada, Y. Nihei, Y. Okazaki, and H. Hyuga: Intracavity frequency doubling of a diode-pumped 946-nm Nd:YAG laser with bulk beriodically poled MgO-LiNbO3, Opt. Lett. 22, p.805–807 (1997)ADSCrossRefGoogle Scholar
  91. [4.91] {Sect. 4.4.2}
    G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, and R.L. Byer: 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate, Opt. Lett. 22, p. 1834–1836 (1997)ADSCrossRefGoogle Scholar
  92. [4.92] {Sect. 4.4.2}
    Y. Kitaoka, K. Mizuuchi, K. Yamamoto, M. Kato, T. Sasaki: Intracavity second-harmonic generation with a periodically domain-inverted LiTaO3 device, Optics Letters 21, p.1972–1974 (1996)ADSCrossRefGoogle Scholar
  93. [4.93] {Sect. 4.4.2}
    Y.L. Lu, Y.Q. Lu, C.C. Xue, N.B. Ming: Growth of Nd3+-doped LiNbO3 optical superlattice crystals and its potential applications in self-frequency doubling, Appl Phys Lett 68, p. 1467–1469 (1996)ADSCrossRefGoogle Scholar
  94. [4.94] {Sect. 4.4.2}
    K. Mizuuchi, K. Yamamoto: Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3, Optics Letters 21, p.107–109 (1996)ADSCrossRefGoogle Scholar
  95. [4.95] {Sect. 4.4.2}
    V. Pruneri, S.D. Butterworth, D.C. Hanna: Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate, Appl Phys Lett 69, p.1029–1031 (1996)ADSCrossRefGoogle Scholar
  96. [4.96] {Sect. 4.4.2}
    V. Pruneri, S.D. Butterworth, D.C. Hanna: Highly efficient green-light generation by quasi-phase- matched frequency doubling of picosecond pulses from an amplified mode-locked Nd: YLF laser, Optics Letters 21, p.390–392 (1996)ADSCrossRefGoogle Scholar
  97. [4.97] {Sect. 4.4.2}
    S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto: Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure, Appl Phys Lett 68, p.1760–1762 (1996)ADSCrossRefGoogle Scholar
  98. [4.98] {Sect. 4.4.2}
    S. Yilmaz, S. Bauer, R. Gerhard-Multhaupt: Photothermal poling of nonlinear optical polymer films, Appl. Phys. Lett. 64, p.2770–2772 (1994)ADSCrossRefGoogle Scholar
  99. [4.99] {Sect. 4.4.3}
    D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grund-kotter, R. Ricken, W. Sohler: Quasi-phase-matched difference-frequency generation in periodically poled Ti : LiNbO3 channel waveguides, Optics Letters 24, p.896–898 (1999)ADSCrossRefGoogle Scholar
  100. [4.100] {Sect. 4.4.3}
    J.A. McGuire, W. Beck, X. Wei, Y.R. Shen: Fourier-transform sum-frequency surface vibrational spectroscopy with femtosecond pulses, Optics Letters 24, p.1877–1879 (1999)ADSCrossRefGoogle Scholar
  101. [4.101] {Sect. 4.4.3}
    C.Q. Wang, Y.T. Chow, W.A. Gambling, D.R. Yuan, D. Xu, G.H. Zhang, M.H. Jiang: A continuous-wave tunable solid-state blue laser based on intracavity sum-frequency mixing and pump-wavelength tuning, Appl Phys Lett 75, p.1821–1823 (1999)ADSCrossRefGoogle Scholar
  102. [4.102] {Sect. 4.4.3}
    E.V. Alieva, L.A. Kuzik, V.A. Yakovlev: Sum frequency generation spectroscopy of thin organic films on silver using visible surface plasmon generation, Chem Phys Lett 292, p.542–546 (1998)ADSCrossRefGoogle Scholar
  103. [4.103] {Sect. 4.4.3}
    G.C. Bhar, P. Kumbhakar, U. Chatterjee, A.M. Rudra, Y. Kuwano, H. Kouta: Efficient generation of 200–230-nm radiation in beta barium borate by noncollinear sum-frequency mixing, Appl Opt 37, p.7827–7831 (1998)ADSCrossRefGoogle Scholar
  104. [4.104] {Sect. 4.4.3}
    R.A. Kaindl, D.C. Smith, M. Joschko, M.P. Hasselbeck, M. Woerner, T. Elsaesser: Femtosecond infrared pulses tunable from 9 to 18 mu m at an 88-MHz repetition rate, Optics Letters 23, p.861–863 (1998)ADSCrossRefGoogle Scholar
  105. [4.105] {Sect. 4.4.3}
    A. Nazarkin, G. Korn: Generation of self-compressed laser pulses under the condition of two- photon resonant difference-frequency mixing in gases, Opt Commun 153, p.184–190 (1998)ADSCrossRefGoogle Scholar
  106. [4.106] {Sect. 4.4.3}
    V. Petrov, C. Rempel, K.P. Stolberg, W. Schade: Widely tunable continuous-wave mid-infrared laser source based on difference-frequency generation in AgGaS2, Appl Opt 37, p.4925–4928 (1998)ADSCrossRefGoogle Scholar
  107. [4.107] {Sect. 4.4.3}
    J.D. Vance, C.Y. She, H. Moosmuller: Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator, Appl Opt 37, p.4891–4896 (1998)ADSCrossRefGoogle Scholar
  108. [4.108] {Sect. 4.4.3}
    G.C. Bhar, U. Chatterjee, A.M. Rudra, P. Kumbhakar, R.K. Route, R.S. Feigelson: Generation of tunable 187.9–196-nm radiation in beta-Ba2BO4, Optics Letters 22, p.1606–1608 (1997)ADSCrossRefGoogle Scholar
  109. [4.109] {Sect. 4.4.3}
    D. Fluck, P. Gunter: Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3, Opt Commun 136, p.257–260 (1997)ADSCrossRefGoogle Scholar
  110. [4.110] {Sect. 4.4.3}
    J.M. Fraser, D.K. Wang, A. Hache, G.R. Allan, H.M. vanDriel: Generation of high-repetition-rate femtosecond pulses from 8 to 18 mu m, Appl Opt 36, p.5044–5047 (1997)ADSCrossRefGoogle Scholar
  111. [4.111] {Sect. 4.4.3}
    H.M. Kretschmann, F. Heine, G. Huber, T. Halldorsson: All-solid-state continuous-wave doubly resonant all- intracavity sum-frequency mixer, Optics Letters 22, p.1461–1463 (1997)ADSCrossRefGoogle Scholar
  112. [4.112] {Sect. 4.4.3}
    N. Umemura, K. Kato: Ultraviolet generation tunable to 0.185 mu m in CsLiB6O10, Appl Opt 36, p.6794–6796 (1997)ADSCrossRefGoogle Scholar
  113. [4.113] {Sect. 4.4.3}
    A. Balakrishnan, S. Sanders, S. Demars, J. Webjorn, D.W. Nam, R.J. Lang, D.G. Mehuys, R.G. Waarts, D.F. Welch: Broadly tunable laser-diode-based mid-infrared source with up to 31 mu W of power at 4.3-mu m wavelength, Optics Letters 21, p.952–954 (1996)ADSCrossRefGoogle Scholar
  114. [4.114] {Sect. 4.4.3}
    Y.B. Band, M. Trippenbach, C. Radzewicz, J.S. Krasinski: Ultra-short pulse nonlinear optics: Second harmonic generation and sum frequency generation without group velocity mismatch broadening, J Nonlinear Opt Physics Mat 5, p.477–494 (1996)ADSCrossRefGoogle Scholar
  115. [4.115] {Sect. 4.4.3}
    M. Berdah, J.P. Visticot, C. Dedonderlardeux, D. Solgadi, B. Soep: Generation of picosecond VUV radiation by four-wave mixing of nanosecond and picosecond laser radiations, Opt Commun 124, p. 118–120 (1996)ADSCrossRefGoogle Scholar
  116. [4.116] {Sect. 4.4.3}
    R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis, A. Varanavicius: Generation of compressed 600–720-nm tunable femtosecond pulses by transient frequency mixing in a beta-barium borate crystal, Optics Letters 21, p.216–218 (1996)ADSCrossRefGoogle Scholar
  117. [4.117] {Sect. 4.4.3}
    O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, I.V. Hertel: Generation of broadly tunable femtosecond vacuum- ultraviolet pulses, Optics Letters 21, p.1159–1161 (1996)ADSCrossRefGoogle Scholar
  118. [4.118] {Sect. 4.4.3}
    A. Shirakawa, H.W. Mao, T. Kobayashi: Highly efficient generation of blue-orange femtosecond pulses from intracavity-frequency-mixed optical parametric oscillator, Opt Commun 123, p. 121–128 (1996)ADSCrossRefGoogle Scholar
  119. [4.119] {Sect. 4.4.3}
    Y.K. Yap, M. Inagaki, S. Nakajima, Y. Mori, T. Sasaki: High-power fourth- and fifth-harmonic generation of a Nd: YAG laser by means of a CsLiB6O10, Optics Letters 21, p.1348–1350 (1996)ADSCrossRefGoogle Scholar
  120. [4.120] {Sect. 4.4.3}
    B. Dick, R.M. Hochstrasser: Spectroscopic and line-narrowing properties of resonant sum and difference frequency generation, J. Chem. Phys. 78, p.3398–3409 (1983)ADSCrossRefGoogle Scholar
  121. [4.121] {Sect. 4.4.3}
    J.R. Morris, Y.R. Shen: Theory of far-infrared generation by optical mixing, Phys. Rev. A 15, p.1143–1156 (1977)ADSCrossRefGoogle Scholar
  122. [4.122] {Sect. 4.4.3}
    J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan: Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev. 127, p.1918–1939 (1962)ADSCrossRefGoogle Scholar
  123. [4.123] {Sect. 4.4.3}
    M. Bass, P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Optical Mixing, Phys. Rev. Lett. 8, p.18 (1962)ADSCrossRefGoogle Scholar
  124. [4.124] {Sect. 4.4.3}
    N. Bloembergen, P. S. Pershan: Light Waves at the Boundary of Nonlinear Media, Phys. Rev. 128, p.606–622 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  125. [4.125] {Sect. 4.4.3}
    P.D. Maker, R.W. Terhune, M. Nisenoff, C.M. Savage: Effects of Dispersion and Focusing on the Production of optical Harmonics, Phys. Rev. Lett. 8, p.21–22 (1962)ADSCrossRefGoogle Scholar
  126. [4.126] {Sect. 4.4.3}
    D. Mazzotti, P. Denatale, G. Giusfredi, C. Fort, J.A. Mitchell, L. Hollberg: Saturated-absorption spectroscopy with low-power difference-frequency radiation, Optics Letters 25, p.350–352 (2000)ADSCrossRefGoogle Scholar
  127. [4.127] {Sect. 4.4.4}
    C.L. Tang: Tutorial on optical parametric processes and devices, J Nonlinear Opt Physics Mat 6, p.535–547 (1997)ADSCrossRefGoogle Scholar
  128. [4.128] {Sect. 4.4.4}
    S.J. Brosnan, R.L. Byer: Optical Parametric Oscillator Threshold and Linewidth Studies, IEEE J. QE-15, p.415–431 (1979)CrossRefGoogle Scholar
  129. [4.129] {Sect. 4.4.4}
    J. H. Hunt: Optical Parametric Oscillators and Amplifiers and Their Applications (SPIE Optical Engineering Press, London, 1997)Google Scholar
  130. [4.130] {Sect. 4.4.4}
    C. L. Tang, L. K. Cheng: Fundamentals of Optical Parametric Processes and Oscillators (Harwood Academic Publishers, Amsterdam, 1995)Google Scholar
  131. [4.131] {Sect. 4.4.4}
    L. Carrion, J.P. GirardeauMontaut: Development of a simple model for optical parametric generation, J Opt Soc Am B Opt Physics 17, p.78–83 (2000)ADSCrossRefGoogle Scholar
  132. [4.132] {Sect. 4.4.4}
    M.H. Dunn, M. Ebrahimzadeh: Parametric generation of tunable light from continuous-wave to femtosecond pulses, Science 286, p. 1513–1517 (1999)CrossRefGoogle Scholar
  133. [4.133] {Sect. 4.4.4}
    Y. R. Shen: Principles of Nonlinear Optics, chapter 9 (John Wiley & Sons, Chichester, 1984)Google Scholar
  134. [4.134] {Sect. 4.4.4}
    J.M. Manley, H.E. Rowe: General energy relations in nonlinear reactances, Proc. IRE 47 p.2115–2116 (1959)Google Scholar
  135. [4.135] {Sect. 4.4.4}
    S. Guha: Focusing dependence of the efficiency of a singly resonant optical parametric oscillator, Appl. Phys. B 66, p.663–675 (1998)ADSCrossRefGoogle Scholar
  136. [4.136] {Sect. 4.4.4}
    P.E. Britton, H.L. Offerhaus, D.J. Richardson, P.G.R. Smith, G.W. Ross, D.C. Hanna: Parametric oscillator directly pumped by a 1.55-mu m erbium-fiber laser, Optics Letters 24, p.975–977 (1999)ADSCrossRefGoogle Scholar
  137. [4.137] {Sect. 4.4.4}
    S.A. Diddams, L.S. Ma, J. Ye, J.L. Hall: Broadband optical frequency comb generation with a phase-modulated parametric oscillator, Optics Letters 24, p.1747–1749 (1999)ADSCrossRefGoogle Scholar
  138. [4.138] {Sect. 4.4.4}
    A. Gatti, E. Brambilla, L.A. Lugiato, M.I. Kolobov: Quantum entangled images, Phys Rev Lett 83, p.1763–1766 (1999)ADSCrossRefGoogle Scholar
  139. [4.139] {Sect. 4.4.4}
    V. Petrov, F. Rotermund, F. Noack, P. Schunemann: Femtosecond parametric generation in ZnGeP2, Optics Letters 24, p.414–416 (1999)ADSCrossRefGoogle Scholar
  140. [4.140] {Sect. 4.4.4}
    F. Rotermund, V. Petrov, F. Noach, V. Pasiskevicius, J. Hell-strom, F. Laurell: Efficient femtosecond traveling-wave optical parametric amplification in periodically poled KTiOPO4, Optics Letters 24, p. 1874–1876 (1999)ADSCrossRefGoogle Scholar
  141. [4.141] {Sect. 4.4.4}
    F. Rotermund, V. Petrov, F. Noack, M. Wittmann, G. Korn: Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO : LiNbO3 and generation of 5-cycle pulses near 3 mu m, J Opt Soc Am B Opt Physics 16, p.1539–1545 (1999)ADSCrossRefGoogle Scholar
  142. [4.142] {Sect. 4.4.4}
    T.W. Tukker, C. Otto, J. Greve: Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator, J Opt Soc Am B Opt Physics 16, p.90–95 (1999)ADSCrossRefGoogle Scholar
  143. [4.143] {Sect. 4.4.4}
    R. Urschel, U. Bader, A. Borsutzky, R. Wallenstein: Spectral properties and conversion efficiency of 355-nm-pumped pulsed optical parametric oscillators of beta-barium borate with noncollinear phase matching, J Opt Soc Am B Opt Physics 16, p.565–579 (1999)ADSCrossRefGoogle Scholar
  144. [4.144] {Sect. 4.4.4}
    M. Vaupel, A. Maitre, C. Fabre: Observation of pattern formation in optical parametric oscillators, Phys Rev Lett 83, p.5278–5281 (1999)ADSCrossRefGoogle Scholar
  145. [4.145] {Sect. 4.4.4}
    Y. Yashkir, H.M. vanDriel: Passively Q-switched 1.57-mu m intracavity optical parametric oscillator, Appl Opt 38, p.2554–2559 (1999)ADSCrossRefGoogle Scholar
  146. [4.146] {Sect. 4.4.4}
    M. Bode, P.K. Lam, I. Freitag, A. Tunnermann, H.A. Bachor, H. Welling: Continuously-tunable doubly resonant optical parametric oscillator, Opt Commun 148, p.117–121 (1998)ADSCrossRefGoogle Scholar
  147. [4.147] {Sect. 4.4.4}
    L. Carrion, J.P. GirardeauMontaut: Performance of a new picosecond KTP optical parametric generator and amplifier, Opt Commun 152, p.347–350 (1998)ADSCrossRefGoogle Scholar
  148. [4.148] {Sect. 4.4.4}
    I.D. Lindsay, G.A. Turnbull, M.H. Dunn, M. Ebrahimzadeh: Doubly resonant continuous-wave optical parametric oscillator pumped by a single-mode diode laser, Optics Letters 23, p.1889–1891 (1998)ADSCrossRefGoogle Scholar
  149. [4.149] {Sect. 4.4.4}
    M. Scheidt, M.E. Klein, K.J. Boller: Spiking in pump enhanced idler resonant optical parametric oscillators, Opt Commun 149, p.108–112 (1998)ADSCrossRefGoogle Scholar
  150. [4.150] {Sect. 4.4.4}
    J.Y. Zhang, Z.Y. Xu, Y.F. Kong, C.W. Yu, Y.C. Wu: Highly efficient, widely tunable, 10-Hz parametric amplifier pumped by frequency-doubled femtosecond Ti:sapphire laser pulses, Appl Opt 37, p.3299–3305 (1998)ADSCrossRefGoogle Scholar
  151. [4.151] {Sect. 4.4.4}
    R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, S. Schiller: Long-term stable operation and absolute frequency stabilization of a doubly resonant parametric oscillator, Appl. Phys. B 66, p.733–739 (1998)ADSCrossRefGoogle Scholar
  152. [4.152] {Sect. 4.4.4}
    T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, S. Ohshima: Characteristics of a cw monolithic KTiOPO4 optical parametric oscillator, Appl. Phys. B 66, p.719–725 (1998)Google Scholar
  153. [4.153] {Sect. 4.4.4}
    M.E. Klein, M. Scheidt, K.-J. Boller, R. Wallenstein: Dye laser pumped, continuous-wave KTP optical parametric oscillators, Appl Phys. B 66, p.727–732 (1998)ADSCrossRefGoogle Scholar
  154. [4.154] {Sect. 4.4.4}
    D.-H. Lee, M.E. Klein, K.-J. Boller: Intensity noise of pump-enhanced continuous-wave optical parametric oscillators, Appl. Phys. B 66, p.747–753 (1998)ADSCrossRefGoogle Scholar
  155. [4.155] {Sect. 4.4.4}
    J.L. Sorensen, E.S. Polzik: Internally pumped subthreshold OPO, Appl. Phys. B 66, p.711–718 (1998)ADSCrossRefGoogle Scholar
  156. [4.156] {Sect. 4.4.4}
    J. Izawa, K. Midorikawa, M. Obara, K. Toyoda: Picosecond ultraviolet optical parametric generation using a type-II phase-matched lithium triborate crystal for an injection seed of VUV lasers, IEEE J QE-33, p.1997–2001 (1997)CrossRefGoogle Scholar
  157. [4.157] {Sect. 4.4.4}
    P. Rambaldi, M. Douard, B. Vezin, J.P. Wolf, D. Rytz: Broadly tunable KNbO3 OPOs pumped by Tisapphire lasers, Opt Commun 142, p.262–264 (1997)ADSCrossRefGoogle Scholar
  158. [4.158] {Sect. 4.4.4}
    M. Scheidt, B. Beier, K.J. Boller, R. Wallenstein: Frequency-stable operation of a diode-pumped continuous- wave RbTiOAsO4 optical parametric oscillator, Optics Letters 22, p.1287–1289 (1997)ADSCrossRefGoogle Scholar
  159. [4.159] {Sect. 4.4.4}
    K.L. Vodopyanov, V. Chazapis: Extra-wide tuning range optical parametric generator, Opt Commun 135, p.98–102 (1997)ADSCrossRefGoogle Scholar
  160. [4.160] {Sect. 4.4.4}
    T. Wang, M.H. Dunn, C.F. Rae: Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth, Optics Letters 22, p.763–765 (1997)ADSCrossRefGoogle Scholar
  161. [4.161] {Sect. 4.4.4}
    S. Wu, G.A. Blake, Z.Y. Sun, J.W. Ling: Simple, high-performance type II beta-BaB2O4 optical parametric oscillator, Appl Opt 36, p.5898–5901 (1997)ADSCrossRefGoogle Scholar
  162. [4.162] {Sect. 4.4.4}
    A.R. Geiger, H. Hemmati, W.H. Farr, N.S. Prasad: Diode pumped optical parametric oscillator, Optics Letters 21, p.201–203 (1996)ADSCrossRefGoogle Scholar
  163. [4.163] {Sect. 4.4.4}
    T.H. Jeys: Multipass optical parametric amplifier, Optics Letters 21, p.1229–1231 (1996)ADSCrossRefGoogle Scholar
  164. [4.164] {Sect. 4.4.4}
    S.A. Reid, Y. Tang: Generation of tunable, narrow-band mid-infrared radiation through a 532-nm-pumped KTP optical parametric amplifier, Appl Opt 35, p. 1473–1477 (1996)ADSCrossRefGoogle Scholar
  165. [4.165] {Sect. 4.4.4}
    M. Sueptitz, R.A. Kaindl, S. Lutgen, M. Woerner, E. Riedle: 1 kHz solid state laser system for the generation of 50 fs pulses tunable in the visible, Opt Commun 131, p.195–202 (1996)ADSCrossRefGoogle Scholar
  166. [4.166] {Sect. 4.4.4}
    J.M. Boonengering, L.A.W. Gloster, W.E. Vanderveer, I.T. McKinnie, T.A. King, W. Hogervorst: Highly efficient single longitudinal mode beta-BaB2O4 optical parametric oscillator with a new cavity design, Optics Letters 20, p.2087–2089 (1995)ADSCrossRefGoogle Scholar
  167. [4.167] {Sect. 4.4.4}
    J. Hebling, E.J. Mayer, J. Kuhl, R. Szipocs: Chirped mirror dispersion compensated femtosecond optical parametric oscillator, Optics Letters 20, p.919–921 (1995)ADSCrossRefGoogle Scholar
  168. [4.168] {Sect. 4.4.4}
    C. Rauscher, T. Roth, R. Laenen, A. Laubereau: Tunable femtosecond-pulse generation by an optical parametric oscillator in the saturation regime, Optics Letters 20, p.2003–2005 (1995)ADSCrossRefGoogle Scholar
  169. [4.169] {Sect. 4.4.4}
    M.J. Rosker, C.L. Tang: Widely tunable optical parametric oscillator using urea, J. Opt. Soc. Am. B 2, p.691–696 (1985)ADSCrossRefGoogle Scholar
  170. [4.170] {Sect. 4.4.4}
    A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser: Narrow-Band Tunable Infrared Pulses with Sub-Picosecond Time Resolution, Opt. Comm. 24, p.237–242 (1978)ADSCrossRefGoogle Scholar
  171. [4.171] {Sect. 4.4.4}
    A.H. Kung: Generation of tunable picosecond VUV radiation, Appl. Phys. Lett. 25, p.653–654 (1974)Google Scholar
  172. [4.172] {Sect. 4.4.4}
    T.A. Rabson, H.J. Ruiz, P.L. Shah, F.K. Tittel: Stimulated parametric fluorscence induced by picosecond pump pulses, Appl. Phys.Lett. 21, p.129–131 (1972)ADSCrossRefGoogle Scholar
  173. [4.173] {Sect. 4.4.4}
    K.H. Yang, P.L. Richards, Y.R. Shen: Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3, Appl. Phys. Lett. 19, p.320–323 (1971)ADSCrossRefGoogle Scholar
  174. [4.174] {Sect. 4.4.4}
    J. Falk, J.E. Murray: Single-Cavity Noncollinear Optical Parametric Oscillation, Appl. Phys. Lett. 14, p.245–247 (1969)ADSCrossRefGoogle Scholar
  175. [4.175] {Sect. 4.4.4}
    L.B. Kreuzer: Single Mode Oscillation of a Pulsed Singly Resonant Optical Parametric Oscillator, Appl. Phys. Lett. 15, p.263–265 (1969)ADSCrossRefGoogle Scholar
  176. [4.176] {Sect. 4.4.4}
    J.E. Bjorkholm: Some Spectral Properties of Doubly and Singly Resonant Pulsed Optical Parametric Oscillators, Appl. Phys. Lett. 13, p.399–401 (1968)Google Scholar
  177. [4.177] {Sect. 4.4.4}
    J.E. Bjorkholm: Efficient Optical Parametric Oscillation Using Doubly and Singly Resonant Cavities, Appl. Phys. Lett. 13, p.53–56 (1968)ADSCrossRefGoogle Scholar
  178. [4.178] {Sect. 4.4.4}
    R.L. Byer, S.E. Harris: Power and Bandwidth of Spontaneous Parametric Emission, Phys. Rev. 168, p.1064–1068 (1968)ADSCrossRefGoogle Scholar
  179. [4.179] {Sect. 4.4.4}
    T.G. Giallorenzi, C.L. Tang: Quantum Theory of Spontaneous Parametric Scattering of Intense Light, Phys. Rev. 166, p.225–233 (1968)ADSCrossRefGoogle Scholar
  180. [4.180] {Sect. 4.4.4}
    J.G. Edwards: Some Factors Affecting the Pumping Efficiency of Optically Pumped Lasers, Appl. Opt. 6, p.837–843 (1967)ADSCrossRefGoogle Scholar
  181. [4.181] {Sect. 4.4.4}
    S.E. Harris, M.K. Oshman, R.L. Byer: Observation of Tunable Optical Parametric Fluorescence, Phys. Rev. Lett. 18, p.732–734 (1967)ADSCrossRefGoogle Scholar
  182. [4.182] {Sect. 4.4.4}
    S.E. Harris: Proposed Backward Wave Oscillation in the Infrared, Appl. Phys. Lett. 9, p.114–116 (1966)Google Scholar
  183. [4.183] {Sect. 4.4.4}
    J. Hellstrom, V. Pasiskevicius, H. Karlsson, F. Laurell: High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4, Optics Letters 25, p. 174–176 (2000)ADSCrossRefGoogle Scholar
  184. [4.184] {Sect. 4.4.4}
    M. Missey, V. Dominic, P. Powers, K.L. Schepler: Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators, Optics Letters 25, p.248–250 (2000)ADSCrossRefGoogle Scholar
  185. [4.185] {Sect. 4.4.4}
    G.M. Gibson, M. Ebrahimzadeh, M.J. Padgett, M.H. Dunn: Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy, Optics Letters 24, p.397–399 (1999)ADSCrossRefGoogle Scholar
  186. [4.186] {Sect. 4.4.4}
    J. Hellstrom, V. Pasiskevicius, F. Laurell, H. Karlsson: Efficient nanosecond optical parametric oscillators based on periodically poled KTP emitting in the 1.8–2.5-mu m spectral region, Optics Letters 24, p. 1233–1235 (1999)ADSCrossRefGoogle Scholar
  187. [4.187] {Sect. 4.4.4}
    N. OBrien, M. Missey, P. Powers, V. Dominic, K.L. Schepler: Electro-optic spectral tuning in a continuous-wave, asymmetric-duty- cycle, periodically poled LiNbO3 optical parametric oscillator, Optics Letters 24, p.1750–1752 (1999)ADSCrossRefGoogle Scholar
  188. [4.188] {Sect. 4.4.4}
    U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, R. Wallenstein: Optical parametric oscillator of quasi-phasematched LiNbO3 pumped by a compact high repetition rate single-frequency passively Q-switched Nd:YAG laser, Opt Commun 147, p.95–98 (1998)ADSCrossRefGoogle Scholar
  189. [4.189] {Sect. 4.4.4}
    P.E. Britton, D. Taverner, K. Puech, D.J. Richardson, P.G.R. Smith, G.W. Ross, D.C. Hanna: Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser, Optics Letters 23, p.582–584 (1998)ADSCrossRefGoogle Scholar
  190. [4.190] {Sect. 4.4.4}
    A. Garashi, A. Arie, A. Skliar, G. Rosenman: Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4, Optics Letters 23, p. 1739–1741 (1998)ADSCrossRefGoogle Scholar
  191. [4.191] {Sect. 4.4.4}
    L. Lefort, K. Puech, S.D. Butterworth, G.W. Ross, P.G.R. Smith, D.C. Hanna, D.H. Jundt: Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 mu m to 5.3 mu m range, Opt Commun 152, p.55–58 (1998)ADSCrossRefGoogle Scholar
  192. [4.192] {Sect. 4.4.4}
    P.E. Powers, K.W. Aniolek, T.J. Kulp, B.A. Richman, S.E. Bisson: Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator, Optics Letters 23, p.1886–1888 (1998)ADSCrossRefGoogle Scholar
  193. [4.193] {Sect. 4.4.4}
    D.J.M. Stothard, M. Ebrahimzadeh, M.H. Dunn: Low-pump-threshold continuous-wave singly resonant optical parametric oscillator, Optics Letters 23, p.1895–1897 (1998)ADSCrossRefGoogle Scholar
  194. [4.194] {Sect. 4.4.4}
    M. Tsunekane, S. Kimura, M. Kimura, N. Taguchi, H. Inaba: Continuous-wave, broadband tuning from 788 to 1640 nm by a doubly resonant, MgO:LiNbO3 optical parametric oscillator, Appl Phys Lett 72, p.3414–3416 (1998)ADSCrossRefGoogle Scholar
  195. [4.195] {Sect. 4.4.4}
    S.D. Butterworth, P.G.R. Smith, D.C. Hanna: Picosecond Tisapphire-pumped optical parametric oscillator based on periodically poled LiNbO3, Optics Letters 22, p.618–620 (1997)ADSCrossRefGoogle Scholar
  196. [4.196] {Sect. 4.4.4}
    D.T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, F. Laurell: Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4, Optics Letters 22, p.1397–1399 (1997)ADSCrossRefGoogle Scholar
  197. [4.197] {Sect. 4.4.4}
    S. Slyusarev, T. Ikegami, S. Ohshima: Phase-coherent optical frequency division by 3 of 532-nm laser light with a continuous-wave optical parametric oscillator, Optics Letters 24, p. 1856–1858 (1999)ADSCrossRefGoogle Scholar
  198. [4.198] {Sect. 4.4.5}
    A. Yariv: Optical Electronics (Holt, Rinehart, Winstin, Holt-Saunders, Japan, 1985)Google Scholar
  199. [4.199] {Sect. 4.4.5}
    B.H. Hoerman, B.M. Nichols, M.J. Nystrom, B.W. Wessels: Dynamic response of the electro-optic effect in epitaxial KNbO3, Appl Phys Lett 75, p.2707–2709 (1999)ADSCrossRefGoogle Scholar
  200. [4.200] {Sect. 4.4.7}
    C. Bosshard, I. Biaggio, StFischer, S. Follonier, P. Gunter: Cascaded contributions to degenerate four-wave mixing in an acentric organic crystal, Optics Letters 24, p.196–198 (1999)ADSCrossRefGoogle Scholar
  201. [4.201] {Sect. 4.4.7}
    A.V. Bragas, S.M. Landi, O.E. Martinez: Laser field enhancement at the scanning tunneling microscope junction measured by optical rectification, Appl Phys Lett 72, p.2075–2077 (1998)ADSCrossRefGoogle Scholar
  202. [4.202] {Sect. 4.4.7}
    S. Tomic, V. Milanovic, Z. Ikonic: Optimization of nonlinear optical rectification in quantum wells using the supersymmetric quantum mechanics, Opt Commun 143, p.214–218 (1997)ADSCrossRefGoogle Scholar
  203. [4.203] {Sect. 4.4.7}
    A. Nahata, A.S. Weling, T.F. Heinz: A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling, Appl Phys Lett 69, p.2321–2323 (1996)ADSCrossRefGoogle Scholar
  204. [4.204] {Sect. 4.4.7}
    D.H. Auston: Nonlinear Spectroscopy of Picosecond Pulses, Opt. Comm. 3, p.272–276 (1971)ADSCrossRefGoogle Scholar
  205. [4.205] {Sect. 4.4.7}
    J.F. Holzrichter, R.M. Macfarlane, A. L. Schawlow: Magnetization Induced by Optical Pumping in Antiferromagnetic MnF2, Phys. Rev. Lett. 26, p.652–655 (1971)ADSCrossRefGoogle Scholar
  206. [4.206] {Sect. 4.4.7}
    P.S. Pershan, J.P. van der Ziel, L.D. Malmstrom: Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena, Phys. Rev. 143, p.574–583 (1966)ADSCrossRefGoogle Scholar
  207. [4.207] {Sect. 4.4.7}
    J.F. Ward: Absolute Measurement of an Optical-Rectification Coefficient in Ammonium Dihydrogen Phosphate, Phys. Rev. 143, p.569–574 (1966)ADSCrossRefGoogle Scholar
  208. [4.208] {Sect. 4.4.7}
    J.P. van der Ziel, P.S. Pershan, L.D. Malmstrom: Optically-Induced Magnetization Resulting from the Inverse Faraday Effect, Phys. Rev. Lett. 15, p.190–193 (1965)ADSCrossRefGoogle Scholar
  209. [4.209] {Sect. 4.4.7}
    M. Bass, P. A. Franken, J. F. Ward, G. Weinreich: Optical Rectification, Phys. Rev. Lett. 9, p.446–448 (1962)ADSCrossRefGoogle Scholar
  210. [4.210] {Sect. 4.5.1}
    P.S. Banks, M.D. Feit, M.D. Perry: High-intensity third-harmonic generation in beta barium borate through second-order and third-order susceptibilities, Optics Letters 24, p.4–6 (1999)ADSCrossRefGoogle Scholar
  211. [4.211] {Sect. 4.5.1}
    D. Yelin, Y. Silberberg, Y. Barad, J.S. Patel: Phase-matched third-harmonic generation in a nematic liquid crystal cell, Phys Rev Lett 82, p.3046–3049 (1999)ADSCrossRefGoogle Scholar
  212. [4.212] {Sect. 4.5.1}
    D. Eimerl, J.M. Auerbach, C.E. Barker, D. Milam, P.W. Milonni: Multicrystal designs for efficient third-harmonic generation, Optics Letters 22, p.1208–1210 (1997)ADSCrossRefGoogle Scholar
  213. [4.213] {Sect. 4.5.1}
    O. Pfister, J.S. Wells, L. Hollberg, L. Zink, D.A. Vanbaak, M.D. Levenson, W.R. Bosenberg: Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-mu m frequency bridge, Optics Letters 22, p.1211–1213 (1997)ADSCrossRefGoogle Scholar
  214. [4.214] {Sect. 4.5.1}
    S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M.M. Murnane, H.C. Kapteyn: 16-fs, 1-mu J ultraviolet pulses generated by third-harmonic conversion in air, Optics Letters 21, p.665–667 (1996)ADSCrossRefGoogle Scholar
  215. [4.215] {Sect. 4.5.1}
    T.Y.F. Tsang: Surface-plasmon-enhanced third-harmonic generation in thin silver films, Optics Letters 21, p.245–247 (1996)ADSCrossRefGoogle Scholar
  216. [4.216] {Sect. 4.5.1}
    T.J. Zhang, Y. Kato, H. Daido: Efficient third-harmonic generation of a picosecond laser pulse with time delay, IEEE J QE-32, p. 127–136 (1996)CrossRefGoogle Scholar
  217. [4.217] {Sect. 4.5.1}
    G. Hilber, A. Lago, R. Wallenstein: Broadly tunable VUV/ XUV-radiation generated by resonant third-order frequency conversion in Kr, J. Opt. Soc. Am. B 4, p.1753–1764 (1987)ADSCrossRefGoogle Scholar
  218. [4.218] {Sect. 4.5.1}
    J. Bokor, P.H. Bucksbaum, R.R. Freeman: Generation of 35.5-nm coherent radiation, Opt. Lett. 8, p.217–219 (1983)ADSCrossRefGoogle Scholar
  219. [4.219] {Sect. 4.5.1}
    H.B. Puell, C.R. Vidal: Optimum Conditions for Nonresonant Third Harmonic Generation, IEEE J. QE-14, p.364–373 (1978)CrossRefGoogle Scholar
  220. [4.220] {Sect. 4.5.1}
    C.M. Bloom, G.W. Bekkers, J.F. Young, S.E. Harris: Third harmonic generation in phase-matched alkali metal vapors, Appl. Phys. Lett. 26, p.687–689 (1975)ADSCrossRefGoogle Scholar
  221. [4.221] {Sect. 4.5.1}
    C.M. Bloom, J.F. Young, S.E. Harris: Mixed metal vapor phase matching for third-harmonic generation, Appl. Phys. Lett. 27, p.390–392 (1975)ADSCrossRefGoogle Scholar
  222. [4.222] {Sect. 4.5.1}
    R.B. Miles, S.E. Harris: Optical Third-Harmonic Generation in Alkali Metal Vapors, IEEE J. QE-9, p.470–484 (1973)CrossRefGoogle Scholar
  223. [4.223] {Sect. 4.5.1}
    A.H. Kung, J.F. Young, G.C. Bjorklund, S.E. Harris: Generation of Vacuum Ultraviolet Radiation in Phase-Matched Cd Vapor, Phys. Rev. Lett. 29, p.985–988 (1972)ADSCrossRefGoogle Scholar
  224. [4.224] {Sect. 4.5.1}
    S.E. Harris, R.B. Miles: Proposed Third-Harmonic Generation in Phase-Matched Metal Vapors, Appl. Phys. Lett. 19, p.385–387 (1971)ADSCrossRefGoogle Scholar
  225. [4.225] {Sect. 4.5.1}
    J.F. Young, G.C Bjorklund, A.H. Kung, R.B. Miles, S.E. Harris: Third-Harmonic Generation in Phase-Matched Rb Vapor, Phys. Rev. Lett. 27, p.1551–1553 (1971)ADSCrossRefGoogle Scholar
  226. [4.226] {Sect. 4.5.2}
    G. Lenz, J. Zimmermann, T. Katsufuji, M.E. Lines, H.Y. Hwang, S. Spalter, R.E. Slusher, S.W. Cheong, J.S. Sanghera, I.D. Aggarwal: Large Kerr effect in bulk Se-based chalcogenide glasses, Optics Letters 25, p.254–256 (2000)ADSCrossRefGoogle Scholar
  227. [4.227] {Sect. 4.5.2}
    J.H. Cai, W. Yang, T.J. Zhou, G. Gu, Y.W. Du: Magneto-optical Kerr effect and optical properties of amorphous Col-xSix (0.59 ⇐ × ⇐ 0.77) alloy films, Appl Phys Lett 74, p.85–87 (1999)ADSCrossRefGoogle Scholar
  228. [4.228] {Sect. 4.5.2}
    M. Neelakandan, D. Pant, E.L. Quitevis: Reorientational and intermolecular dynamics in binary liquid mixtures of hexafluorobenzene and benzene: Femtosecond optical Kerr effect measurements, Chem Phys Lett 265, p.283–292 (1997)ADSCrossRefGoogle Scholar
  229. [4.229] {Sect. 4.5.2}
    B.I. Greene, R.C Farrow: The subpicosecond Kerr effect in CS2, Chem. Phys. Lett. 98, p.273–276 (1983)ADSCrossRefGoogle Scholar
  230. [4.230] {Sect. 4.5.2}
    J. M. Dziedzic, R. H. Stolen, A. Ashkin: Optical Kerr effect in long fibers, Appl. Opt. 20, p.1403–1406 (1981)ADSCrossRefGoogle Scholar
  231. [4.231] {Sect. 4.5.2}
    D. Waldeck, A.J. Cross, Jr, D.B. McDonald, G.R. Fleming: Picosecond pulse induced transient molecular birefringence and dichroism, J. Chem. Phys. 74, p.3381–3387 (1981)ADSCrossRefGoogle Scholar
  232. [4.232] {Sect. 4.5.2}
    S.C. Cerda, J.M. Hickmann: Spatial instabilities in the propagation of a cylindrical beam in a Kerr medium, Opt Commun 156, p.347–349 (1998)ADSCrossRefGoogle Scholar
  233. [4.233] {Sect. 4.5.2}
    G. Jonusauskas, J. Oberle, E. Abraham, C. Rulliere: “Fast” amplifying optical Kerr gate using stimulated emission of organic non-linear dyes, Opt Commun 137, p.199–206 (1997)ADSCrossRefGoogle Scholar
  234. [4.234] {Sect. 4.5.2}
    J.-M. Halbout, C.L. Tang: Femtosecond interferometry for nonlinear optics, Appl. Phys. Lett. 40, p.765–767 (1982)ADSCrossRefGoogle Scholar
  235. [4.235] {Sect. 4.5.2}
    E.P. Ippen, C.V. Shank: Picosecond response of a high-repetition-rate CS2 optical Kerr gate, Appl. Phys. Lett. 26, p.92–93 (1975)ADSCrossRefGoogle Scholar
  236. [4.236] {Sect. 4.5.2}
    F. Parvaneh, M. Farhadiroushan, V.A. Handerek, A.J. Rogers: Single-shot distributed optical-fiber temperature sensing by the frequency-derived technique, Optics Letters 22, p.343–345 (1997)ADSCrossRefGoogle Scholar
  237. [4.237] {Sect. 4.5.2}
    D. McMorrow, W.T. Lotshaw, G.A. Kenney-Wallace: Femtosecond Raman-induced Kerr effect. Temporal evolution of the vibrational normal modes in hologenated methanes, Chem. Phys. Lett. 145, p.309–314 (1988)ADSCrossRefGoogle Scholar
  238. [4.238] {Sect. 4.5.3}
    Y. R. Shen: Principles of Nonlinear Optics, chapter 17 (John Wiley & Sons, Chichester, 1984)Google Scholar
  239. [4.239] {Sect. 4.5.3}
    G. Fibich, A.L. Gaeta: Critical power for self-focusing in bulk media and in hollow waveguides, Optics Letters 25, p.335–337 (2000)ADSCrossRefGoogle Scholar
  240. [4.240] {Sect. 4.5.3}
    K. Takahashi, R. Kodama, K.A. Tanaka, H. Hashimoto, Y. Kato, K. Mima, F.A. Weber, T.W. Barbee, L.B. DaSilva: Laser-hole boring into overdense plasmas measured with soft x-ray laser probing, Phys Rev Lett 84, p.2405–2408 (2000)ADSCrossRefGoogle Scholar
  241. [4.241] {Sect. 4.5.3}
    O. Buttner, M. Bauer, S.O. Demokritov, B. Hillebrands, M.P. Kostylev, B.A. Kalinikos, A.N. Slavin: Collisions of spin wave envelope soli-tons and self-focused spin wave packets in yttrium iron garnet films, Phys Rev Lett 82, p.4320–4323 (1999)ADSCrossRefGoogle Scholar
  242. [4.242] {Sect. 4.5.3}
    J. Tsai, A. Chiou, T.C. Hsieh, K. Hsu: One-dimensional self-focusing in photorefractive Bil2SiO20 crystal: theoretical modeling and experimental demonstration, Opt Commun 162, p.237–240 (1999)ADSCrossRefGoogle Scholar
  243. [4.243] {Sect. 4.5.3}
    M. Bauer, O. Buttner, S.O. Demokritov, B. Hillebrands, V. Grimalsky, Y. Rapoport, A.N. Slavin: Observation of spatiotemporal self-focusing of spin waves in magnetic films, Phys Rev Lett 81, p.3769–3772 (1998)ADSCrossRefGoogle Scholar
  244. [4.244] {Sect. 4.5.3}
    Y.C. Chen, W.Z. Lin: Thick lens model for self-focusing in Kerr medium, Appl Phys Lett 73, p.429–431 (1998)ADSCrossRefGoogle Scholar
  245. [4.245] {Sect. 4.5.3}
    B. Crosignani, E. DelRe, P. Diporto, A. Degasperis: Self-focusing and self-trapping in unbiased centrosymmetric photorefractive media, Optics Letters 23, p.912–914 (1998)ADSCrossRefGoogle Scholar
  246. [4.246] {Sect. 4.5.3}
    J.K. Ranka, A.L. Gaeta: Breakdown of the slowly varying envelope approximation in the self- focusing of ultrashort pulses, Optics Letters 23, p.534–536 (1998)ADSCrossRefGoogle Scholar
  247. [4.247] {Sect. 4.5.3}
    G. Tempea, T. Brabec: Theory of self-focusing in a hollow waveguide, Optics Letters 23, p.762–764 (1998)ADSCrossRefGoogle Scholar
  248. [4.248] {Sect. 4.5.3}
    C.C. Widmayer, L.R. Jones, D. Milam: Measurement of the nonlinear coefficient of carbon disulfide using holographic self-focusing, J Nonlinear Opt Physics Mat 7, p.563–570 (1998)ADSCrossRefGoogle Scholar
  249. [4.249] {Sect. 4.5.3}
    F. Castaldo, D. Paparo, E. Santamato: Chaotic and hexagonal spontaneous pattern formation in the cross section of a laser beam in a defocusing Kerr-like film with single feedback mirror, Opt Commun 143, p.57–61 (1997)ADSCrossRefGoogle Scholar
  250. [4.250] {Sect. 4.5.3}
    E. Esarey, P. Sprangle, J. Krall, A. Ting: Self-focusing and guiding of short laser pulses in ionizing gases and plasmas, IEEE J QE-33, p.1879–1914 (1997)CrossRefGoogle Scholar
  251. [4.251] {Sect. 4.5.3}
    G. Fibich, G.C. Papanicolaou: Self-focusing in the presence of small time dispersion and nonparaxiality, Optics Letters 22, p.1379–1381 (1997)ADSCrossRefGoogle Scholar
  252. [4.252] {Sect. 4.5.3}
    G.S. He, M. Yoshida, J.D. Bhawalkar, P.N. Prasad: Two-photon resonance-enhanced refractive-index change and self-focusing in a dye-solution-filled hollow fiber system, Appl Opt 36, p. 1155–1163 (1997)ADSCrossRefGoogle Scholar
  253. [4.253] {Sect. 4.5.3}
    M. Vaupel, C. Seror, R. Dykstra: Self-focusing in photorefractive two-wave mixing, Optics Letters 22, p. 1470–1472 (1997)ADSCrossRefGoogle Scholar
  254. [4.254] {Sect. 4.5.3}
    A. Drobnik, L. Wolf: Influence of self-focusing on the operation of a neodymium glass laser, Sov. J. Quant. Electron. 8, p.274–275 (1978)ADSCrossRefGoogle Scholar
  255. [4.255] {Sect. 4.5.3}
    C.R. Giuliano, J.H. Marburger: Observations of Moving Self-Foci in Sapphire, Phys. Rev. Lett. 27, p.905–908 (1971)ADSCrossRefGoogle Scholar
  256. [4.256] {Sect. 4.5.3}
    M.M.T. Loy, Y.R. Shen: Correlation between Backward Stimulated Raman Pulse and Moving Focus in Liquids, Phys. Rev. Lett. 19, p.285–287 (1971)Google Scholar
  257. [4.257] {Sect. 4.5.3}
    E.L. Dawes, J.H. Marburger: Computer Studies in Self-Focusing, Phys. Rev. 179, p.862–868 (1969)CrossRefGoogle Scholar
  258. [4.258] {Sect. 4.5.3}
    R.G. Brewer, C.H. Lee: Self-trapping with picosecond light pulses, Phys. Rev. Lett. 21, p.267–270 (1968)ADSCrossRefGoogle Scholar
  259. [4.259] {Sect. 4.5.3}
    J.H. Marburger, E.L. Dawes: Dynamical Formation of a Small-Scale Filament, Phys. Rev. Lett. 21, p.556–558 (1968)ADSCrossRefGoogle Scholar
  260. [4.260] {Sect. 4.5.3}
    E. Garmire, R.Y. Chiao, C.H. Townes: Dynamics and Characteristics of the Self-Trapping of Intense Light Beams, Phys. Rev. Lett. 16, p.347–349 (1966)ADSCrossRefGoogle Scholar
  261. [4.261] {Sect. 4.5.3}
    M. Hercher: Laser-Induced Damage in Transparent Media, J. Opt. Soc. Am. 54, p.563 (1964)Google Scholar
  262. [4.262] {Sect. 4.5.3}
    A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Kosareva, V.P. Kandidov: Moving focus in the propagation of ultrashort laser pulses in air, Optics Letters 22, p.304–306 (1997)ADSCrossRefGoogle Scholar
  263. [4.263] {Sect. 4.5.3}
    M. Mlejnek, M. Kolesik, J.V. Moloney, E.M. Wright: Optically turbulent femtosecond light guide in air, Phys Rev Lett 83, p.2938–2941 (1999)ADSCrossRefGoogle Scholar
  264. [4.264] {Sect. 4.5.3}
    M. Jain, A.J. Merriam, A. Kasapi, G.Y. Yin, S.E. Harris: Elimination of optical self-focusing by population trapping, Phys Rev Lett 75, p.4385–4388 (1995)ADSCrossRefGoogle Scholar
  265. [4.265] {Sect. 4.5.4}
    N. Akhmediev, A. Ankiewicz: Solitons; Non-linear pulses and beams (Chapman & Hall, New York, 1997)Google Scholar
  266. [4.266] {Sect. 4.5.4}
    J. R. Taylor: Optical Solitons (Cambridge University Press, Cambridge, 1992)CrossRefGoogle Scholar
  267. [4.267] {Sect. 4.5.4}
    B. E. A. Saleh, M. C. Teich: Fundamentals of Photonics, chapter 19 (John Wiley & Sons, New York, 1991)CrossRefGoogle Scholar
  268. [4.268] {Sect. 4.5.4}
    T.H. Coskun, D.N. Christodoulides, Y.R. Kim, Z.G. Chen, M. Soljacic, M. Segev: Bright spatial solitons on a partially incoherent background, Phys Rev Lett 84, p.2374–2377 (2000)ADSCrossRefGoogle Scholar
  269. [4.269] {Sect. 4.5.4}
    Y.S. Kivshar, A. Nepomnyashchy, V. Tikhonenko, J. Christou, B. LutherDavies: Vortex-stripe soliton interactions, Optics Letters 25, p. 123–125 (2000)ADSCrossRefGoogle Scholar
  270. [4.270] {Sect. 4.5.4}
    A.V. Buryak, V.V. Steblina, R.A. Sammut: Solitons and collapse suppression due to parametric interaction in bulk Kerr media, Optics Letters 24, p.1859–1861 (1999)ADSCrossRefGoogle Scholar
  271. [4.271] {Sect. 4.5.4}
    Y.S. Kivshar, T.J. Alexander, S. Saltiel: Spatial optical solitons resulting from multistep cascading, Optics Letters 24, p.759–761 (1999)ADSCrossRefGoogle Scholar
  272. [4.272] {Sect. 4.5.4}
    X. Liu, L.J. Qian, F.W. Wise: Generation of optical spatiotemporal solitons, Phys Rev Lett 82, p.4631–4634 (1999)ADSCrossRefGoogle Scholar
  273. [4.273] {Sect. 4.5.4}
    D. Mihalache, D. Mazilu, J. Dorring, L. Torner: Elliptical light bullets, Opt Commun 159, p.129–138 (1999)ADSCrossRefGoogle Scholar
  274. [4.274] {Sect. 4.5.4}
    R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg: Dynamics of discrete solitons in optical waveguide arrays, Phys Rev Lett 83, p.2726–2729 (1999)ADSCrossRefGoogle Scholar
  275. [4.275] {Sect. 4.5.4}
    J. Scheuer, M. Orenstein: Interactions and switching of spatial soliton pairs in the vicinity of a nonlinear interface, Optics Letters 24, p.1735–1737 (1999)ADSCrossRefGoogle Scholar
  276. [4.276] {Sect. 4.5.4}
    M.F. Shih, F.W. Sheu: Photorefractive polymeric optical spatial solitons, Optics Letters 24, p. 1853–1855 (1999)ADSCrossRefGoogle Scholar
  277. [4.277] {Sect. 4.5.4}
    L. Torner, J.P. Torres, D. Artigas, D. Mihalache, D. Mazilu: Soliton content with quadratic nonlinearities, Opt Commun 164, p. 153–159 (1999)ADSCrossRefGoogle Scholar
  278. [4.278] {Sect. 4.5.4}
    S. Trillo, M. Haelterman: Excitation and bistability of self-trapped signal beams in optical parametric oscillators, Optics Letters 23, p.1514–1516 (1998)ADSCrossRefGoogle Scholar
  279. [4.279] {Sect. 4.5.4}
    V. Kutuzov, V.M. Petnikova, V.V. Shuvalov, V.A Vysloukh: Cross-modulation coupling of incoherent soliton modes in photorefractive crystals, Phys. Rev. E 57, p.6056–6065 (1998)ADSCrossRefGoogle Scholar
  280. [4.280] {Sect. 4.5.4}
    G.S. Garciaquirino, M.D. Iturbecastillo, V.A. Vysloukh, J.J. SanchezMondragon, S.I. Stepanov, G. Lugomartinez, G.E. Torrescisneros: Observation of interaction forces between one-dimensional spatial solitons in photorefractive crystals, Optics Letters 22, p.154–156 (1997)ADSCrossRefGoogle Scholar
  281. [4.281] {Sect. 4.5.4}
    V. Kutuzov, V.M. Petnikova, V.V. Shuvalov, V.A Vysloukh: Spatial solitons and shock waves in photorefractive crystals with nonlocal nonlinearity, J. Nonlin. Opt. Phys. & Mat. 6, p.421–442 (1997)CrossRefGoogle Scholar
  282. [4.282] {Sect. 4.5.4}
    G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, A. Yariv: Dark Photorefractive Spatial Solitons and Photorefractive Vortex Solitons, Phys. Rev. Lett. 74, p.1978–1982 (1995)ADSCrossRefGoogle Scholar
  283. [4.283] {Sect. 4.5.4}
    M.-F. Shi, M. Segev, G.C. Valley, G. Salamo, B. Crosignani, P. Di Porto: Observation of two-dimensional steady-state photorefractive screening solitons, Electron. Lett. 31, p.826–827 (1995)ADSCrossRefGoogle Scholar
  284. [4.284] {Sect. 4.5.4}
    M.D.I. Castillo, P.A. M. Aguilar, J.J. Sanchez-Mondragon, S. Stepanov, V. Vysloukh: Spatial solitons in photorefractive Bil2TiO20 with drift mechanism of nonlinearity, Appl. Phys. Lett. 64, p.408–410 (1994)ADSCrossRefGoogle Scholar
  285. [4.285] {Sect. 4.5.4}
    G.C. Duree, Jr, J.L. Shultz, G.J. Salamo: Observation of Self-Trapping of an Optical Beam Due to the Photorefractive Effect, Phys. Rev. Lett. 71, p.533–536 (1993)ADSCrossRefGoogle Scholar
  286. [4.286] {Sect. 4.5.4}
    F.X. Kartner, H.A. Haus: Quantum-Mechanical Stability of Solitons and the Correspondence Principle, Phys Rev A 48, p.2361–2369 (1993)ADSCrossRefGoogle Scholar
  287. [4.287] {Sect. 4.5.4}
    A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, A. Stabinis: Sum-frequency mixing of optical vortices in nonlinear crystals, Opt Commun 150, p.372–380 (1998)ADSCrossRefGoogle Scholar
  288. [4.288] {Sect. 4.5.4}
    Y.S. Kivshar, J. Christou, V. Tikhonenko, B. LutherDavies, L.M. Pismen: Dynamics of optical vortex solitons, Opt Commun 152, p. 198–206 (1998)ADSCrossRefGoogle Scholar
  289. [4.289] {Sect. 4.5.5}
    L.B. Au, L. Solymar, C. Dettmann, H.J. Eichler, R. Macdonald, J. Schwartz: Theoretical and Experimental Investigations of the Reorientation of Liquid Crystal Molecules induced by Laser Beams, Physica A 174, p.94–118 (1991)ADSCrossRefGoogle Scholar
  290. [4.290] {Sect. 4.5.5}
    H.J. Eichler, R. Macdonald, C. Dettmann: Nonlinear Diffraction of CW-Laserbeams by Spatial Selfphase Modulation in Nematic Liquid Crystals, Mol. Cryst. Liq. Cryst.174, p.153–168 (1989)Google Scholar
  291. [4.291] {Sect. 4.5.6}
    J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery: Long-Transient Effects in Lasers with Inserted Liquid Samples, J. Appl. Phys. 36, p.3–8 (1965)ADSCrossRefGoogle Scholar
  292. [4.292] {Sect. 4.5.7}
    F. Cattani, D. Anderson, A. Berntson, M. Lisak: Effect of self-phase modulation in chirped-pulse-amplification-like schemes, J Opt Soc Am B Opt Physics 16, p.1874–1879 (1999)ADSCrossRefGoogle Scholar
  293. [4.293] {Sect. 4.5.7}
    N. Karasawa, R. Morita, L. Xu, H. Shigekawa, M. Yamashita: Theory of ultrabroadband optical pulse generation by induced phase modulation in a gas-filled hollow waveguide, J Opt Soc Am B Opt Physics 16, p.662–668 (1999)ADSCrossRefGoogle Scholar
  294. [4.294] {Sect. 4.5.7}
    T.G. Ulmer, R.S.K. Tan, Z.P. Zhou, S.E. Ralph, R.P. Kenan, C.M. Verber, A.J. SpringThorpe: Two-photon absorption-induced self-phase modulation in GaAs-AlGaAs waveguides for surface-emitted second-harmonic generation, Optics Letters 24, p.756–758 (1999)ADSCrossRefGoogle Scholar
  295. [4.295] {Sect. 4.5.7}
    S.F. Feldman, P.R. Staver, W.T. Lotshaw: Observation of spectral broadening caused by self-phase modulation in highly multimode optical fiber, Appl Opt 36, p.617–621 (1997)ADSCrossRefGoogle Scholar
  296. [4.296] {Sect. 4.5.7}
    M.D. Perry, T. Ditmire, B.C. Stuart: Selfphase modulation in chirped pulse amplification, Optics Letters 19, p.2149–2151 (1994)ADSCrossRefGoogle Scholar
  297. [4.297] {Sect. 4.5.7}
    Q.D. Liu, J.T. Chen, Q.Z. Wang, P.P. Ho, R.R. Alfano: Single pulse degenerate cross phase modulation in a single mode optical fiber, Optics Letters 20, p.542–544 (1995)ADSCrossRefGoogle Scholar
  298. [4.298] {Sect. 4.5.7}
    R.M. Rassoul, A. Ivanov, E. Freysz, A. Ducasse, F. Hache: Second-harmonic generation under phase-velocity and group-velocity mismatch: Influence of cascading self-phase and cross-phase modulation, Optics Letters 22, p.268–270 (1997)ADSCrossRefGoogle Scholar
  299. [4.299] {Sect. 4.5.8}
    F.K. Abdullaev, B.B. Baizakov: Disintegration of a soliton in a dispersion-managed optical communication line with random parameters, Optics Letters 25, p.93–95 (2000)ADSCrossRefGoogle Scholar
  300. [4.300] {Sect. 4.5.8}
    N. Akhmediev, A. Ankiewicz: Partially coherent solitons on a finite background, Phys Rev Lett 82, p.2661–2664 (1999)ADSCrossRefGoogle Scholar
  301. [4.301] {Sect. 4.5.8}
    S.T. Cundiff, B.C. Collings, N.N. Akhmediev, J.M. SotoCrespo, K. Bergman, W.H. Knox: Observation of polarization-locked vector solitons in an optical fiber, Phys Rev Lett 82, p.3988–3991 (1999)ADSCrossRefGoogle Scholar
  302. [4.302] {Sect. 4.5.8}
    S. Darmanyan, A. Kobyakov, F. Lederer: Quadratic solitons in nonconservative media, Optics Letters 24, p.1517–1519 (1999)ADSCrossRefGoogle Scholar
  303. [4.303] {Sect. 4.5.8}
    M. Hanna, H. Porte, J.P. Goedgebuer, W.T. Rhodes: Soliton optical phase control by use of is-line filters, Optics Letters 24, p.732–734 (1999)ADSCrossRefGoogle Scholar
  304. [4.304] {Sect. 4.5.8}
    P.S. Jian, W.E. Torruellas, M. Haelterman, S. Trillo, U. Peschel, F. Lederer: Solitons of singly resonant optical parametric oscillators, Optics Letters 24, p.400–402 (1999)ADSCrossRefGoogle Scholar
  305. [4.305] {Sect. 4.5.8}
    D. Krylov, L. Leng, K. Bergman, J.C. Bronski, J.N. Kutz: Observation of the breakup of a prechirped N-soliton in an optical fiber, Optics Letters 24, p.1191–1193 (1999)ADSCrossRefGoogle Scholar
  306. [4.306] {Sect. 4.5.8}
    D. Levandovsky, M. Vasilyev, P. Kumar: Perturbation theory of quantum solitons: continuum evolution and optimum squeezing by spectral filtering, Optics Letters 24, p.43–45 (1999)ADSCrossRefGoogle Scholar
  307. [4.307] {Sect. 4.5.8}
    A.H. Liang, H. Toda, A. Hasegawa: High-speed soliton transmission in dense periodic fibers, Optics Letters 24, p.799–801 (1999)ADSCrossRefGoogle Scholar
  308. [4.308] {Sect. 4.5.8}
    Q.H. Park, H.J. Shin: Parametric control of soliton light traffic by cw traffic light, Phys Rev Lett 82, p.4432–4435 (1999)ADSCrossRefGoogle Scholar
  309. [4.309] {Sect. 4.5.8}
    I.S. Penketh, P. Harper, S.B. Alleston, A.M. Niculae, I. Ben-nion, N.J. Doran: 10-Gbit/s dispersion-managed soliton transmission over 16,500 km in standard fiber by reduction of soliton interactions, Optics Letters 24, p.802–804 (1999)ADSCrossRefGoogle Scholar
  310. [4.310] {Sect. 4.5.8}
    K. Chan, W. Cao: Generation of ultrashort fundamental solitons from cw light using cross-phase modulation and Raman amplification in optical fibers, Opt Commun 158, p.159–169 (1998)ADSCrossRefGoogle Scholar
  311. [4.311] {Sect. 4.5.8}
    M. Matsumoto: Instability of dispersion-managed solitons in a system with filtering, Optics Letters 23, p.1901–1903 (1998)ADSCrossRefGoogle Scholar
  312. [4.312] {Sect. 4.5.8}
    P. Shum, S.F. Yu: Numerical analysis of nonlinear soliton propagation phenomena using the fuzzy mesh analysis technique, IEEE J QE-34, p.2029–2035 (1998)CrossRefGoogle Scholar
  313. [4.313] {Sect. 4.5.8}
    E.L. Buckland, R.W. Boyd, A.F. Evans: Observation of a Raman-induced interpulse phase migration in the propagation of an ultra-high-bit-rate coherent soliton train, Optics Letters 22, p.454–456 (1997)ADSCrossRefGoogle Scholar
  314. [4.314] {Sect. 4.5.8}
    B.C. Collings, K. Bergman, W.H. Knox: True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser, Optics Letters 22, p.1098–1100 (1997)ADSCrossRefGoogle Scholar
  315. [4.315] {Sect. 4.5.8}
    H. Hatamihanza, P.L. Chu, B.A. Malomed, G.D. Peng: Soliton compression and splitting in double-core nonlinear optical fibers, Opt Commun 134, p.59–65 (1997)ADSCrossRefGoogle Scholar
  316. [4.316] {Sect. 4.5.8}
    R.H. Stolen, L.F. Mollenauer: Observation of pulse restoration at the soliton period in optical fibers, Opt. Lett. 8, p. 186–188 (1983)ADSCrossRefGoogle Scholar
  317. [4.317] {Sect. 4.5.8}
    L.F. MoUenauer, R.H. Stolen, J.P. Gordon: Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers, Phys. Rev. Lett. 45, p.1095–1098 (1980)ADSCrossRefGoogle Scholar
  318. [4.318] {Sect. 4.5.8}
    F.G. Omenetto, B.P. Luce, D. Yarotski, A.J. Taylor: Observation of chirped soliton dynamics at lambda=1.55 mu m in a single-mode optical fiber with frequency-resolved optical gating, Optics Letters 24, p.1392–1394 (1999)ADSCrossRefGoogle Scholar
  319. [4.319] {Sect. 4.5.8}
    M. Piche, J.F. Cormier, X.N. Zhu: Bright optical soliton in the presence of fourth-order dispersion, Optics Letters 21, p.845–847 (1996)ADSCrossRefGoogle Scholar
  320. [4.320] {Sect. 4.5.8}
    C. Deangelis, M. Santagiustina, S. Wabnitz: Stability of vector solitons in fiber laser and transmission systems, Opt Commun 122, p.23–27 (1995)ADSCrossRefGoogle Scholar
  321. [4.321] {Sect. 4.5.8}
    A.E. Kaplan, P.L. Shkolnikov: Subfemtosecond high-intensity unipolar electromagnetic solitons and shock waves, J Nonlinear Opt Physics Mat 4, p.831–841 (1995)ADSCrossRefGoogle Scholar
  322. [4.322] {Sect. 4.5.8}
    S.V. Bulanov, T.Z. Esirkepov, N.M. Naumova, F. Pegoraro, V.A. Vshivkov: Solitonlike electromagnetic waves behind a superintense laser pulse in a plasma, Phys Rev Lett 82, p.3440–3443 (1999)ADSCrossRefGoogle Scholar
  323. [4.323] {Sect. 4.5.9.1}
    C. Labaune, H.A. Baldis, B.S. Bauer, E. Schifano, B.I. Cohen: Spatial and temporal coexistence of stimulated scattering processes under crossed-laser-beam irradiation, Phys Rev Lett 82, p.3613–3616 (1999)ADSCrossRefGoogle Scholar
  324. [4.324] {Sect. 4.5.9.1}
    K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa: Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4012 laser, Optics Letters 24, p.1862–1864 (1999)ADSCrossRefGoogle Scholar
  325. [4.325] {Sect. 4.5.9.1}
    A.A. Fotiadi, R.V. Kiyan: Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber, Optics Letters 23, p.1805–1807 (1998)ADSCrossRefGoogle Scholar
  326. [4.326] {Sect. 4.5.9.1}
    S. Afshaarvahid, V. Devrelis, J. Munch: Nature of intensity and phase modulations in stimulated Brillouin scattering, Phys. Rev. A 57, p.3961–3971 (1998)ADSCrossRefGoogle Scholar
  327. [4.327] {Sect. 4.5.9.1}
    M.S. Jo, C.H. Nam: Transient stimulated Brillouin scattering reflectivity in CS2 and SF6 under multipulse employment, Appl. Opt. 36, p.1149–1154 (1997)ADSGoogle Scholar
  328. [4.328] {Sect. 4.5.9.1}
    P.E. Young, M.E. Foord, A.V. Maximov, W. Rozmus: Stimulated Brillouin scattering in multispecies laser- produced plasmas, Phys Rev Lett 77, p. 1278–1281 (1996)ADSCrossRefGoogle Scholar
  329. [4.329] {Sect. 4.5.9.1}
    T. Afsharrad, L.A. Gizzi, M. Desselberger, O. Willi: Effect of filamentation of Brillouin scattering in large underdense plasmas irradiated by incoherent laser light, Phys Rev Lett 75, p.4413–4416 (1995)ADSCrossRefGoogle Scholar
  330. [4.330] {Sect. 4.5.9.1}
    R.L. Berger, B.F. Lasinski, A.B. Langdon, T.B. Kaiser, B.B. Afeyan, B.I. Cohen, C.H. Still, E.A. Williams: Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentary laser light, Phys Rev Lett 75, p.1078–1081 (1995)ADSCrossRefGoogle Scholar
  331. [4.331] {Sect. 4.5.9.1}
    H.J. Eichler, R. Menzel, R. Sander, M. Schulzke, J. Schwartz: SBS at different wavelengths between 308 and 725 nm, Opt. Commun. 121, p.49–54 (1995)ADSCrossRefGoogle Scholar
  332. [4.332] {Sect. 4.5.9.1}
    H.J. Eichler, R. König, R. Menzel, R. Sander, J. Schwartz, H.J. Pätzold: Test of Organic SBS Liquids in the IR and the UV, Int. J. Nonlinear Optics 2, p.267–270 (1993)CrossRefGoogle Scholar
  333. [4.333] {Sect. 4.5.9.1}
    N.F. Andreev, E. Khazanov, G.A. Pasmanik: Applications of Brillouin Cells to High Repetition Rate Solid-State Lasers, IEEE J. QE-28, p.330–341 (1992)CrossRefGoogle Scholar
  334. [4.334] {Sect. 4.5.9.1}
    Yu.I. Bychkov, V.F. Losev, Yu.N. Panchenko: Experimental investigation of the efficiency of phase conjugation of an XeCl laser beam by stimulated Brillouin scattering, Sov. J. Quantum. Electron. 22 p.638–640 (1992)ADSCrossRefGoogle Scholar
  335. [4.335] {Sect. 4.5.9.1}
    H.J. Eichler, R. Menzel, R. Sander, B. Smandek: Reflectivity Enhancement of Stimulated Brillouin Scattering (SBS) Liquids by Purification, Opt. Commun. 89, p.260–262 (1992)ADSCrossRefGoogle Scholar
  336. [4.336] {Sect. 4.5.9.1}
    M.R. Osborn, M.A. O’Key: Temporal response of stimulated Brillouin scattering phase conjugation, Opt. Comm. 94, p.346–352 (1992)ADSCrossRefGoogle Scholar
  337. [4.337] {Sect. 4.5.9.1}
    G.K.N. Wong, M.J. Damzen: Investigations of Optical Feedback Used to Enhance Stimulated Scattering, IEEE J. QE-26, p. 139–148 (1990)Google Scholar
  338. [4.338] {Sect. 4.5.9.1}
    V.I. Bespalov, E.L. Bubis, O.V. Kulagin, G.A. Pasmanik, A.A. Shilov: Stimulated Brillouin scattering and stimulated thermal scattering of microsecond pulses, Sov. J. Quantum Electron. 16, p. 1348–1352 (1986)ADSCrossRefGoogle Scholar
  339. [4.339] {Sect. 4.5.9.1}
    P. Narum, M.D. Skeldon, R.W. Boyd: Effect of Laser Mode Structure on Stimulated Brillouin Scattering, IEEE J. QE-22, p.2161–2167 (1986)Google Scholar
  340. [4.340] {Sect. 4.5.9.1}
    J.M. Vaughan: Brillouin scattering in the nematic and isotropic phases of a liquid crystal, Phys. Lett. 58A, p.325–328 (1976)ADSGoogle Scholar
  341. [4.341] {Sect. 4.5.9.1}
    M. Maier: Quasisteady State in the Stimulated Brillouin Scattering of Liquids, Phys. Rev. 166, p.113–119 (1967)ADSCrossRefGoogle Scholar
  342. [4.342] {Sect. 4.5.9.2}
    V.T. Tikhochuk, C. Labaune, H.A. Baldis: Modeling of a stimulated Brillouin scattering experiment with statistical distribution of speckles, Phys. Plasmas 3, p.3777–3785 (1996)ADSCrossRefGoogle Scholar
  343. [4.343] {Sect. 4.5.9.2}
    R.G. Harrison, D. Yu, W. Lu, P.M. Ripley: Chaotic stimulated Brillouin scattering: theory and experiment, Physica D 86, p.182–188 (1995)MATHCrossRefGoogle Scholar
  344. [4.344] {Sect. 4.5.9.2}
    A. Kummrow: Hermite-gaussian theory of focused beam SBS cells, Opt. Commun. 96, p.185–194 (1993)ADSCrossRefGoogle Scholar
  345. [4.345] {Sect. 4.5.9.2}
    R. Menzel, H.J. Eichler: Computation of Stimulated Brillouin Scattering (SBS) with Focussed Beams, Int. J. Nonlinear Optics 2, p.255–260 (1993)CrossRefGoogle Scholar
  346. [4.346] {Sect. 4.5.9.2}
    R. Chu, M. Kanefsky, J. Falk: Numerical study of transient stimulated Brillouin scattering, J. Appl. Phys. 71, p.4653–4658 (1992)ADSCrossRefGoogle Scholar
  347. [4.347] {Sect. 4.5.9.2}
    R. Menzel, H.J. Eichler: Temporal and Spatial Reflectivity of Focussed Beams in Stimulated Brillouin Scattering for Phaseconjugation, Phys. Rev. A 46, p.7139–7149 (1992)ADSCrossRefGoogle Scholar
  348. [4.348] {Sect. 4.5.9.2}
    G.J. Crofts, M.J. Damzen: Steady-state analysis and design criteria of two-cell stimulated Brillouin scattering systems, Opt. Comm. 81, p.237–241 (1991)ADSCrossRefGoogle Scholar
  349. [4.349] {Sect. 4.5.9.2}
    P.H. Hu, J.A. Goldstone, S.S. Ma: Theoretical study of phase conjugation in stimulated Brillouin scattering, J. Opt. Soc. Am. B 6, p.1813–1822 (1989)ADSCrossRefGoogle Scholar
  350. [4.350] {Sect. 4.5.9.2}
    G.C. Valley: A Review of Stimulated Brillouin Scattering Excited with a Broad-Band Pump Laser, IEEE J. QE-22, p.704–711 (1986)CrossRefGoogle Scholar
  351. [4.351] {Sect. 4.5.9.2}
    R.H. Lehmberg: Numerical study of phase conjugation in stimulated Brillouin scattering from an optical waveguide, J. Opt. Soc. Am. 73, p.558–566 (1983)ADSCrossRefGoogle Scholar
  352. [4.352] {Sect. 4.5.9.2}
    R.H. Lehmberg: Numerical study of phase conjugation in stimulated backscatter with pump depletion, Opt. Comm. 43, p.369–374 (1982)ADSCrossRefGoogle Scholar
  353. [4.353] {Sect. 4.5.9.2}
    A. Yariv: Quantum Theory for Parametric Interactions of Light and Hypersound, IEEE J. QE-1, p.28–36 (1965)CrossRefGoogle Scholar
  354. [4.354] {Sect. 4.5.9.2}
    P.W. Rambo, S.C. Wilks, W.L. Kruer: Hybrid particle-in-cell simulations of stimulated Brillouin scattering including ion-ion collisions, Phys Rev Lett 79, p.83–86 (1997)ADSCrossRefGoogle Scholar
  355. [4.355] {Sect. 4.5.9.3}
    N.-M. Nguyen-Vo, S.J. Pfeifer: A Model of Spontaneous Brillouin Scattering as the Noise Source for Stimulated Scattering, IEEE J. QE-29, p.508–514 (1993)CrossRefGoogle Scholar
  356. [4.356] {Sect. 4.5.9.3}
    Y. Glick, S. Sternklar: Reducing the noise in Brillouin amplification by mode-selective phase conjugation, Opt. Lett. 17, p.662–664 (1992)CrossRefGoogle Scholar
  357. [4.357] {Sect. 4.5.9.3}
    O.V. Kulagin, G.A. Pasmanik, A.A. Shilov: Amplification and phase conjugation of weak signals, Sov. Phys. Usp. 35, p.506–519 (1992)ADSCrossRefGoogle Scholar
  358. [4.358] {Sect. 4.5.9.3}
    M. Shirasaki, H.A. Haus: Reduction of Guided-Acoustic-Wave Brillouin Scattering Noise in a Squeezer, Optics Letters 17, p. 1225–1227 (1992)ADSCrossRefGoogle Scholar
  359. [4.359] {Sect. 4.5.9.3}
    R.W. Boyd, K. Rzazewski: Noise initiation on stimulated Brillouin scattering, Phys. Rev. A 42, p.5514–5521 (1990)ADSCrossRefGoogle Scholar
  360. [4.360] {Sect. 4.5.9.4}
    J.C. Fernandez, B.S. Bauer, K.S. Bradley, J.A. Cobble, D.S. Montgomery, R.G. Watt, B. Bezzerides, K.G. Estabrook, R. Focia, S.R. Goldman et al.: Increased saturated levels of stimulated brillouin scattering of a laser by seeding a plasma with an external light source, Phys Rev Lett 81, p.2252–2255 (1998)ADSCrossRefGoogle Scholar
  361. [4.361] {Sect. 4.5.9.4}
    A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, M. Martinelli: Direct measurement of electrostriction in optical fibers, Optics Letters 23, p.691–693 (1998)ADSCrossRefGoogle Scholar
  362. [4.362] {Sect. 4.5.9.4}
    M.S. Jo, C.H. Nam: Transient stimulated Brillouin scattering reflectivity in CS2 and SF6 under multipulse employment, Appl Opt 36, p.1149–1154 (1997)ADSGoogle Scholar
  363. [4.363] {Sect. 4.5.9.4}
    D.C. Jones: Characterisation of liquid brillouin media at 532 nm, J Nonlinear Opt Physics Mat 6, p.69–79 (1997)ADSCrossRefGoogle Scholar
  364. [4.364] {Sect. 4.5.9.4}
    H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, K. Yoshida: Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror, Appl Opt 36, p.3739–3744 (1997)ADSCrossRefGoogle Scholar
  365. [4.365] {Sect. 4.5.9.4}
    H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, K. Yoshida: High-energy operation of a stimulated Brillouin scattering mirror in an L-Arginine phosphate monohydrate crystal, Appl. Opt. 36, p.7783–7787 (1997)ADSCrossRefGoogle Scholar
  366. [4.366] {Sect. 4.5.9.4}
    H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, K. Yoshida: Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror, Appl. Opt. 36, p.3739–3744 (1997)ADSCrossRefGoogle Scholar
  367. [4.367] {Sect. 4.5.9.4}
    H.J. Eichler, R. König, H.-J. Pätzold, J. Schwartz: SBS mirrors for XeCl lasers with a broad spectrum, Appl. Phys. B. 61, p.73–80 (1995)ADSCrossRefGoogle Scholar
  368. [4.368] {Sect. 4.5.9.4}
    S.T. Animoto, R.W.F. Gross, L. Garman-DuVall, T.W. Good, J.D. Piranian: Stimulated-Brillouin-scattering properties of SnC14, Opt. Lett. 16, p.1382–1384 (1991)ADSCrossRefGoogle Scholar
  369. [4.369] {Sect. 4.5.9.4}
    A. Kummrow, H. Meng: Pressure dependence of stimulated Brillouin backscattering in gases, Opt. Commun. 83, p.342–348 (1991)ADSCrossRefGoogle Scholar
  370. [4.370] {Sect. 4.5.9.4}
    D.C. Jones, M.S. Mangir, D.A. Rockwell, J.O. White: Stimulated Brillouin scattering gain variation and transient effects in a CH4:He binary gas mixture, J. Opt. Soc. Am. B 7, p.2090–2096 (1990)ADSCrossRefGoogle Scholar
  371. [4.371] {Sect. 4.5.9.4}
    E.L. Bubis, V.V. Vargin, L.R. Konchalina, A.A. Shilov: Study of low-absorption media for SBS in the near-IR-spectral range, Opt. Spectrosc. (USSR) 65, p.757–759 (1989)ADSGoogle Scholar
  372. [4.372] {Sect. 4.5.9.4}
    P.E. Dyer, J.S. Leggatt: Phase conjugation studies of a quasi-cw CO2 laser in liquid CS2, Opt. Comm. 74, p.124–128 (1989)ADSCrossRefGoogle Scholar
  373. [4.373] {Sect. 4.5.9.4}
    F.E. Hovis, J.D. Kelley: Phase conjugation by stimulated Brillouin scattering in CC1F3 near the gas-liquid critical temperature, J.Opt. Soc. Am. B. 6, p.840–842 (1989)ADSCrossRefGoogle Scholar
  374. [4.374] {Sect. 4.5.9.4}
    Y. Aoki, K. Tajima: Stimulated Brillouin scattering in a long single-mode fiber excited with a multimode pump laser, J. Opt. Soc. Am. B 5, p.358–363 (1988)ADSCrossRefGoogle Scholar
  375. [4.375] {Sect. 4.5.9.4}
    M.J. Damzen, M.H.R. Hutchinson, W.A. Schroeder: Direct Measurement of the Acoustic Decay Times of Hypersonic Waves Generated by SBS, IEEE J. QE-23, p.328–334 (1987)CrossRefGoogle Scholar
  376. [4.376] {Sect. 4.5.9.4}
    V.M. Volynkin, K.V. Gratsianov, A.N. Kolesnikov, Yu.I. Kruzhilin, V.V. Lyubimov, S.A. Markosov, V.G. Pankov, A.I. Stepanov, S.V. Shklyarik: Reflection by stimulated Brillouin scattering mirrors based on tetrachlorides of group IV elements, Sov. J. Quantum Electron. 15, p.1641–1642 (1985)ADSCrossRefGoogle Scholar
  377. [4.377] {Sect. 4.5.9.4}
    D. Pohl, W. Kaiser: Time-Resolved Investigations of Stimulated Brillouin Scattering in Transparent and Absorbing Media: Determination of Phonon Lifetimes, Phys. Rev. B 1, p.31–43 (1970)ADSCrossRefGoogle Scholar
  378. [4.378] {Sect. 4.5.9.4}
    M. R. Osborne: Stimulated Brillouin scattering using cylindrical focusing optics, J. Opt. Soc. Am. B 7, p.2106–2112 (1990)ADSCrossRefGoogle Scholar
  379. [4.379] {Sect. 4.5.9.4}
    J. Munch, R.F. Wuerker, M.J. LeFebvre: Interaction length for optical phase conjugation by stimulated Brillouin scattering: an experimental investigation, Appl. Opt. 28, p.3099–3105 (1989)ADSCrossRefGoogle Scholar
  380. [4.380] {Sect. 4.5.9.4}
    L.P. Schelonka, C.M. Clayton: Effect of focal intensity on stimulated-Brillouin-scattering reflectivity and fidelity, Opt. Lett. 13, p.42–44 (1988)ADSCrossRefGoogle Scholar
  381. [4.381] {Sect. 4.5.9.4}
    N.B. Baranova, B.Ya. Zel’dovich, V.V. Shkunov: Wavefront reversal in stimulated light scattering in a focused spatially ingomogeneous pump beam, Sov. J. Quantum Electron. 8, p.559–566 (1978)ADSCrossRefGoogle Scholar
  382. [4.382] {Sect. 4.5.9.4}
    R.A. Mullen: Multiple-Short-Pulse Stimulated Brillouin Scattering for Trains of 200 ps Pulses at 1.06 urn, IEEE J. QE-26, p.1299–1303 (1990)CrossRefGoogle Scholar
  383. [4.383] {Sect. 4.5.9.4}
    G. Cook, K.D. Ridley: Investigation of the bandwidth dependent characteristics of stimulated Brillouin scattering using a modeless dye laser, Opt Commun 130, p. 192–204 (1996)ADSCrossRefGoogle Scholar
  384. [4.384] {Sect. 4.5.9.4}
    V.F. Losev, Yu. N. Panchenko: Characteristics of stimulated scattering of broad-band XeCl laser radiation, Quant. Electron. 25, p.448–449 (1995)Google Scholar
  385. [4.385] {Sect. 4.5.9.4}
    P.C. Wait, T.P. Newson: Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin linewidth, Opt. Commun. 117, p.142–146 (1995)ADSCrossRefGoogle Scholar
  386. [4.386] {Sect. 4.5.9.4}
    H.J. Eichler, R. König, R. Menzel, H.J. Pätzold, J. Schwartz: Stimulated Brillouin Scattering of Broadband XeCl-Laser Radiation by Hydrocarbons Liquids, Int. J. Nonlinear Optics 2, p.247–253 (1993)CrossRefGoogle Scholar
  387. [4.387] {Sect. 4.5.9.4}
    D. Wang, G. Rivoire: Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2, J. Chem. Phys.98, p.9279–9283 (1993)ADSCrossRefGoogle Scholar
  388. [4.388] {Sect. 4.5.9.4}
    H.J. Eichler, R. König, R. Menzel, H.-J. Pätzold, J. Schwartz: SBS-Reflect ion of Broadband XeCl-Excimer-Laser-Radiation: Comparision of Suitable SBS-Liquids, J. Phys. D: Appl. Phys. 25, p.1162–1168 (1992)ADSCrossRefGoogle Scholar
  389. [4.389] {Sect. 4.5.9.4}
    Y-S. Kuo, K. Choi, J.K. Mclver: The effect of pump bandwidth, lens focal length and lens focal point location on Stimulated Brillouin Scattering threshold and reflectivity, Opt. Comm. 80, p.233–238 (1991)ADSCrossRefGoogle Scholar
  390. [4.390] {Sect. 4.5.9.4}
    J.-Z. Zhang, G. Chen, R.K. Chang: Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects, J. Opt. Soc. Am. B 7, p.108–115 (1990)ADSCrossRefGoogle Scholar
  391. [4.391] {Sect. 4.5.9.4}
    R.A. Mullen, R.C. Lind, G.C. Valley: Observaton of stimulated Brillouin scattering gain with a dual spectral-line pump, Opt. Comm. 63, p.123–128 (1987)ADSCrossRefGoogle Scholar
  392. [4.392] {Sect. 4.5.9.4}
    M. Cronin-Golomb, S.-K. Kwong, A. Yariv: Multicolor passive (self-pumped) phase conjugation, Appl. Phys. Lett. 44, p.727–729 (1984)ADSCrossRefGoogle Scholar
  393. [4.393] {Sect. 4.5.9.4}
    B.Ya. Zel’dovich, V.V. Shkunov: Influence of the group velocity mismatch on reproduction of the pump spectrum under stimulated scattering conditions, Sov. J. Quantum Electron. 8, p. 1505–1506 (1978)CrossRefGoogle Scholar
  394. [4.394] {Sect. 4.5.9.4}
    I.G. Zubarev, S.I. Mikahilov: Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation, Sov. J. Quantum Electron. 8, p.1338–1344 (1978)ADSCrossRefGoogle Scholar
  395. [4.395] {Sect. 4.5.9.4}
    V.I. Kovalev, V.I. Popovichev, V.V. Ragul’skii, F.S. Faizullov: Gain and linewidth in stimulated Brillouin scattering in gases, Sov. J. Quantum Electron. 2, p.69–71 (1972)ADSCrossRefGoogle Scholar
  396. [4.396] {Sect. 4.5.9.4}
    Y.E. D’yakov: Excitation of stimulated light scattering by broad-spectrum pumping, JETP Lett, 11p.243–246 (1970)ADSGoogle Scholar
  397. [4.397] {Sect. 4.5.9.7}
    W. Jinsong, T. Weizhong, Z. Wen: Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media, Opt. Commun. 123, p.574–576 (1996)CrossRefGoogle Scholar
  398. [4.398] {Sect. 4.5.9.7}
    K. Inoue: Brillouin threshold in an optical fiber with bedi-rectional pump lights, Opt. Comm. 120, p.34–38 (1995)ADSCrossRefGoogle Scholar
  399. [4.399] {Sect. 4.5.9.7}
    M.T. Duignan, B.J. Feldman, W.T. Whitney: Theshold reduction for stimulated Brillouin scattering using a multipass Herriott cell, J. Opt. Soc. Am. B. 9, p.548–559 (1992)ADSCrossRefGoogle Scholar
  400. [4.400] {Sect. 4.5.9.7}
    N.F. Andreev, V.I. Bespalov, M.A. Dvoretsky, G.A. Pasmanik: Phase Conjugation of Single Photons, IEEE J. QE-25, p.346–350 (1989)CrossRefGoogle Scholar
  401. [4.401] {Sect. 4.5.9.7}
    M. Maier, G. Renner: Transient Threshold Power of Stimulated Brillouin Raman Scattering, Phys. Lett. A 34, p.299–300 (1971)ADSCrossRefGoogle Scholar
  402. [4.402] {Sect. 4.5.9.8}
    A. Heuer, R. Menzel: Phase conjugating SBS-mirror for low powers and reflectivities above 90 % in an internally tapered optical fiber, Opt. Lett. 23, p.834–836 (1998)ADSCrossRefGoogle Scholar
  403. [4.403] {Sect. 4.5.9.8}
    D.C. Jones, M.S. Mangir, D.A. Rockwell: A stimulated Brillouin scattering phase-conjugate mirror having a peak-power threshold <100 W, Opt. Comm. 123, p.175–181 (1996)ADSCrossRefGoogle Scholar
  404. [4.404] {Sect. 4.5.9.8}
    A.M. Scott, W.T. Whitney: Characteristics of a Brillouin ring resonator used for phase conjugation at 2.1 um, J.Opt. Soc. Am. B 12, p.1634–1641 (1995)ADSCrossRefGoogle Scholar
  405. [4.405] {Sect. 4.5.9.8}
    G.K.N. Wong, M.J. Damzen: Enhancement of the phase-conjugate stimulated Brillouin scattering process using optical feedback, J. Mod. Opt. 35, p.483–490 (1988)ADSCrossRefGoogle Scholar
  406. [4.406] {Sect. 4.5.9.9}
    B. Kralikova, J. Skala, P. Straka, H. Turcicova: Image restoration in a highly non-steady-state regime of stimulated Brillouin scattering in a photodissociation iodine laser, Optics Letters 22, p.766–768 (1997)ADSCrossRefGoogle Scholar
  407. [4.407] {Sect. 4.5.9.9}
    V.F. Losev, Y.N. Panchenko: Spectral and spatial selection of XeCl laser radiation by an SBS mirror, Opt Commun 136, p.31–34 (1997)ADSCrossRefGoogle Scholar
  408. [4.408] {Sect. 4.5.9.9}
    P.C. Wait, K. Desouza, T.P. Newson: A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors, Opt Commun 144, p. 17–23 (1997)ADSCrossRefGoogle Scholar
  409. [4.409] {Sect. 4.5.9.9}
    H.J. Eichler, S. Heinrich, J. Schwartz: Self-starting short-pulse XeCl laser with a stimulated Brillouin scattering mirror, Optics Letters 21, p.1909–1911 (1996)ADSCrossRefGoogle Scholar
  410. [4.410] {Sect. 4.5.9.9}
    D.L. Carrroll, R. Johnson, S.J. Pfeifer, R.H. Moyer: Experimental investigations of stimulated Brillouin scattering beam combination, J. Opt. Soc. Am. B 9, p.2214–2224 (1992)ADSCrossRefGoogle Scholar
  411. [4.411] {Sect. 4.5.9.9}
    D.J. Gauthier, R.W. Boyd: Phase-conjugate Fizeau interferometer, Opt. Lett. 14, p.323–325 (1989)ADSCrossRefGoogle Scholar
  412. [4.412] {Sect. 4.5.9.9}
    R.H. Moyer, M. Valley, M.C. Cimolino: Beam combination through stimulated Brillouin scattering, J. Opt. Soc. Am. B 5, p.2473–2489 (1988)ADSCrossRefGoogle Scholar
  413. [4.413] {Sect. 4.5.9.9}
    R.R Drake, R.G. Watt, K. Estabrook: Onset and Saturation of the Spectral Intensity of Stimulated Brillouin Scattering in Inhomoge-neous Laser-Produced Plasmas, Phys. Rev. Lett. 77, p.79–82 (1996)ADSCrossRefGoogle Scholar
  414. [4.414] {Sect. 4.5.9.9}
    R.G. Watt, J. Cobble, D.F. DuBois, J.C. Fenandez, H.A. Rose, R.P. Drake, B.S. Bauer: Dependence of stimulated Brillouin scattering on focusing optic F number in long scale-length plasmas, Phys. Plasmas 3, p.1091–1095 (1996)ADSCrossRefGoogle Scholar
  415. [4.415] {Sect. 4.5.10}
    W. Kaiser, M. Maier: Stimulated Rayleigh Brillouin and Raman-spectroscopy, in Laser Handbook, ed. by F.T Arecci, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 1077Google Scholar
  416. [4.416] {Sect. 4.5.10}
    R.M. Herman, M.A. Gray: Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids, Phys. Rev. Lett. 19, p.824–828 (1967)ADSCrossRefGoogle Scholar
  417. [4.417] {Sect. 4.5.11}
    G. Olbrechts, K. Wostyn, K. Clays, A. Persoons: High-frequency demodulation of multiphoton fluorescence in long-wavelength hyper-Rayleigh scattering, Optics Letters 24, p.403–405 (1999)ADSCrossRefGoogle Scholar
  418. [4.418] {Sect. 4.5.11}
    T. Latz, F. Aupers, V.M. Baev, P.E. Toschek: Emission spectrum of a multimode dye laser with frequency-shifted feedback for the simulation of Rayleigh scattering, Opt Commun 156, p.210–218 (1998)ADSCrossRefGoogle Scholar
  419. [4.419] {Sect. 4.5.11}
    M.M. Denariez-Roberge, G. Giuliani: High-power single-mode laser operation using stimulated Rayleigh scattering, Opt. Lett. 6, p. 339–3341 (1981)ADSCrossRefGoogle Scholar
  420. [4.420] {Sect. 4.5.11}
    Y. Carmel, J. Ivers, R.E. Kribel, J. Nation: Intense Coherent Cherenkov Radiation Due to the Interaction of a Relativistic Electron Beam with a Slow-Wave Structure, Phys. Rev. Lett. 33, p.1278–1282 (1974)ADSCrossRefGoogle Scholar
  421. [4.421] {Sect. 4.5.11}
    W.H. Lowdermilk, N. Bloembergen: Stimulated Concentration Scattering in the Binary-Gas Mixtures Xe-He and SF6-He, Phys. Rev. A 5, p.1423–1443 (1972)ADSCrossRefGoogle Scholar
  422. [4.422] {Sect. 4.5.11}
    R.H. Pantell, G. Soncini, H.E. Puthoff: Stimulated Photon-Electron Scattering, IEEE J. QE-4, p.905–907 (1968)CrossRefGoogle Scholar
  423. [4.423] {Sect. 4.5.11}
    D.H. Rank, C.W. Cho, N.D. Foltz, T.A. Wiggins: Stimulated Thermal Rayleigh Scattering, Phys. Rev. Lett. 19, p.828–830 (1967)ADSCrossRefGoogle Scholar
  424. [4.424] {Sect. 4.5.11}
    N. Bloembergen, P. Lallemand: Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering, Phys. Rev. Lett. 16, p.81–84 (1966)ADSCrossRefGoogle Scholar
  425. [4.425] {Sect. 4.5.12}
    R.Y. Chiao, P.L. Kelley, E. Garmire: Stimulated Four-Photon Interaction and ist Influence on Stimulated Rayleigh-Wing Scattering, Phys. Rev. Lett. 17, p.1158–1161 (1966)ADSCrossRefGoogle Scholar
  426. [4.426] {Sect. 4.5.13.0}
    J. J. Laserna: Modern Techniques in Raman Spectroscopy ((John Wiley & Sons, Chichester, 1996)Google Scholar
  427. [4.427] {Sect. 4.5.13.0}
    G. Marowsky, V.V. Smirnov (eds.): Coherent Raman Spectroscopy, Springer Proc. Phys, Vol. 63 (Springer, Berlin, Heidelberg 1992)Google Scholar
  428. [4.428] {Sect. 4.5.13.0}
    D.A. Long: The polarizability and hyperpolarizability tensors, in Nonlinear Raman Spectroscopy and 1st Chemical Applications, ed. by W. Kiefer, D. A. Long (Reidel, Dordrecht 1982)Google Scholar
  429. [4.429] {Sect. 4.5.13.0}
    W. Kiefer: Recent techniques in Raman-spectroscopy (Adv. Infrared and Raman Spectroscopy 3, 1 (Heyden, London 1977)Google Scholar
  430. [4.430] {Sect. 4.5.13.0}
    J. Loader: Basic Laser Raman Spectroscopy (Heyden/Sadtler, London 1970)Google Scholar
  431. [4.431] {Sect. 4.5.13.0}
    J. R. Downey, G. J. Janz: Digital methods in Raman spectroscopy (Adv. Infrared and Raman Spectroscopy 1, 1–34, Heyden, London 1975)Google Scholar
  432. [4.432] {Sect. 4.5.13.0}
    C.S. Wang: The stimulated Raman process, in Quantum Electronics: A Treatise, Vol. 1, ed. by H. Rabin, C.L. Tang (Academic, New York 1975) Chap. 7Google Scholar
  433. [4.433] {Sect. 4.5.13.1}
    E.C. Honea, A. Ogura, D.R. Peale, C. Felix, C.A. Murray, K. Raghavachari, W.O. Sprenger, M.F. Jarrold, W.L. Brown: Structures and covalescence behavior of size-selected silicon nanoclusters studied by surface-plasmon-polariton enhanced Raman spectroscopy, J Chem Phys 110, p.12161–12172 (1999)ADSCrossRefGoogle Scholar
  434. [4.434] {Sect. 4.5.13.1}
    V. Krylov, I. Fischer, V. Bespalov, D. Staselko, A. Rebane: Transient stimulated Raman scattering in gas mixtures, Optics Letters 24, p.1623–1625 (1999)ADSCrossRefGoogle Scholar
  435. [4.435] {Sect. 4.5.13.1}
    A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser: Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium, Phys Rev Lett 83, p.2560–2563 (1999)ADSCrossRefGoogle Scholar
  436. [4.436] {Sect. 4.5.13.1}
    V.E. Roman, J. Popp, M.H. Fields, W. Kiefer: Minority species detection in aerosols by stimulated anti-Stokes-Raman scattering and external seeding, Appl Opt 38, p.1418–1422 (1999)ADSCrossRefGoogle Scholar
  437. [4.437] {Sect. 4.5.13.1}
    O.M. Sarkisov, D.G. Tovbin, V.V. Lozovoy, F.E. Gostev, A.A. Titov, S.A. Antipin, S.Y. Umanskiy: Femtosecond Raman-induced polarisation spectroscopy of coherent rotational wave packets: D-2, N-2 and NO2, Chem Phys Lett 303, p.458–466 (1999)ADSCrossRefGoogle Scholar
  438. [4.438] {Sect. 4.5.13.1}
    A.S. Grabtchikov, D.E. Gakhovich, A.G. Shvedko, V.A. Orlovich, K.J. Witte: Observation of solitary waves with different phase behavior in stimulated Raman forward scattering, Phys Rev Lett 81, p.5808–5811 (1998)ADSCrossRefGoogle Scholar
  439. [4.439] {Sect. 4.5.13.1}
    S. Klewitz, S. Sogomonian, M. Woerner, S. Herminghaus: Stimulated Raman scattering of femtosecond Bessel pulses, Opt Commun 154, p.186–190 (1998)ADSCrossRefGoogle Scholar
  440. [4.440] {Sect. 4.5.13.1}
    S. Sogomonian, G. Grigorian, K. Grigorian: Parametric suppression of Raman gain in coherent Raman probe scattering, Opt Commun 152, p.351–354 (1998)ADSCrossRefGoogle Scholar
  441. [4.441] {Sect. 4.5.13.1}
    F. Vaudelle, J. Gazengel, G. Rivoire: Experimental study of the laser and stimulated Raman scattering wave phases by a nonlinear imaging method, Opt Commun 149, p.84–88 (1998)ADSCrossRefGoogle Scholar
  442. [4.442] {Sect. 4.5.13.1}
    L. Deng, W.R. Garrett, M.G. Payne, D.Z. Lee: Observation of broadband forward hyper-Raman emission with high intensity focused laser beams, Opt Commun 142, p.253–256 (1997)ADSCrossRefGoogle Scholar
  443. [4.443] {Sect. 4.5.13.1}
    M. Ozaki, E. Ehrenfreund, R.E. Benner, T.J. Barton, K. Yoshino, Z.V. Vardeny: Dispersion of resonant Raman scattering in pi-conjugated polymers: Role of the even parity excitons, Phys Rev Lett 79, p.1762–1765 (1997)ADSCrossRefGoogle Scholar
  444. [4.444] {Sect. 4.5.13.1}
    M.R. Perrone, V. Piccinno: On the benefits of astigmatic focusing configurations in stimulated Raman scattering processes, Opt Commun 133, p.534–540 (1997)ADSCrossRefGoogle Scholar
  445. [4.445] {Sect. 4.5.13.1}
    M.R. Perrone, V. Piccinno, G. Denunzio, V. Nassisi: Dependence of rotational and vibrational Raman scattering on focusing geometry, IEEE J QE-33, p.938–944 (1997)CrossRefGoogle Scholar
  446. [4.446] {Sect. 4.5.13.1}
    F. Vaudelle, J. Gazengel, G. Rivoire: Experimental studies of the spatial coherence of forward stimulated Raman scattering in dense materials, Opt Commun 134, p.559–568 (1997)ADSCrossRefGoogle Scholar
  447. [4.447] {Sect. 4.5.13.1}
    B.H. Bairamov, A. Aydinli, I.V. Bodnar, Y.V. Rud, V.K. Nogoduyko, V.V. Toporov: High power gain for stimulated Raman amplification in CuAl, J Appl Phys 80, p.5564–5569 (1996)ADSCrossRefGoogle Scholar
  448. [4.448] {Sect. 4.5.13.1}
    M. Hofmann, H. Graener: Time resolved incoherent anti-Stokes Raman spectroscopy of dichloromethane, Chem Phys 206, p.129–137 (1996)CrossRefGoogle Scholar
  449. [4.449] {Sect. 4.5.13.1}
    V. Krylov, A. Rebane, O. Ollikainen, D. Erni, U. Wild: Stimulated Raman scattering in hydrogen by frequency- doubled amplified femtosecond Ti:sapphire laser pulses, Optics Letters 21, p.381–383 (1996)ADSCrossRefGoogle Scholar
  450. [4.450] {Sect. 4.5.13.1}
    V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild, V. Bespalov, D. Staselko: Stimulated Raman amplification of femtosecond pulses in hydrogen gas, Optics Letters 21, p.2005–2007 (1996)ADSCrossRefGoogle Scholar
  451. [4.451] {Sect. 4.5.13.1}
    A. Lau, M. Pfeiffer, A. Kummrow: Subpicosecond two-dimensional Raman spectroscopy applying broadband nanosecond laser radiation, Chem Phys Lett 263, p.435–440 (1996)ADSCrossRefGoogle Scholar
  452. [4.452] {Sect. 4.5.13.1}
    K.T. Tsen, E.D. Grann, S. Guha, J. Menendez: Electron-phonon interactions in solid C-60 studied by transient picosecond Raman spectroscopy, Appl Phys Lett 68, p.1051–1053 (1996)ADSCrossRefGoogle Scholar
  453. [4.453] {Sect. 4.5.13.1}
    A.I. Vodchitz, V.P. Kozich, P.A. Apanasevich, V.A. Orlovich: Correlations between the intensities of pump, depleted pump and Stokes waves in superbroadband stimulated Raman scattering, Opt Commun 125, p.243–249 (1996)ADSCrossRefGoogle Scholar
  454. [4.454] {Sect. 4.5.13.1}
    B.F. Henson, G.V. Hartland, V.A. Venturo, R.A. Hertz, P.M. Felker: Stimulated Raman spectroscopy in the xx region of isotopically substituted benzene dimers: evidence for symmetrically inequivalent benzene moieties, Chem. Phys. Lett. 176, p.91–98 (1991)ADSCrossRefGoogle Scholar
  455. [4.455] {Sect. 4.5.13.1}
    J.W. Nibler, J.J. Yang: Nonlinear Raman spectroscopy of gases, Ann. Rev. Phys. Chem. 38, p.349–381 (1987)ADSCrossRefGoogle Scholar
  456. [4.456] {Sect. 4.5.13.1}
    J. Chesnoy: Determination of the modulation regime for vibrational dephasing. Demonstration on the critical Raman broadening in nitrogen, Chem. Phys. Lett. 125, p.267–271 (1986)ADSCrossRefGoogle Scholar
  457. [4.457] {Sect. 4.5.13.1}
    G.M. Gale, P. Guyot-Sionnest, W.Q. Zheng: Direct Picosecond Determination of the Character of Vibrational Line-Broadening in Liquids, Opt. Comm. 58, p.395–399 (1986)ADSCrossRefGoogle Scholar
  458. [4.458] {Sect. 4.5.13.1}
    M.L. Geirnaer, G.M. Gale: Time-resolved coherent spectroscopy of binary liquid systems: Methyl iodide in carbon disulphide, Chem. Phys. 86, p.205–211 (1984)Google Scholar
  459. [4.459] {Sect. 4.5.13.1}
    I.A. Walmsley, M.G. Raymer: Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering, Phys. Rev. Lett. 50, p.962–965 (1983)ADSCrossRefGoogle Scholar
  460. [4.460] {Sect. 4.5.13.1}
    J. Eggleston, R.L. Byer: Steady State Stimulated Raman Scattering by a Multimode Laser, IEEE J. QE-16, p.850–853 (1980)CrossRefGoogle Scholar
  461. [4.461] {Sect. 4.5.13.1}
    R. Frey, F. Pradere: High-efficiency narrow-linewidth Raman amplification and spectral compession, Opt. Lett. 5, p.374–376 (1980)ADSCrossRefGoogle Scholar
  462. [4.462] {Sect. 4.5.13.1}
    J.P. Heritage, D.L. Aliara: Surface picosecond Raman gain spectra of a molecular monolayer, Chem. Phys. Lett. 74, p.507–510 (1980)ADSCrossRefGoogle Scholar
  463. [4.463] {Sect. 4.5.13.1}
    B.F. Levine, C.G. Bethea, A.R. Tretola, M. Korngor: Stimulated Raman scattering from 20-A layers of silicon on sapphire, Appl. Phys. Lett. 37, p.595–597 (1980)ADSCrossRefGoogle Scholar
  464. [4.464] {Sect. 4.5.13.1}
    J.B. Grun, A.K. McQuillan, B.P. Stoicheff: Intensity and Gain Measurements on the Stimulated Raman Emission in Liquid O2 and N2, Phys. Rev. 180p.61–68 (1969)ADSCrossRefGoogle Scholar
  465. [4.465] {Sect. 4.5.13.1}
    D. von der Linde, M. Maier, W. Kaiser: Quantitative Investigations of the Stimulated Raman Effect Using Subnanosecond Light Pulses, Phys. Rev. 178, p.11–17 (1969)ADSCrossRefGoogle Scholar
  466. [4.466] {Sect. 4.5.13.1}
    N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova: Controlled Stimulated Raman Amplification and Oscillation in Hydrogen Gas, IEEE J. QE-3, p.197–201 (1967)CrossRefGoogle Scholar
  467. [4.467] {Sect. 4.5.13.1}
    E.E. Hagenlocker, R.W. Minck, W.G. Rado: Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases, Phys. Rev. 154, p.226–233 (1967)ADSCrossRefGoogle Scholar
  468. [4.468] {Sect. 4.5.13.1}
    P. Lallemand, P. Simova, G. Bret: Pressure-Induced Line Shift and Collisional Narrowing in Hydrogen Gas Determined by Stimulated Raman Emission, Phys. Rev. Lett. 17, p.1239–1241 (1966)ADSCrossRefGoogle Scholar
  469. [4.469] {Sect. 4.5.13.1}
    D. Cotter, D.C. Hanna, R. Wyatt: Infrared Stimulated Raman Generation Effects of Gain Focussing on Threshold and Tuning Behaviour, Appl. Phys. 8, p.333–340 (1975)ADSCrossRefGoogle Scholar
  470. [4.470] {Sect. 4.5.13.1}
    XC. Rousseaux, G. Malka, J.L. Miquel, F. Amiranoff, S.D. Baton, P. Mounaix: Experimental validation of the linear theory of stimulated Raman scattering driven by a 500-fs laser pulse in a preformed under-dense plasma (vol 74, pg 4655, 1995), Phys Rev Lett 76, p.4649 (1996)ADSCrossRefGoogle Scholar
  471. [4.471] {Sect. 4.5.13.1}
    J.C. van den Heuvel, F.J.M. van Putten, R.J.L. Lerou: The Stimulated Raman Scattering Threshold for a Nondiffraction-Limited Pump Beam, IEEE J. QE-28, p.1930–1936 (1992)CrossRefGoogle Scholar
  472. [4.472] {Sect. 4.5.13.1}
    J.C. van den Heuvel: Numerical Modeling of Stimulated Raman Scattering in an Astigmatic Focus, IEEE J. QE-28, p.378–385 (1992)CrossRefGoogle Scholar
  473. [4.473] {Sect. 4.5.13.1}
    B. Dick: Response funcition theory of time-resolved CARS and CSRS of rotating molecules in liquids under general polarization conditions, Chem. Phys. 113, p.131–147 (1987)ADSCrossRefGoogle Scholar
  474. [4.474] {Sect. 4.5.13.1}
    S.A. Akhmanov, Yu. E. D’yakov, L.I. Pavlov: Statistical phenomena in Raman scattering stimulated by a broad-band pump, Sov. Phys. JETP 39, p.249–258 (1974)ADSGoogle Scholar
  475. [4.475] {Sect. 4.5.13.1}
    R.R. Alfano, S.L. Shapiro: Explanation of a Transient Raman Gain Anomaly, Phys. Rev. A 2 p.2376–2379 (1970)ADSCrossRefGoogle Scholar
  476. [4.476] {Sect. 4.5.13.1}
    R.L. Carman, F. Shimizu, C.S. Wang, N. Bloembergen: Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering, Phys. Rev. A 2, p.60–72 (1970)ADSCrossRefGoogle Scholar
  477. [4.477] {Sect. 4.5.13.1}
    Y.R. Shen, N. Bloembergen: Theory of Stimulated Brillouin and Raman Scattering, Phys. Rev. 137, p.A1787–A1805 (1965)MathSciNetADSCrossRefGoogle Scholar
  478. [4.478] {Sect. 4.5.13.1}
    M.N. Shkunov, W. Gellermann, Z.V. Vardeny: Amplified resonant Raman scattering in conducting polymer thin films, Appl Phys Lett 73, p.2878–2880 (1998)ADSCrossRefGoogle Scholar
  479. [4.479] {Sect. 4.5.13.1}
    A.S. Jeevarajan, L.D. Kispert, G. Chumanov, C. Zhou, T.M. Cotton: Resonance Raman study of carotenoid cation radicals, Chem Phys Lett 259, p.515–522 (1996)ADSCrossRefGoogle Scholar
  480. [4.480] {Sect. 4.5.13.1}
    S. Nakashima, T. Kitagawa, J.S. Olson: Time-resolved resonance Raman study of intermediates generated after photodissociation of wild-type and mutant CO-myoglobins, Chem Phys 228, p.323–336 (1998)CrossRefGoogle Scholar
  481. [4.481] {Sect. 4.5.13.1}
    T.L. Gustafson, J.F. Palmer, D.M. Roberts: The structure of SI diphenylbutadiene: UV resonance Raman and picosecond transient Raman studies, Chem. Phys. Lett. 127, p.505–511 (1986)ADSCrossRefGoogle Scholar
  482. [4.482] {Sect. 4.5.13.1}
    S. Koshihara, T. Kobayashi: Time-resoved resonance Raman spectrum of chrysene in the S1 and T1 states, J. Chem. Phys. 85, p. 1211–1219 (1986)ADSCrossRefGoogle Scholar
  483. [4.483] {Sect. 4.5.13.1}
    R. Wilbrandt, N.-H. Jensen, F.W. Langkilde: Time-resolved resonance Raman spectrum of all-trans-diphenylbutadiene in the lowest excited singlet state, Chem. Phys. Lett. III, p.123–127 (1984)ADSCrossRefGoogle Scholar
  484. [4.484] {Sect. 4.5.13.1}
    H. Hamaguchi, Ch. Kato, M. Tasumi: Observation of transient resonance Raman spectra of the S1 state of trans-stilbene, Chem. Phys. Lett. 100, p.3–7 (1983)ADSCrossRefGoogle Scholar
  485. [4.485] {Sect. 4.5.13.1}
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Surface-enhanced non-linear Raman scattering at the single-molecule level, Chem Phys 247, p.155–162 (1999)ADSCrossRefGoogle Scholar
  486. [4.486] {Sect. 4.5.13.1}
    S.M. Nie, S.R. Emery: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, p. 1102–1106 (1997)CrossRefGoogle Scholar
  487. [4.487] {Sect. 4.5.13.1}
    S.M. Nie, S.R. Emery: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, p. 1102–1106 (1997)CrossRefGoogle Scholar
  488. [4.488] {Sect. 4.5.13.1}
    V.E. Roman, J. Popp, M.H. Fields, W. Kiefer: Species identification of multicomponent microdroplets by seeding stimulated Raman scattering, J Opt Soc Am B Opt Physics 16, p.370–375 (1999)ADSCrossRefGoogle Scholar
  489. [4.489] {Sect. 4.5.13.1}
    G. Zikratov, F.Y. Yueh, J.P. Singh, O.P. Norton, R.A. Kumar, R.L. Cook: Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces, Appl Opt 38, p. 1467–1475 (1999)ADSCrossRefGoogle Scholar
  490. [4.490] {Sect. 4.5.13.1}
    T. Dreier, B. Lange, J. Wolfrum, M. Zahn: Determination of Temperature and Concentration of Molecular Nitrogen, Oxygen and Methane with Coherent Anti-Stokes Raman Scattering, Appl. Phys. B 45, p.183–190 (1988)ADSCrossRefGoogle Scholar
  491. [4.491] {Sect. 4.5.13.1}
    B.F. Levine, C.V. Shank, J.P. Heritage: Surface Vibrational Spectroscopy Using Stimulated Raman Scattering, IEEE J. QE-15, p. 1418–1432 (1979)CrossRefGoogle Scholar
  492. [4.492] {Sect. 4.5.13.1}
    T.R. Loree, R.C. Sze, D.L. Barker, P.B. Scott: New Lines in the UV: SRS of Excimer Laser Wavelengths, IEEE J. QE-15, p.337–342 (1979)CrossRefGoogle Scholar
  493. [4.493] {Sect. 4.5.13.1}
    A. DeMartino, R. Frey, F. Pradere: Tunable Far Infrared Generation in Hydrogen Fluoride, Opt. Comm. 27, p.262–266 (1978)ADSCrossRefGoogle Scholar
  494. [4.494] {Sect. 4.5.13.1}
    V. Wilke, W. Schmidt: Tunable UV-Radiation by Stimulated Raman Scattering in Hydrogen, Appl. Phys. 16, p. 151–154 (1978)ADSCrossRefGoogle Scholar
  495. [4.495] {Sect. 4.5.13.1}
    R. Frey, F. Pradere, J. Ducuing: Tunable Far-Infrared Raman Generation, Opt. Comm. 23, p.65–68 (1977)ADSCrossRefGoogle Scholar
  496. [4.496] {Sect. 4.5.13.1}
    R.L. Byer: A 16-μm Source for Laser Isotope Enrichment, IEEE J. QE-12, p.732–739 (1976)CrossRefGoogle Scholar
  497. [4.497] {Sect. 4.5.13.1}
    D. von der Linde, A. Laubereau, W, Kaiser: Molecular Vibrations in Liquids: Direct Measurement of the Molecular Dephasing Time; Determination of the Shape of Picosecond Light Pulses, Phys. Rev. Lett. 26, p.954–957 (1971)ADSCrossRefGoogle Scholar
  498. [4.498] {Sect. 4.5.13.1}
    L. Beardmore, H.G.M. Edwards, D.A. Long, T.K. Tan: Raman spectroscopic measurements of temperature in a natural gas/air flame, in Lasers in Chemistry, ed. by M.A. West (Elsevier, Amsterdam 1977)Google Scholar
  499. [4.499] {Sect. 4.5.13.1}
    M.J. Everett, A. Lal, D. Gordon, K. Wharton, C.E. Clayton, W.B. Mori, C. Joshi: Evolution of stimulated Raman into stimulated Compton scattering of laser light via wave breaking of plasma waves, Phys Rev Lett 74, p.1355–1358 (1995)ADSCrossRefGoogle Scholar
  500. [4.500] {Sect. 4.5.13.1}
    M.L. Geirnaert, G.M. Gale, C. Flytzanis: Time-Resolved Spectroscopy of Vibrational Overtones and Two-Phonon States, Phys. Rev. Lett. 52, p.815–818 (1984)ADSCrossRefGoogle Scholar
  501. [4.501] {Sect. 4.5.13.1}
    D.S. Bethune, J.R. Lankard, P.P. Sorokin: Time-resolved infrared spectral photography, Opt. Lett. 4, p. 103–105 (1979)ADSCrossRefGoogle Scholar
  502. [4.502] {Sect. 4.5.13.4}
    L.A. Carreira, M.L. Horowitz: CARS in condensed media, in Non-Linear Raman Spectroscopy and 1st Chemical Applications, ed. by W. Kiefer, D.A. Long (Reidel, Dordrecht 1982) p 367CrossRefGoogle Scholar
  503. [4.503] {Sect. 4.5.13.4}
    E.K. Gustafson, R.L. Byer: High-resolution CARS-spectro-scopy, in Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci, Vol. 40 (Springer, Berlin, Heidelberg 1983) p. 326Google Scholar
  504. [4.504] {Sect. 4.5.13.4}
    J. Bood, P.E. Bengtsson, M. Alden: Stray light rejection in rotational coherent anti-Stokes Raman spectroscopy by use of a sodium-seeded flame, Appl Opt 37, p.8392–8396 (1998)ADSCrossRefGoogle Scholar
  505. [4.505] {Sect. 4.5.13.4}
    J.C. Kirkwood, D.J. Ulness, A.C. Albrecht, M.J. Stimson: Raman spectrograms in fifth order coherent Raman scattering: The sequential CARS process in liquid benzene, Chem Phys Lett 293, p.417–422 (1998)ADSCrossRefGoogle Scholar
  506. [4.506] {Sect. 4.5.13.4}
    M. Schmitt, G. Knopp, A. Materny, W. Kiefer: The Application of Femtosecond Time-Resolved Coherent Anti-Stokes Raman Scattering for the Investigation of Ground and Excited State Molecular Dynamics of Molecules in the Gas Phase, J. Phys. Chem. A 102, p.4059–4065 (1998)CrossRefGoogle Scholar
  507. [4.507] {Sect. 4.5.13.4}
    E.J. Beiting: Coherent anti-Stokes Raman scattering velocity and translational temperature measurements in resistojets, Appl Opt 36, p.3565–3576 (1997)ADSCrossRefGoogle Scholar
  508. [4.508] {Sect. 4.5.13.4}
    J.W. Hahn, C.W. Park, S.N. Park: Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser, Appl Opt 36, p.6722–6728 (1997)ADSCrossRefGoogle Scholar
  509. [4.509] {Sect. 4.5.13.4}
    M. Schmitt, G. Knopp, A. Materny, W. Kiefer: Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: Iodine vapour, Chem Phys Lett 270, p.9–15 (1997)ADSCrossRefGoogle Scholar
  510. [4.510] {Sect. 4.5.13.4}
    G.W. Baxter, M.J. Johnson, J.G. Haub, B.J. Orr: OPO CARS: Coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers, Chem Phys Lett 251, p.211–218 (1996)ADSCrossRefGoogle Scholar
  511. [4.511] {Sect. 4.5.13.4}
    K. Ravichandran, Y. Bai, T.R. Fletcher: Techniques for stimulated Raman excitation and CARS detection of radicals created by photodissociation, Chem Phys Lett 261, p.261–266 (1996)ADSCrossRefGoogle Scholar
  512. [4.512] {Sect. 4.5.13.4}
    P.P. Yaney, J.W. Parish: Coherent anti-Stokes Raman scattering measurements of N- 2 (X, v) at low pressures corrected for stimulated Raman scattering, Appl Opt 35, p.2659–2664 (1996)ADSCrossRefGoogle Scholar
  513. [4.513] {Sect. 4.5.13.4}
    B. Dick: Response function theory of time-resolved CARS andn CSRS of rotating molecules in liquids under general polarization conditions, Chem. Phys. 113, p.131–147 (1987)ADSCrossRefGoogle Scholar
  514. [4.514] {Sect. 4.5.13.4}
    T. Hattori, A. Terasaki, T. Kobayashi: Coherent Stokes Raman scattering with incoherent light for vibrational-dephasing-time measurement, Phys. Rev. A 35, p.715–724 (1987)ADSCrossRefGoogle Scholar
  515. [4.515] {Sect. 4.5.13.4}
    H. Graener, A. Laubereau, J.W. Nibler: Picosecond coherent anti-Stokes Raman spectroscopy of molecules in free jet expansions, Opt. Lett. 9, p.165–167 (1984)ADSCrossRefGoogle Scholar
  516. [4.516] {Sect. 4.5.13.4}
    E. Gustafson, R.L. Byer: Transit Time Linewidth Limitations in CW CARS Spectroscopy, Appl Phys B 28, p.85–86 (1982)Google Scholar
  517. [4.517] {Sect. 4.5.13.4}
    E.K. Gustafson, R.L. Byer, J.C. Mcdaniel: High Resolution Continuous Wave Coherent Anti Stokes Raman Spectroscopy in a Supersonic Jet, Optics Letters 7, p.434–436 (1982)ADSCrossRefGoogle Scholar
  518. [4.518] {Sect. 4.5.13.4}
    Ch. Jung, A. Lau, H.-J. Weigmann, W. Werncke, M. Pfeiffer: Interpretation of resonance CARS and Shpolskii spectra with calculated molecular geometries, vibrational frequences and relative intensities: Chry-sene in its lowest excited singlet and triplet state, Chem. Phys. 72, p.327–336 (1982)CrossRefGoogle Scholar
  519. [4.519] {Sect. 4.5.13.4}
    S.A. Druet, J.P.E. Taran: CARS Spectroscopy, Prog. Quant. Electr. Vol. 7, p.1–72 (1981)ADSCrossRefGoogle Scholar
  520. [4.520] {Sect. 4.5.13.4}
    F. Moya, S.A.J. Druet, J.P.E. Taran: Rotation-vibration spectroscopy of gases by CARS, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hansen, S.E. Harris, Lecture Notes Phys, Vol. 43 (Springer, Berlin, Heidelberg 1975) p. 66CrossRefGoogle Scholar
  521. [4.521] {Sect. 4.5.13.4}
    J.W. Nibler, G.V. Knighten: Coherent anti-Stokes Raman spectroscopy, in Raman Spectroscopy of Gases and Liquids, ed. by A. Weber, Topics Curr. Phys, Vol. 11 (Springer, Berlin, Heidelberg 1979) Chap. 7Google Scholar
  522. [4.522] {Sect. 4.5.13.4}
    A. Zumbusch, G.R. Holtom, X.S. Xie: Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Phys Rev Lett 82, p.4142–4145 (1999)ADSCrossRefGoogle Scholar
  523. [4.523] {Sect. 4.5.13.4}
    L. Ujj, F. Jager, A. Popp, G.H. Atkinson: Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: Picosecond time-resolved resonance coherent anti-Raman spectroscopy, Chem Phys 212, p.421–436 (1996)CrossRefGoogle Scholar
  524. [4.524] {Sect. 4.5.13.5}
    T.J. Vikers: Quantitative resonance Raman spectroscopy, Appl. Spectrosc. Rev. 26, p.341 (1991)ADSCrossRefGoogle Scholar
  525. [4.525] {Sect. 4.5.13.5}
    M.D. Levenson: Feasibility of Measuring the Nonlinear Index of Refraction by Third-Order Frequency Mixing, IEEE J. QE-10, p.110–115 (1974)CrossRefGoogle Scholar
  526. [4.526] {Sect. 4.5.14}
    B. Y. Zel’dovich, N. Pilipettshii: Principles in Phase Conjugation (Springer, Heidelberg, New York, 1985)Google Scholar
  527. [4.527] {Sect. 4.5.14}
    R. A. Fischer: Optical Phase Conjugation (Academic Press, San Diego, 1983)Google Scholar
  528. [4.528] {Sect. 4.5.14}
    R.W. Hellwarth: Optical beam phase conjugation by stimulated backscattering, Opt. Eng. 21, p.257–262 (1982)ADSGoogle Scholar
  529. [4.529] {Sect. 4.5.14}
    Q. Gong, Y. Huang, J. Yang: Mechanism of optical phase conjugation by stimulated Brillouin scattering, Phys. Rev. A 39, p. 1227–1234 (1989)ADSCrossRefGoogle Scholar
  530. [4.530] {Sect. 4.5.14}
    D.A. Rockwell: A Review of Phase-Conjugate Solid-State Lasers, IEEE J. QE-24, p.1124–1140 (1988)CrossRefGoogle Scholar
  531. [4.531] {Sect. 4.5.14}
    N G. Basov, V F. Efimkov, I G. Zubarev, A.V. Kotov, S.I. Mikhailov, and M. G. Smirnov: Inversion of wavefront in SMBS of a depolarized pump, JETP Lett. 28, p.197–201 (1978)ADSGoogle Scholar
  532. [4.532] {Sect. 4.5.14}
    G. Gbur, E. Wolf: Phase conjugation with random fields and with deterministic and random scatterers, Optics Letters 24, p. 10–12 (1999)ADSCrossRefGoogle Scholar
  533. [4.533] {Sect. 4.5.14}
    G.G. Kochemasov, F.A. Starikov: Novel features of phase conjugation at SBS of beams passed through an ordered phase plate, Opt Commun 170, p.161–174 (1999)ADSCrossRefGoogle Scholar
  534. [4.534] {Sect. 4.5.14}
    D.C. Jones, G. Cook, K.D. Ridley, A.M. Scott: High reflectivity phase conjugation in the visible spectrum using stimulated Brillouin scattering in alkanes, J Nonlinear Opt Physics Mat 7, p.331–344 (1998)ADSCrossRefGoogle Scholar
  535. [4.535] {Sect. 4.5.14}
    A.A. Offenberger, D.C. Thompson, R. Fedosejevs, B. Harwood, J. Santiago, H.R. Manjunath: Experimental and Modeling Studies of a Brillouin Amplifier, IEEE J. QE-29, p.207–216 (1993)CrossRefGoogle Scholar
  536. [4.536] {Sect. 4.5.14}
    J.J. Maki, W.V. Davis, R.W. Boyd: Phase conjugation using the surface nonlinearity of a dense potassium vapor, Phys. Rev. A. 46, p.7155–7161 (1992)ADSCrossRefGoogle Scholar
  537. [4.537] {Sect. 4.5.14}
    R. Saxena, P. Yeh: Mutually pumped phase conjugation in Kerr media and the effects of external seeding, J. Opt. Soc. Am. B 7, p.326–334 (1990)ADSCrossRefGoogle Scholar
  538. [4.538] {Sect. 4.5.14}
    V.N. Blashuk, B. Ya. Zel’dovich, V.N. Krasheninnikov, N.A. Mel’nikov, N.F. Pilipetskii, V.V. Ragul’skii, V.V. Shkunov: SBS wave front reversal for the depolarized light-theory and experiment, Opt. Comm. 27, p.137–141 (1978)ADSCrossRefGoogle Scholar
  539. [4.539] {Sect. 4.5.14}
    A. Yariv: Phase Conjugate Optics and Real-Time Holography, IEEE J. QE-14, p.650–660 (1978)CrossRefGoogle Scholar
  540. [4.540] {Sect. 4.5.14}
    B.Ya. Zel’dovich, V.V. Shkupov: Reversal of wave front of light in the case of depolarized pumping, Sov. Phys. JETP 48, p.214–219 (1978)ADSGoogle Scholar
  541. [4.541] {Sect. 4.5.14}
    G.G. Kochemasov, V.D. Nikolaev: Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering, Sov. J. Quantum Electron. 7, p.60–63 (1977)ADSCrossRefGoogle Scholar
  542. [4.542] {Sect. 4.5.14}
    E. Bochove: Theory of a variable aperture phase conjugate mirror with application to an optical cavity, J. Appl. Phys. 59, p.3360–3362 (1986)ADSCrossRefGoogle Scholar
  543. [4.543] {Sect. 4.5.14}
    P. Suni, J. Falk: Theory of phase conjugation by stimulated Brillouin scattering, J. Opt. Soc. Am. B 3, p.1681–1691 (1986)ADSCrossRefGoogle Scholar
  544. [4.544] {Sect. 4.5.14}
    N.B. Baranova, B.Ya. Zel’dovich: Wavefront reversal of focused beams (theory of stimulated Brillouin backscattering), Sov. J. Quantum Electron. 10, p.555–560 (1980)CrossRefGoogle Scholar
  545. [4.545] {Sect. 4.5.14}
    R.W. Hellwarth: Theory of phase conjugation by stimulated scattering in a waveguide, J. Opt. Soc. Am. 68, p. 1050–1056 (1978)ADSCrossRefGoogle Scholar
  546. [4.546] {Sect. 4.5.14}
    B.Ya. Zel’dovich, V.V. Shkunov: Limits of existance of wave-front reversal in stimulated light scattering, p. 15–20 (1978)Google Scholar
  547. [4.547] {Sect. 4.5.14}
    G.G. Kochemasov, V.D. Nikolaev: Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering, Sov. J. Quantum Electron. 7, p.60–63 (1977)ADSCrossRefGoogle Scholar
  548. [4.548] {Sect. 4.5.14}
    R.G. Harrison, V.I. Kovalev, W.P. Lu, D.J. Yu: SBS self-phase conjugation of CWNd: YAG laser radiation in an optical fibre, Opt Commun 163, p.208–211 (1999)ADSCrossRefGoogle Scholar
  549. [4.549] {Sect. 4.5.14}
    H. Naruse, M. Tateda: Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber, Appl Opt 38, p.6516–6521 (1999)ADSCrossRefGoogle Scholar
  550. [4.550] {Sect. 4.5.14}
    E. Peral, A. Yariv: Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering, IEEE J. QE-35, p.1185–1195 (1999)CrossRefGoogle Scholar
  551. [4.551] {Sect. 4.5.14}
    H.J. Eichler, J. Kunde, B. Liu: Quartz fibre phase conjugators with high fidelity and reflectivity, Opt. Comm. 139, p.327–334 (1997)ADSCrossRefGoogle Scholar
  552. [4.552] {Sect. 4.5.14}
    Ch. Lorattanasane, K.Kikuchi: Desing of Long-Distance Optical Transmission Systems Using Midway Optical Phase Conjugation, IEEE Phot. Techn. Lett. 7, p.1375–1377 (1995)ADSCrossRefGoogle Scholar
  553. [4.553] {Sect. 4.5.14}
    S. Wabnitz: Nonlinear Enhancement and Optimization of Phase-Conjugation Efficiency in Optical Fibers, IEEE Phot. Techn. Lett. 7, p.652–654 (1995)ADSCrossRefGoogle Scholar
  554. [4.554] {Sect. 4.5.14}
    M. Yu, G.P. Agrawal, C.J. McKinstrie: Effect of Residual Dispersion in the Phase-Conjugation Fiber on Dispersion Compensation in Optical Communication Systems, IEEE Phot. Techn. Lett. 7, p.932–934 (1995)ADSCrossRefGoogle Scholar
  555. [4.555] {Sect. 4.5.14}
    X. Zhang, F. Ebskamp, B.F. Jorgensen: Long-Distance Transmission Over Standard Fiber by Use of Mid-Way Phase Conjugation, IEEE Phot. Techn. Lett. 7, p.819–821 (1995)ADSCrossRefGoogle Scholar
  556. [4.556] {Sect. 4.5.14}
    P. Shalev, St. Jackel, R. Lallouz, A. Borenstein: Low-threshold phase conjugate mirrors based on position-insensitive tapered waveguides, Opt. Eng. 33, p.278–284 (1994)ADSCrossRefGoogle Scholar
  557. [4.557] {Sect. 4.5.14}
    W. Wu, P. Yeh, S. Chi: Phase Conjugation by Four-Wave Mixing in Single-Mode Fibers, IEEE J. QE-6, p.1448–1450 (1994)Google Scholar
  558. [4.558] {Sect. 4.5.14}
    E.P. Ippen, R.H. Stolen: Stimulated Brillouin scattering in optical fibers, Appl. Phys. Lett. 21, p.539–541 (1972)ADSCrossRefGoogle Scholar
  559. [4.559] {Sect. 4.5.14}
    S. Jackel, P. Shalev, R. Lallouz: Experimental and theoretical investigation of statistical fluctuations in phase conjugate mirror reflectivity, Opt. Comm. 101, p.411–415 (1993)ADSCrossRefGoogle Scholar
  560. [4.560] {Sect. 4.5.14}
    M.S. Mangir, D.A. Rockwell: 4.5-J Brilloin phase-conjugate mirror producing excellent mear-and far-field fidelity, J. Opt. Soc. Am. B 10, p.1396–1400 (1993)ADSCrossRefGoogle Scholar
  561. [4.561] {Sect. 4.5.14}
    C.B. Dane, W.A. Neuman, L.A. Hackel: Pulse-shape dependence of stimulated-Brillouin-scattering phase-conjugation fidelity for high input energies, Opt. Lett. 17, p.1271–1273 (1992)ADSCrossRefGoogle Scholar
  562. [4.562] {Sect. 4.5.14}
    R.W.F. Gross, S.T. Amimoto, L.Garman-Du Vall: Gain and phase-conjugation fidelity of a four-wave Brillouin mirror based on methane, Opt. Lett. 16, p.94–96 (1991)ADSCrossRefGoogle Scholar
  563. [4.563] {Sect. 4.5.14}
    J.J. Ottusch, D.A. Rockwell: Stimulated Brillouin scattering phase-conjugation fidelity fluctuations, Opt. Lett. 16, p.369–371 (1991)ADSCrossRefGoogle Scholar
  564. [4.564] {Sect. 4.5.14}
    I.Yu. Anikeev, D.A. Glazkov, A.A. Gordeev, I.G. Zubarev, S.I. Mikhailov: Polarization and aperture losses in systems with phase conjugation mirrors, Int. J. Optoelectron. 4, p.489–500 (1989)Google Scholar
  565. [4.565] {Sect. 4.5.14}
    V.N. Alekseev, V.V. Golubev, D.I. Dmitriev, A.N. Zhilin, V.V. Lyubimov, A.A. Mak, V.I. Reshetnikov, V.S. Sirazetdinov, A.D. Starikov: Investigation of wavefront reversal in a phosphate glass laser amplifier with a 12-cm output aperture, Sov. J. Quantum Electron. 17, p.455–458 (1987)ADSCrossRefGoogle Scholar
  566. [4.566] {Sect. 4.5.14}
    P. Suni, J. Falk: Measurements of stimulated Brillouin scattering phase-conjugate fidelity, Opt. Lett. 12, p.838–840 (1987)ADSCrossRefGoogle Scholar
  567. [4.567] {Sect. 4.5.14}
    R.L. Abrams, C.R. Giuliano, J.F. Lam: On the equality of stimulated Brillouin scattering reflectivity to conjugate reflectivity of a weak probe beam, Opt. Lett. 6, p.131–132 (1981)ADSCrossRefGoogle Scholar
  568. [4.568] {Sect. 4.5.14}
    B.Ya. Zel’dovich, T.V. Yakovleva: Small-scale distortions in wavefront reversal of a beam with incomplete spatial modulation (stimulated Brillouin backscattering, theory), Sov. J. Quantum Electron. 10, p. 181–186 (1980)CrossRefGoogle Scholar
  569. [4.569] {Sect. 4.5.14}
    V. Wang, C.R. Giuliano: Correction of phase aberrations via stimulated Brillouin scattering, Opt. Lett. 2, p.4–6 (1978)ADSCrossRefGoogle Scholar
  570. [4.570] {Sect. 4.5.14}
    M. Ostermeyer, A. Heuer, R. Menzel: 27 Watt Average Output Power with 1.2 DL Beam Quality from a Single Rod Nd: YAG-Laser with Phase Conjugating SBS-Mirror, IEEE J. QE-34, p.372–377 (1998)Google Scholar
  571. [4.571] {Sect. 4.5.14}
    H.L. Offerhaus, H.P. Godfried, W.J. Witteman: Al solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror, Opt. Comm. 128, p.61–65 (1996)ADSCrossRefGoogle Scholar
  572. [4.572] {Sect. 4.5.14}
    C.B. Dane, L.E. Zapata, W.A. Neumann, M.A. Norton, L.A. Hackel: Design and Operation of a 150 W Near Diffraction-Limited Laser Amplifier with SBS Wavefront Correction, IEEE J. QE-31, p.148–163 (1995)CrossRefGoogle Scholar
  573. [4.573] {Sect. 4.5.14}
    H.J. Eichler, A. Haase, R. Menzel: 100 Watt Average Output Power 1.2* Diffraction Limited Beam From Pulsed Neodym Single Rod Amplifier with SBS-Phaseconjugation, IEEE J. QE-31, p.1265–1269 (1995)CrossRefGoogle Scholar
  574. [4.574] {Sect. 4.5.14}
    I.C. Khoo, H. Li, P.G. LoPresti, Y. Liang: Observation of optical limiting and backscattering of nanosecond laser pulses in liquid-crystal fibers, Opt. Lett. 19, p.530–532 (1994)ADSCrossRefGoogle Scholar
  575. [4.575] {Sect. 4.5.14}
    D.S. Sumida, C.J. Jones, R.A. Rockwell: An 8.2 J Phase Conjugating Solid-State Laser Coherently Combining Eight Parallel Amplifiers, IEEE J. QE-30, p.2617–2627 (1994)CrossRefGoogle Scholar
  576. [4.576] {Sect. 4.5.14}
    O.V. Kulagin, G.A. Pasmanik, A.A. Shilov: Amplification and phase conjugation of weak signals, Sov. Phys. Usp. 35, p.506–519 (1992)ADSCrossRefGoogle Scholar
  577. [4.577] {Sect. 4.5.14}
    O.V. Kulagin, P.B. Potlov, A.A. Shilov: Phase conjugation of microsecond pulses by forward Brillouin scattering, Sov. J. Quantum Electron. 22, p.1012–1015 (1992)ADSCrossRefGoogle Scholar
  578. [4.578] {Sect. 4.5.14}
    G.J. Crofts, M.J. Damzen: Experimental and theoretical investigation of two-cell stimulated-Brillouin-scattering systems, J. Opt. Soc. Am. B 8, p.2282–2288 (1991)ADSCrossRefGoogle Scholar
  579. [4.579] {Sect. 4.5.14}
    I.D. Carr, D.C. Hanna: Performance of a Nd:YAG Oscillator/Amplifier with Phase-Conjugation via Stimulated Brillouin Scattering, Appl. Phys. B 36, p.83–92 (1985)ADSCrossRefGoogle Scholar
  580. [4.580] {Sect. 4.5.14}
    D.T. Hon: Applications of wavefront reversal by stimulated Brillouin scattering, Opt. Eng. 21, p.252–256 (1982)CrossRefGoogle Scholar
  581. [4.581] {Sect. 4.5.14}
    M. Slatkine, I.J. Bigio, B.J. Feldman, R.A. Fisher: Efficient phase conjugation of an ultraviolet XeF laser beam by stimulated Brillouin scattering, Opt. Lett. 7, p.108–110 (1982)ADSCrossRefGoogle Scholar
  582. [4.582] {Sect. 4.5.14}
    V.F. Efimkov, I.G. Zubarev, A.V. Kotov, A.B. Mironov, S.I. Mikhailov, M.G. Smirnov: Investigations of systems for obtaining short high-power pulses by wavefront reversal of the radiation in a stimulated Brillouin scattering mirror, Sov. J. Quant. Electron. 10, p.211–214 (1980)ADSCrossRefGoogle Scholar
  583. [4.583] {Sect. 4.5.14}
    T. Omatsu, N. Hayashi, H. Watanabe, A. Hasegawa, M. Tateda: Tunable, visible phase conjugator with a saturable-amplifier polymer laser dye, Optics Letters 23, p.1432–1434 (1998)ADSCrossRefGoogle Scholar
  584. [4.584] {Sect. 4.5.14}
    V.S. Sudarshanam, M. Croningolomb, P.R. Hemmer, M.S. Shahriar: Turbulence-aberration correction with high-speed high-gain optical phase conjugation in sodium vapor, Optics Letters 22, p. 1141–1143 (1997)ADSCrossRefGoogle Scholar
  585. [4.585] {Sect. 4.5.14}
    D. Udaiyan, K.S. Syed, R.P.M. Green, D.H. Kim, M.J. Damzen: Transient modelling of double-pumped phase conjugation in inverted Nd:YAG, Opt Commun 133, p.596–604 (1997)ADSCrossRefGoogle Scholar
  586. [4.586] {Sect. 4.5.14}
    A. Grunnetjepsen, C.L. Thompson, W.E. Moerner: Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier, Science 277, p.549–552 (1997)CrossRefGoogle Scholar
  587. [4.587] {Sect. 4.5.14}
    I.C. Khoo, H. Li, Y. Liang: Self-starting optical phase conjugation in dyed nematic liquid crystals with a stimulated thermal-scattering effect, Opt. Lett. 18, p.1490–1492 (1993)ADSCrossRefGoogle Scholar
  588. [4.588] {Sect. 4.5.14}
    S.A. Korol’kov, A.V. Mamaev, V.V. Shkunov: Mutual phase conjugation of temporally nonoverlapping optical beams, Sov. J. Quantum Electron. 22, p.861–864 (1992)ADSCrossRefGoogle Scholar
  589. [4.589] {Sect. 4.5.14}
    I.C. Winkler, M.A. Norton, Adaptive phase compensation in a Raman look-through configuration, Opt. Lett. 14, p.69–71 (1989)ADSCrossRefGoogle Scholar
  590. [4.590] {Sect. 4.5.14}
    R.C. Desai, M.D. Levenson, J.A. Barker: Forced Rayleigh scattering: Thermal and acoustic effects in phase-conjugate wave-front generation, Phys. Rev. A 27, p. 1968–1976 (1983)ADSCrossRefGoogle Scholar
  591. [4.591] {Sect. 4.6}
    E. Constant, D. Garzella, P. Breger, E. Mevel, C. Dorrer, C. LeBlanc, F. Salin, P. Agostini: Optimizing high harmonic generation in absorbing gases: Model and experiment, Phys Rev Lett 82, p. 1668–1671 (1999)ADSCrossRefGoogle Scholar
  592. [4.598] {Sect. 4.6}
    C.G. Durfee, A.R. Rundquist, S. Backus, C. Herne, M.M. Murnane, H.C. Kapteyn: Phase matching of high-order harmonics in hollow waveguides, Phys Rev Lett 83, p.2187–2190 (1999)ADSCrossRefGoogle Scholar
  593. [4.592] {Sect. 4.6}
    K. Midorikawa, Y. Tamaki, J. Itatani, Y. Nagata, M. Obara: Phase-matched high-order harmonic generation by guided intense femtosecond pulses, IEEE J Sel Top Quantum Electr 5, p.1475–1485 (1999)CrossRefGoogle Scholar
  594. [4.593] {Sect. 4.6}
    A. Rundquist, C.G. Durfee, Z.H. Chang, C. Herne, S. Backus, M.M. Murnane, H.C. Kapteyn: Phase-matched generation of coherent soft X-rays, Science 280, p.1412–1415 (1998)ADSCrossRefGoogle Scholar
  595. [4.594] {Sect. 4.6}
    Z.H. Chang, A. Rundquist, H.W. Wang, M.M. Murnane, H.C. Kapteyn: Generation of coherent soft X rays at 2.7 nm using high harmonics, Phys Rev Lett 79, p.2967–2970 (1997)ADSCrossRefGoogle Scholar
  596. [4.595] {Sect. 4.6}
    I.P. Christov, M.M. Murnane, H.C. Kapteyn: High-harmonic generation of attosecond pulses in the “single-cycle” regime, Phys Rev Lett 78, p.1251–1254 (1997)ADSCrossRefGoogle Scholar
  597. [4.596] {Sect. 4.6}
    B.K. Dey, B.M. Deb: A theoretical study of the high-order harmonics of a 200 nm laser from H-2 and HeH+, Chem Phys Lett 276, p. 157–163 (1997)ADSGoogle Scholar
  598. [4.597] {Sect. 4.6}
    S. Meyer, H. Eichmann, T. Menzel, S. Nolte, B. Wellegehausen, B.N. Chichkov, C. Momma: Phase-matched high-order difference-frequency mixing in plasmas, Phys Rev Lett 76, p.3336–3339 (1996)ADSCrossRefGoogle Scholar
  599. [4.599] {Sect. 4.6}
    H. Ono, Y. Harato: Higher-order optical nonlinearity observed in host-guest liquid crystals, J Appl Phys 85, p.676–680 (1999)ADSCrossRefGoogle Scholar
  600. [4.600] {Sect. 4.6}
    Y.S. Lee, M.C. Downer: Reflected fourth-harmonic radiation from a centrosymmetric crystal, Optics Letters 23, p.918–920 (1998)ADSCrossRefGoogle Scholar
  601. [4.601] {Sect. 4.6}
    A.V. Balakin, D. Boucher, E. Fertein, P. Masselin, A.V. Pakulev, A.Y. Resniansky, A.P. Shkurinov, N.I. Koroteev: Experimental observation of the interference of three- and five-wave mixing processes into the signal of second harmonic generation in bacteriorhodopsin solution, Opt Commun 141, p.343–352 (1997)ADSCrossRefGoogle Scholar
  602. [4.602] {Sect. 4.6}
    C.C. Tian, P.Q. Wang, T.H. Sun: Generation of tunable coherent VUV radiation by four-wave sum-mixing in Ne, Opt Commun 132, p.248–250 (1996)CrossRefGoogle Scholar
  603. [4.603] {Sect. 4.6}
    C. Altucci, R. Bruzzese, D. D’Antuoni, C. deLisio, S. Solimeno: Harmonic generation in gases by use of Bessel-Gauss laser beams, J Opt Soc Am B Opt Physics 17, p.34–42 (2000)ADSCrossRefGoogle Scholar
  604. [4.604] {Sect. 4.6}
    J.C. Kirkwood, A.C. Albrecht, D.J. Ulness: Fifth-order nonlinear Raman processes in molecular liquids using quasi-cw noisy light. I. Theory, J Chem Phys 111, p.253–271 (1999)ADSCrossRefGoogle Scholar
  605. [4.605] {Sect. 4.6}
    Y. Tanimura: Fifth-order two-dimensional vibrational spectroscopy of a Morse potential system in condensed phases, Chem Phys 233, p.217–229 (1998)ADSCrossRefGoogle Scholar
  606. [4.606] {Sect. 4.6}
    D. Sarkisyan, G. Torosyan, K. Pokhsrarian, K. Petrossian: Fifth harmonic generation and measurements of the 7th order correlation vapor, Opt Commun 127, p.205–209 (1996)ADSCrossRefGoogle Scholar
  607. [4.607] {Sect. 4.6}
    Th. Tsang: Third- and fifth-harmonic generation at the interfaces of glass and liquids, Phys. Rev. A 54, p.5454–5457 (1996)ADSCrossRefGoogle Scholar
  608. [4.608] {Sect. 4.6}
    K. Tominaga, K. Yoshihara: Fifth order optical response of liquid CS2 observed by ultrafast nonresonant six-wave mixing, Phys Rev Lett 74, p.3061–3064 (1995)ADSCrossRefGoogle Scholar
  609. [4.609] {Sect. 4.6}
    J. Reintjes, R.C. Eckardt, C.Y. She, N.E. Karangelen, R.C. Elton, R.A. Andrews: Generation of Coherent Radiation at 53.2 nm by Fifth-Harmonic Conversion, Phys. Rev. Lett. 37, p.1540–1543 (1976)ADSCrossRefGoogle Scholar
  610. [4.610] {Sect. 4.6}
    J. Reintjes, C.Y. She, R.C. Eckardt, N.E. Karangelen, R.A. Andrews, R.C. Elton: Seventh harmonic conversion of mode-locked laser pulses to 38.0 nm, Appl. Phys. Lett. 30, p.480–482 (1977)ADSCrossRefGoogle Scholar
  611. [4.611] {Sect. 4.6}
    X.M. Tong, S.I. Chu: Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method, Chem Phys 217, p.119–130 (1997)ADSCrossRefGoogle Scholar
  612. [4.612] {Sect. 4.6}
    M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, T. Brabec: Light propagation in field-ionizing media: Extreme nonlinear optics, Phys Rev Lett 83, p.2930–2933 (1999)ADSCrossRefGoogle Scholar
  613. [4.613] {Sect. 4.6}
    D.B. Milosevic, A.F. Starace: Magnetic-field-induced intensity revivals in harmonic generation, Phys Rev Lett 82, p.2653–2656 (1999)ADSCrossRefGoogle Scholar
  614. [4.614] {Sect. 4.6}
    H.J. Shin, D.G. Lee, Y.H. Cha, K.H. Hong, C.H. Nam: Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field, Phys Rev Lett 83, p.2544–2547 (1999)ADSCrossRefGoogle Scholar
  615. [4.615] {Sect. 4.6}
    G. vandeSand, J.M. Rost: Irregular orbits generate higher harmonics, Phys Rev Lett 83, p.524–527 (1999)ADSCrossRefGoogle Scholar
  616. [4.616] {Sect. 4.6}
    P. Salieres, P. Antoine, A. deBohan, M. Lewenstein: Temporal and spectral tailoring of high-order harmonics, Phys Rev Lett 81, p.5544–5547 (1998)ADSCrossRefGoogle Scholar
  617. [4.617] {Sect. 4.6}
    R. Zerne, C. Altucci, M. Bellini, M.B. Gaarde, T.W. Hansch, A. L’Huillier, C. Lynga, C.G. Wahlstrom: Phase-locked high-order harmonic sources, Phys Rev Lett 79, p.1006–1009 (1997)ADSCrossRefGoogle Scholar
  618. [4.618] {Sect. 4.6}
    V.V. Goloviznin, P.W. van Amersfort: Generation of ultrahigh harmonics with a two-stage free electron laser and a seed laser, Phys. Rev. E 55, p.6002–6010 (1997)ADSCrossRefGoogle Scholar
  619. [4.619] {Sect. 4.6}
    D. Descamps, C. Lynga, J. Norin, A. L’Huillier, C.G. Wahlstrom, J.F. Hergott, H. Merdji, P. Salières, M. Bellini, T.W. Hansch: Extreme ultraviolet interferometry measurements with high-order harmonics, Optics Letters 25, p. 135–137 (2000)ADSCrossRefGoogle Scholar
  620. [4.620] {Sect. 4.6}
    A. Ishizawa, K. Inaba, T. Kanai, T. Ozaki, H. Kuroda: High-order harmonic generation from a solid surface plasma by using a picosecond laser, IEEE J QE-35, p.60–65 (1999)CrossRefGoogle Scholar
  621. [4.621] {Sect. 4.6}
    B. Sheehy, J.D.D. Martin, L.F. DiMauro, P. Agostini, K.J. Schafer, M.B. Gaarde, K.C. Kulander: High harmonic generation at long wavelengths, Phys Rev Lett 83, p.5270–5273 (1999)ADSCrossRefGoogle Scholar
  622. [4.622] {Sect. 4.6}
    C. deLisio, C. Altucci, C. Beneduce, R. Bruzzese, F. DeFilippo, S. Solimeno, M. Bellini, A. Tozzi, G. Tondello, E. Pace: Analysis of efficient generation and spatial intensity profiles of high-order harmonic beams produced at high repetition rate, Opt Commun 146, p.316–324 (1998)ADSCrossRefGoogle Scholar
  623. [4.623] {Sect. 4.6}
    A. Goehlich, U. Czarnetzki, H.F. Dobele: Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding, Appl Opt 37, p.8453–8459 (1998)ADSCrossRefGoogle Scholar
  624. [4.624] {Sect. 4.6}
    G. Sommerer, E. Mevel, J. Hollandt, D. Schulze, P.V. Nickles, G. Ulm, W. Sandner: Absolute photon number measurement of high-order harmonics in the extreme UV, Opt Commun 146, p.347–355 (1998)ADSCrossRefGoogle Scholar
  625. [4.625] {Sect. 4.6}
    D.M. Chambers, S.G. Preston, M. Zepf, M. Castrocelin, M.H. Key, J.S. Wark, A.E. Dangor, A. Dyson, D. Neely, P.A. Norreys: Imaging of high harmonic radiation emitted during the interaction of a 20 TW laser with a solid target, J Appl Phys 81, p.2055–2058 (1997)ADSCrossRefGoogle Scholar
  626. [4.626] {Sect. 4.6}
    P. Gibbon: High-order harmonic generation in plasmas, IEEE J. QE-33, p.1915–1924 (1997)CrossRefGoogle Scholar
  627. [4.627] {Sect. 4.6}
    R. Hassner, W. Theobald, S. Niedermeier, H. Schillinger, R. Sauerbrey: High-order harmonics from solid targets as a probe for high-density plasmas, Optics Letters 22, p.1491–1493 (1997)ADSCrossRefGoogle Scholar
  628. [4.628] {Sect. 4.6}
    B.F. Shen, W. Yu, G.H. Zeng, Z.Z. Xu: High order harmonic generation due to nonlinear Thomson scattering, Opt Commun 136, p.239–242 (1997)CrossRefGoogle Scholar
  629. [4.629] {Sect. 4.6}
    M.P. Bogdanov, S.A. Dimakov, A.V. Gorlanov, D.A. Goryachkin, A.M. Grigorev, V.M. Irtuganov, V.P. Kalinin, S.I. Klimentev, I.M. Kozlovskaya, I.B. Orlova, et al.: Correction of segmented mirror aberrations by phase conjugation and dynamic holography, Opt Commun 129, p.405–413 (1996)ADSGoogle Scholar
  630. [4.630] {Sect. 4.6}
    I.P. Christov, J. Zhou, J. Peatross, A. Rundquist, M.M. Murnane, H.C. Kapteyn: Nonadiabatic effects in high-harmonic generation with ultrashort pulses, Phys Rev Lett 77, p.1743–1746 (1996)ADSCrossRefGoogle Scholar
  631. [4.631] {Sect. 4.6}
    T. Ditmire, E.T. Gumbrell, R.A. Smith, J.W.G. Tisch, D.D. Meyerhofer, M.H.R. Hutchinson: Spatial coherence measurement of soft x-ray radiation produced by high order harmonic generation, Phys Rev Lett 77, p.4756–4759 (1996)ADSCrossRefGoogle Scholar
  632. [4.632] {Sect. 4.6}
    T.D. Donnelly, T. Ditmire, K. Neuman, M.D. Perry, R.W. Falcone: High-order harmonic generation in atom clusters, Phys Rev Lett 76, p.2472–2475 (1996)ADSCrossRefGoogle Scholar
  633. [4.633] {Sect. 4.6}
    Y. Kobayashi, O. Yoshihara, Y. Nabekawa, K. Kondo, S. Watanabe: Femtosecond measurement of high-order harmonic pulse width and electron recombination time by field ionization, Optics Letters 21, p.417–419 (1996)ADSCrossRefGoogle Scholar
  634. [4.634] {Sect. 4.6}
    I. Mercer, E. Mevel, R. Zerne, A. L’Huillier, P. Antoine, C.G. Wahlstrom: Spatial mode control of high-order harmonics, Phys Rev Lett 77, p.1731–1734 (1996)ADSCrossRefGoogle Scholar
  635. [4.635] {Sect. 4.6}
    Y. Nagata, K. Midorikawa, M. Obara, K. Toyoda: High-order harmonic generation by subpicosecond KrF excimer laser pulses, Optics Letters 21, p.15–17 (1996)ADSCrossRefGoogle Scholar
  636. [4.636] {Sect. 4.6}
    P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang, P. Lee, M. Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, et al.: Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets, Phys Rev Lett 76, p.1832–1835 (1996)ADSCrossRefGoogle Scholar
  637. [4.637] {Sect. 4.6}
    J. Zhou, J. Peatross, M.M. Murnane, H.C. Kapteyn: Enhanced high-harmonic generation using 25 fs laser pulses, Phys Rev Lett 76, p.752–755 (1996)ADSCrossRefGoogle Scholar
  638. [4.638] {Sect. 4.6}
    S. Varró, F. Ehlotzky: Higher harmonic generation at metal surfaces by powerful femtosecond laser pulses, Phys. Rev. A 54, p.3245–3249 (1996)ADSCrossRefGoogle Scholar
  639. [4.639] {Sect. 4.6}
    S.E. Harris: Generation of Vacuum-Ultraviolet and Soft-X-Ray Radiation Using High-Order Nonlinear Optical Polarizabilities, Phys. Rev. Lett. 31, p.341–344 (1973)ADSCrossRefGoogle Scholar
  640. [4.640] {Sect. 4.6}
    A.H. Kung, J.F. Young, S.E. Harris: Generation of 1182-A radiation in phase-matched mixtures of inert gases, Appl. Phys. Lett. 22, (Erratum: 28, 239 (1976))p.301–302 (1973)ADSCrossRefGoogle Scholar
  641. [4.641] {Sect. 4.7}
    J. V. Moloney (ed.): Nonlinear Optical Materials (Springer, New York, Berlin, Heidelberg, 1998)MATHGoogle Scholar
  642. [4.642] {Sect. 4.7}
    G. P. Agrawal: Nonlinear Fiber Optics (Academic Press, San Diego, London, Boston, 1995)Google Scholar
  643. [4.643] {Sect. 4.7}
    C. T. Chen: Development of New Nonlinear Optical Crystals in the Borate Series (Harwood Academic Publishers, Chur, 1993)Google Scholar
  644. [4.644] {Sect. 4.7}
    V. G. Dmitriev, G. Gurzadyan: Handbook of Nonlinear Optical Crystals (DA Information Services, Pty, Ltd, Australia, 1997)Google Scholar
  645. [4.645] {Sect. 4.7}
    Y. Shuto, S. Tomaru, M. Hikita, M. Amano: Optical Intensity Modulators Using Diazo-Dye-Substituted Polymer Channel Waveguides, IEEE J. QE-31, p.1451–1460 (1995)CrossRefGoogle Scholar
  646. [4.646] {Sect. 4.7}
    R.W. Hellwarth, A. Owyoung, N. George: Origin of the Nonlinear Refractive Index of Liquid CC14, Phys. Rev. A 4, p.2342–2347 (1971)ADSCrossRefGoogle Scholar
  647. [4.647] {Sect. 4.7}
    S. Chandrasekhar: Liquid Crystals 2nd ed. (Cambridge University Press, Cambridge, 1992)CrossRefGoogle Scholar
  648. [4.648] {Sect. 4.7}
    I.-C. Khoo, S.-T. Wu: Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, New Jersey, London, Hong Kong, 1993)CrossRefGoogle Scholar
  649. [4.649] {Sect. 4.7}
    Y. Reznikov, O. Ostroverkhova, K.D. Singer, J.H. Kim, S. Kumar, O. Lavrentovich, B. Wang, J.L. West: Photoalignment of liquid crystals by liquid crystals, Phys Rev Lett 84, p. 1930–1933 (2000)ADSCrossRefGoogle Scholar
  650. [4.650] {Sect. 4.7}
    J.E. Stockley, G.D. Sharp, K.M. Johnson: Fabry-Perot etalon with polymer cholesteric liquid-crystal mirrors, Optics Letters 24, p.55–57 (1999)ADSCrossRefGoogle Scholar
  651. [4.651] {Sect. 4.7}
    Y. Tabe, N. Shen, E. Mazur, H. Yokoyama: Simultaneous observation of molecular tilt and azimuthal angle distributions in spontaneously modulated liquid-crystalline Langmuir monolayers, Phys Rev Lett 82, p. 759–762 (1999)ADSCrossRefGoogle Scholar
  652. [4.652] {Sect. 4.7}
    D.V. Wick, T. Martinez, M.V. Wood, J.M. Wilkes, M.T. Gruneisen, V.A. Berenberg, M.V. Vasilev, A.P. Onokhov, L.A. Beresnev: Deformed-helix ferroelectric liquid-crystal spatial light modulator that demonstrates high diffraction efficiency and 370-line pairs mm resolution, Appl Opt 38, p.3798–3803 (1999)ADSCrossRefGoogle Scholar
  653. [4.653] {Sect. 4.7}
    M. Saito, N. Matsumoto, J. Nishimura: Measurement of the complex refractive-index spectrum for birefringent and absorptive liquids, Appl Opt 37, p.5169–5175 (1998)ADSCrossRefGoogle Scholar
  654. [4.654] {Sect. 4.7}
    S.D. Durbin, S.M. Arakelian, Y.R. Shen: Optical-Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal, Phys. Rev. Lett. 47, p.1411–1414 (1981)ADSCrossRefGoogle Scholar
  655. [4.655] {Sect. 4.7}
    E.G. Hanson, Y.R. Shen, G.K.L. Wong: Optical-field-induced refractive indices and orientational relaxation times in a homologous series of isotropic nematic substances, Phys. Rev. 14, p.1281–1289 (1976)ADSCrossRefGoogle Scholar
  656. [4.656] {Sect. 4.7}
    R.A. Mullen, J.N. Matossian: Quenching optical breakdown with an applied electric field, Opt. Lett. 15, p.601–603 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ralf Menzel
    • 1
  1. 1.Institut für PhysikUniversität PotsdamPotsdamGermany

Personalised recommendations