Advertisement

Topics in Photonics

  • Ralf Menzel
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

In this introductory chapter the term photonics and the topics of this field are explained. In particular the difference between conventional light technologies and the nonlinear optical techniques and their relations are set out. Scientific and practical aspects of photonics are mentioned.

Keywords

Phase Conjugating Flash Lamp Photonic Application Nonlinear Optical Effect Laser Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1.1] {Sect. 1.0}
    T.H. Maiman: Stimulated Optical Radiation in Ruby, Nature 187, p.493–494 (1960)ADSGoogle Scholar
  2. [1.2] {Sect. 1.3}
    A. Zeilinger: Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, p.288–297 (1999)Google Scholar
  3. [1.3] {Sect. 1.3.3}
    E.A. Cornell, C.E. Wieman: The Bose-Einstein Condensate, Scientific American, March, p.40–45 (1998)Google Scholar
  4. [1.4] {Sect. 1.3.3}
    A. Griffin, D.W. Snoke, S. Stringari (ed.): Bose-Einstein-condensation, Cambridge University Press, Cambridge, 1995)Google Scholar
  5. [1.5] {Sect. 1.3.3}
    J. Mayers: Bose-Einstein condensation and spatial correlations in He-4, Phys Rev Lett 84, p.314–317 (2000)ADSGoogle Scholar
  6. [1.6] {Sect. 1.3.3}
    E.W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y.B. Band, M. Edwards, M. Doery, P.S. Julienne, K. Helmerson, S.L. Rolston et al.: Measurement of the coherence of a Bose-Einstein condensate, Phys Rev Lett 83, p.3112–3115 (1999)ADSGoogle Scholar
  7. [1.7] {Sect. 1.3.3}
    I. Bloch, T. W. Hänsch, T. Esslinger: Atom Laser with a cw Output Coupler, Phys. Rev. Lett. 82, p.3008–3011 (1999)ADSGoogle Scholar
  8. [1.8] {Sect. 1.3.3}
    S. Inouye, A.P. Chikkatur, D.M. StamperKurn, J. Stenger, D.E. Pritchard, W. Ketterle: Superradiant Rayleigh scattering from a Bose-Einstein condensate, Science 285, p.571–574 (1999)Google Scholar
  9. [1.9] {Sect. 1.3.3}
    C.W. Gardiner, M.D. Lee, R.J. Ballagh, M.J. Davis, P. Zoller: Quantum kinetic theory of condensate growth: Comparison of experiment and theory, Phys Rev Lett 81, p.5266–5269 (1998)ADSGoogle Scholar
  10. [1.10] {Sect. 1.3.3}
    H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, J. Mlynek: Quasi-2D gas of laser cooled atoms in a planar matter waveguide, Phys Rev Lett 81, p.5298–5301 (1998)ADSGoogle Scholar
  11. [1.11] {Sect. 1.3.3}
    R. Graham: Decoherence of Bose-Einstein condensates in traps at finite temperature, Phys Rev Lett 81, p.5262–5265 (1998)ADSGoogle Scholar
  12. [1.12] {Sect. 1.3.3}
    C.K. Law, H. Pu, N.P. Bigelow: Quantum spins mixing in spinor Bose-Einstein condensates, Phys Rev Lett 81, p.5257–5261 (1998)ADSGoogle Scholar
  13. [1.13] {Sect. 1.3.3}
    U. Ernst, A. Marte, F. Schreck, J. Schuster. G. Rempe: Bose-Einstein condensation in a pure Ilffe-Pritchard field configuration, Europhys. Lett. 41, p.1–6 (1998)ADSGoogle Scholar
  14. [1.14] {Sect. 1.3.3}
    B. Saubamea, T.W. Hijmans, S. Kulin, E. Rasel, E. Peik, M. Leduc, C. Cohentannoudji: Direct measurement of the spatial correlation function of ultracold atoms, Phys Rev Lett 79, p.3146–3149 (1997)ADSGoogle Scholar
  15. [1.15] {Sect. 1.3.3}
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys Rev Lett 75, p.1687–1690 (1995)ADSGoogle Scholar
  16. [1.16] {Sect. 1.3.3}
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman: Observation of Bose-Einstein-Condensation in a Dilute Atomic Vapor, Sci-ence 269, p. 198–201 (1995)ADSGoogle Scholar
  17. [1.17] {Sect. 1.3.3}
    K.B. Davis, M.O. Mewes, M.R. Andrew, N.J. Vandruten, D.S. Durfee, D.M. Kurn, W. Ketterle: Bose-Einstein condensation in a gas of sodium atoms, Phys Rev Lett 75, p.3969–3973 (1995)ADSGoogle Scholar
  18. [1.18] {Sect. 1.3.3}
    K. Helmerson, D. Hutchinson, K. Burnett, W.D. Phillips: Atom Lasers, Phys. WorldAugustp. 31–35 (1999)Google Scholar
  19. [1.19] {Sect. 1.3.3}
    M. Trippenbach, Y.B. Band, M. Edwards, M. Doery, P.S. Julienne, E.W. Hagley, L. Deng, M. Kozuma, K. Helmerson, S.L. Rolston et al.: Coherence properties of an atom laser, J Phys B At Mol Opt Phys 33, p.47–54 (2000)ADSGoogle Scholar
  20. [1.20] {Sect. 1.3.3}
    I. Bloch, T.W. Hansch, T. Esslinger: Atom laser with a cw output coupler, Phys Rev Lett 82, p.3008–3011 (1999)ADSGoogle Scholar
  21. [1.21] {Sect. 1.3.3}
    H.P. Breuer, D. Faller, B. Kappler, F. Petruccione: Non-Markovian dynamics in pulsed- and continuous-wave atom lasers, Phys Rev A 60, p.3188–3196 (1999)ADSGoogle Scholar
  22. [1.22] {Sect. 1.3.3}
    K.G. Manohar, B.N. Jagatap: Atom laser, Curr Sci 76, p.1420–1423 (1999)Google Scholar
  23. [1.23] {Sect. 1.3.3}
    J. Schneider, A. Schenzle: Output from an atom laser: theory vs. experiment, Appl Phys B Lasers Opt 69, p.353–356 (1999)ADSGoogle Scholar
  24. [1.24] {Sect. 1.3.3}
    B. Kneer, T. Wong, K. Vogel, W.P. Schleich, D.F. Walls: Generic model of an atom laser, Phys Rev A 58, p.4841–4853 (1998)ADSGoogle Scholar
  25. [1.25] {Sect. 1.3.3}
    M. Holland, K. Burnett, C. Gardiner, J.I. Cirac, P. Zoller: Theory of an atom laser, Phys Rev A 54, p.R1757–R1760 (1996)ADSGoogle Scholar
  26. [1.26] {Sect. 1.3.3}
    M. Wilkens, R.J.C. Spreeuw, T. Pfau, U. Janicke, M. Mlynek: Towards a laser-like source of atoms, Prog Cryst Growth Charact 33, p. 385–393 (1996)Google Scholar
  27. [1.27] {Sect. 1.3.3}
    T. Pfau, U. Janicke, M. Wilkens: Laser-like scheme for atomic-matter waves, Europhys. Lett.32, p.469–474 (1995)Google Scholar
  28. [1.28] {Sect. 1.3.3}
    W.L. Power: Atom optics: matter and waves in harmony, Phil Trans Roy Soc London A 358, p.127–135 (2000)ADSzbMATHGoogle Scholar
  29. [1.29] {Sect. 1.3.3}
    M.O. Mewes, M.R. Andrews, D.M. Kum, D.S. Durfee, C.G. Townsend, W. Ketterle : Output coupler for Bose Einstein Condensation, Phys. Rev. Lett.78, p.582–585 (1997)ADSGoogle Scholar
  30. [1.30] {Sect. 1.3.3}
    C.S. Adams, M. Sigel, J. Mlynek: Atom optics, Phys. Reports 240, p.143 (1994)Google Scholar
  31. [1.31] {Sect. 1.3.4}
    C.H. Bennett, G. Brassard, A.K. Ebert: Quantum Cryptography, Scientific AmericanOctoberp.50–59 (1992)Google Scholar
  32. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics at Quantum Information (Springer, Berlin, Heidelberg, 2000)Google Scholar
  33. [1.32] {Sect. 1.3.4}
    O. Benson, C. Santori, M. Pelton, Y. Yamamoto: Regulated and entangled photons from a single quantum dot, Phys Rev Lett 84, p.2513–2516 (2000)ADSGoogle Scholar
  34. [1.33] {Sect. 1.3.4}
    M. Vasilyev, S.K. Choi, P. Kumar, G.M. DAriano: Tomographic measurement of joint photon statistics of the twin-beam quantum state, Phys Rev Lett 84, p.2354–2357 (2000)ADSGoogle Scholar
  35. [1.34] {Sect. 1.3.4}
    D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger: Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Phys Rev Lett 82, p.1345–1349 (1999)MathSciNetADSzbMATHGoogle Scholar
  36. [1.35] {Sect. 1.3.4}
    J. Brendel, N. Gisin, W. Tittel, H. Zbinden: Pulsed energy-time enangled twin-photon source for quantum communication, Phys Rev Lett 82, p.2594–2597 (1999)ADSGoogle Scholar
  37. [1.36] {Sect. 1.3.4}
    A. Kent, N. Linden, S. Massar: Optimal entanglement enhancement for mixed states, Phys Rev Lett 83, p.2656–2659 (1999)ADSGoogle Scholar
  38. [1.37] {Sect. 1.3.4}
    J.M. Merolla, Y. Mazurenko, J.P. Goedgebuer, H. Porte, W.T. Rhodes: Phase-modulation transmission system for quantum cryptography, Optics Letters 24, p.104–106 (1999)ADSGoogle Scholar
  39. [1.38] {Sect. 1.3.4}
    J.M. Merolla, Y. Mazurenko, J.P. Goedgebuer, W.T. Rhodes: Single-photon interference in sidebands of phase-modulated light for quantum cryptography, Phys Rev Lett 82, p.1656–1659 (1999)ADSGoogle Scholar
  40. [1.39] {Sect. 1.3.4}
    L. Quiroga, N.F. Johnson: Entangled Bell and Greenberger-Horne-Zeilinger states of excitons in coupled quantum dots, Phys Rev Lett 83, p.2270–2273 (1999)ADSGoogle Scholar
  41. [1.40] {Sect. 1.3.4}
    A.G. White, D.F.V. James, P.H. Eberhard, P.G. Kwiat: Non-maximally entangled states: Production, characterization, and utilization, Phys Rev Lett 83, p.3103–3107 (1999)ADSGoogle Scholar
  42. [1.41] {Sect. 1.3.4}
    D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger: Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Phys Rev Lett 82, p.1345–1349 (1999)MathSciNetADSzbMATHGoogle Scholar
  43. [1.42] {Sect. 1.3.4}
    J. Brendel, N. Gisin, W. Tittel, H. Zbinden: Pulsed energy-time enangled twin-photon source for quantum communication, Phys Rev Lett 82, p.2594–2597 (1999)ADSGoogle Scholar
  44. [1.43] {Sect. 1.3.4}
    W. Tittel, J. Brendel, N. Gisin, H. Zbinden: Long-distance Bell-type tests using energy-time entangled photons, Phys Rev A 59, p.4150–4163 (1999)MathSciNetADSGoogle Scholar
  45. [1.44] {Sect. 1.3.4}
    F. Demartini: Amplification of quantum entanglement, Phys Rev Lett 81, p.2842–2845 (1998)MathSciNetADSGoogle Scholar
  46. [1.45] {Sect. 1.3.4}
    T.C. Ralph, P.K. Lam: Teleportation with bright squeezed light, Phys Rev Lett 81, p.5668–5671 (1998)ADSGoogle Scholar
  47. [1.46] {Sect. 1.3.4}
    E.S. Polzik, J.L. Sorenson, J. Hald: Subthreshold tunable OPO: a source of nonclassical light for atomic physics experiments, Appl Phys. B 66, p.759–764 (1998)ADSGoogle Scholar
  48. [1.47] {Sect. 1.3.4}
    Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland: Deterministic entanglement of two trapped ions, Phys Rev Lett 81, p.3631–3634 (1998)ADSGoogle Scholar
  49. [1.48] {Sect. 1.3.4}
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi: Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys Rev Lett 78, p.3221–3224 (1997)ADSGoogle Scholar
  50. [1.49] {Sect. 1.3.4}(1997)
    H.B. Fei, B.M. Jost, S. Popescu, B.E.A. Saleh, M.C. Teich: Entanglement-induced two-photon transparency, Phys Rev Lett 78, p. 1679–1682Google Scholar
  51. [1.50] {Sect. 1.3.4}
    V. Blanchet, C. Nicole, M.-A. Bouchene, B. Girard: Temporal Coherent Control in Two-Photon Transitions: From Optical Interferences to Quantum Interferences, Phys. Rev. Lett. 78, p.2716–2719 (1997)ADSGoogle Scholar
  52. [1.51] {Sect. 1.3.4}
    G. Digiuseppe, F. Demartini, D. Boschi: Experimental test of the violation of local realism in quantum mechanics without Bell inequalities, Phys Rev A 56, p.176–181 (1997)ADSGoogle Scholar
  53. [1.52] {Sect. 1.3.4}
    S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B. Plenio, J.I. Cirac: Improvement of frequency standards with quantum entanglement, Phys Rev Lett 79, p.3865–3868 (1997)ADSGoogle Scholar
  54. [1.53] {Sect. 1.3.4}
    J. Brendel, E. Mohler, W. Martienssen: Time-resolved dual-beam two-photon interferences with high visibility, Phys Rev Lett 66p.11 42–1145 (1991)Google Scholar
  55. [1.54] {Sect. 1.3.4}
    Z.Y. Ou, L. Mandel: Observation of spatial quantum beating with separated photodetectors, Phys Rev Lett 61p.54–57 (1988)MathSciNetADSGoogle Scholar
  56. [1.55] {Sect. 1.3.4}
    N.J. Cerf, N. Gisin, S. Massar: Classical teleportation of a quantum bit, Phys Rev Lett 84, p.2521–2524 (2000)ADSGoogle Scholar
  57. [1.56] {Sect. 1.3.4}
    W.T. Buttler, R.J. Hughes, S.K. Lamereaux, G.L. Morgan, J.E. Nordholt, C.G. Peterson: Daylight quantum key distribution over 1.6 km, Phys. Rev. Lett. 84, p. 5652–5655 (2000)ADSGoogle Scholar
  58. [1.57] {Sect. 1.3.4}
    Th. Jennewein, Ch. Simon, G. Weihs, H. Weinfurter, A. Zeilinger: Quantum cryptography with entangled photons, Phys. Rev. Lett. 84, p.4729–4732 (2000)ADSGoogle Scholar
  59. [1.58] {Sect. 1.3.4}
    H. BechmannPasquinucci, N. Gisin: Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography, Phys Rev A 59, p.4238–4248 (1999)MathSciNetADSGoogle Scholar
  60. [1.59] {Sect. 1.3.4}
    G. Bonfrate, V. Pruned, P.G. Kazansky, P. Tapster, J.G. Rarity: Parametric fluorescence in periodically poled silica fibers, Appl Phys Lett 75, p.2356–2358 (1999)ADSGoogle Scholar
  61. [1.60] {Sect. 1.3.4}
    N. Gisin, S. Wolf: Quantum cryptography on noisy channels: Quantum versus classical key- agreement protocols, Phys Rev Lett 83, p.4200–4203 (1999)ADSGoogle Scholar
  62. [1.61] {Sect. 1.3.4}
    N. Lutkenhaus: Estimates for practical quantum cryptography, Phys Rev A 59, p.3301–3319 (1999)MathSciNetADSGoogle Scholar
  63. [1.62] {Sect. 1.3.4}
    A.V. Sergienko, M. Atature, Z. Walton, G. Jaeger, B.E.A. Saleh, M.C. Teich: Quantum cryptography using femtosecond-pulsed parametric down-conversion, Phys Rev A 60, p.R2622–R2625 (1999)ADSGoogle Scholar
  64. [1.63] {Sect. 1.3.4}
    P.D. Townsend: Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems, IEEE Photonic Technol Lett 10, p.1048–1050 (1998)ADSGoogle Scholar
  65. [1.64] {Sect. 1.3.4}
    E. Biham, T. Mor: Bounds on information and the security of quantum cryptography, Phys Rev Lett 79, p.4034–4037 (1997)ADSGoogle Scholar
  66. [1.65] {Sect. 1.3.4}
    M. Koashi, N. Imoto: Quantum cryptography based on split transmission of one- bit information in two steps, Phys Rev Lett 79, p.2383–2386 (1997)MathSciNetADSzbMATHGoogle Scholar
  67. [1.66] {Sect. 1.3.4}
    A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin: “Plug and play” systems for quantum cryptography, Appl Phys Lett 70, p.793–795 (1997)ADSGoogle Scholar
  68. [1.67] {Sect. 1.3.4}
    B.C. Jacobs, J.D. Franson: Quantum cryptography in free space, Optics Letters 21, p.1854–1856 (1996)ADSGoogle Scholar
  69. [1.68] {Sect. 1.3.4}
    M. Koashi, N. Imoto: Quantum cryptography based on two mixed states, Phys Rev Lett 77, p.2137–2140 (1996)ADSGoogle Scholar
  70. [1.69] {Sect. 1.3.4}
    A. Peres: Quantum cryptography with orthogonal states?, Phys Rev Lett 77, p.3264 (1996)MathSciNetADSzbMATHGoogle Scholar
  71. [1.70] {Sect. 1.3.5}
    S. Braunstein (ed.): Quantum Computing. (Wiley-VCH, Weinheim, New York, 1999)zbMATHGoogle Scholar
  72. [1.71] {Sect. 1.3.5}
    H.-K. Lo, T. Spiller, S. Popescu (ed.): Introduction to Quantum Computatioj and Information. (World Scientific Pub. Co, Singapore, 1998)Google Scholar
  73. [1.72] {Sect. 1.3.5}
    L.M.K. Vandersypen, M. Steffen, M.H. Sherwood, C.S. Yannoni, G. Breyta, I.L. Chuang: Implementation of a three-quantum-bit search algorithm, Appl Phys Lett 76, p.646–648 (2000)ADSGoogle Scholar
  74. [1.73] {Sect. 1.3.5}
    A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small: Quantum information processing using quantum dot spins and cavity QED, Phys Rev Lett 83, p.4204–4207 (1999)ADSGoogle Scholar
  75. [1.74] {Sect. 1.3.5}
    D. Bacon, D.A. Lidar, K.B. Whaley: Robustness of decoherence-free subspaces for quantum computation, Phys Rev A 60, p. 1944–1955 (1999)ADSGoogle Scholar
  76. [1.75] {Sect. 1.3.5}
    J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello: Distributed quantum computation over noisy channels, Phys Rev A 59, p.4249–4254 (1999)MathSciNetADSGoogle Scholar
  77. [1.76] {Sect. 1.3.5}
    J. Eisert, M. Wilkens, M. Lewenstein: Quantum games and quantum strategies, Phys Rev Lett 83, p.3077–3080 (1999)MathSciNetADSzbMATHGoogle Scholar
  78. [1.77] {Sect. 1.3.5}
    S. Lloyd, S.L. Braunstein: Quantum computation over continuous variables, Phys Rev Lett 82, p.1784–1787 (1999)MathSciNetADSzbMATHGoogle Scholar
  79. [1.78] {Sect. 1.3.5}
    M.S. Sherwin, A. Imamoglu, T. Montroy: Quantum computation with quantum dots and terahertz cavity quantum electrodynamics, Phys Rev A 60, p.3508–3514 (1999)ADSGoogle Scholar
  80. [1.79] {Sect. 1.3.5}
    L.M.K. Vandersypen, C.S. Yannoni, M.H. Sherwood, I.L. Chuang: Realization of logically labeled effective pure states for bulk quantum computation, Phys Rev Lett 83, p.3085–3088 (1999)ADSGoogle Scholar
  81. [1.80] {Sect. 1.3.5}
    E. Farhi, J. Goldstone, S. Gutmann, M. Sipser: Limit on the speed of quantum computation in determining parity, Phys Rev Lett 81, p.5442–5444 (1998)ADSGoogle Scholar
  82. [1.81] {Sect. 1.3.5}
    E. Knill, R. Laflamme: Power of one bit of quantum information, Phys Rev Lett 81, p.5672–5675 (1998)ADSGoogle Scholar
  83. [1.82] {Sect. 1.3.5}
    P. Zanardi, F. Rossi: Quantum information in semiconductors: Noiseless encoding in a quantum-dot array, Phys Rev Lett 81, p.4752–4755 (1998)ADSGoogle Scholar
  84. [1.83] {Sect. 1.3.5}
    C. Miquel, J.P. Paz, W.H. Zurek: Quantum computation with phase drift errors, Phys Rev Lett 78, p.3971–3974 (1997)MathSciNetADSzbMATHGoogle Scholar
  85. [1.84] {Sect. 1.3.5}
    L.M. Duan, G.C Guo: Preserving coherence in quantum computation by pairing quantum bits, Phys Rev Lett 79, p. 1953–1956 (1997)ADSGoogle Scholar
  86. [1.85] {Sect. 1.3.6}
    W. Vogel: Nonclassical states: An observable criterion, Phys Rev Lett 84, p. 1849–1852 (2000)MathSciNetADSzbMATHGoogle Scholar
  87. [1.86] {Sect. 1.3.6}
    A.B. Matsko, V.V. Kozlov, M.O. Scully: Backaction cancellation in quantum nondemolition measurement of optical solitons, Phys Rev Lett 82, p.3244–3247 (1999)ADSGoogle Scholar
  88. [1.87] {Sect. 1.3.6}
    V. Savalli, G.Z.K. Horvath, P.D. Featonby, L. Cognet, N. West-brook, C.I. Westbrook, A. Aspect: Optical detection of cold atoms without spontaneous emission, Optics Letters 24, p. 1552–1554 (1999)ADSGoogle Scholar
  89. [1.88] {Sect. 1.3.6}
    R.L. Dematos, W. Vogel: Quantum nondemolition measurement of the motional energy of a trapped atom, Phys Rev Lett 76, p.4520–4523 (1996)ADSGoogle Scholar
  90. [1.89] {Sect. 1.3.6}
    F.X. Kartner, H.A. Haus: Quantum-Nondemolition Measurements and the ‘Collapse of the Wave Function’, Phys Rev A 47, p.4585–4590 (1993)ADSGoogle Scholar
  91. [1.90] {Sect. 1.3.7}
    W. Tittel, J. Brendel, H. Zbinden, N. Gisin: Violation of bell inequalities by photons more than 10 km apart, Phys Rev Lett 81, p.3563–3566 (1998)ADSGoogle Scholar
  92. [1.91] {Sect. 1.3.7}
    A. Aspect, J. Dalibard, G. Roger: Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers, Phys. Rev. Lett. 49, p. 1804–1807 (1982)MathSciNetADSGoogle Scholar
  93. [1.92] {Sect. 1.3.7}
    A. Aspect, P. Grangier, G. Roger: Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A. New Violation of Bell’s Inequalities, Phys. Rev. Lett. 49, p.91–94 (1982)ADSGoogle Scholar
  94. [1.93] {Sect. 1.3.7}
    J.F. Clauser, A. Shimony: Bell’s theorem: experimental tests and implications, Rep. Prog. Phys. 41, p.1881–1927 (1978)ADSGoogle Scholar
  95. [1.94] {Sect. 1.3.7}
    J. Bell: On the Einstein-Podolsky-Rosen Paradox, Physicsl, p.195–200 (1964)Google Scholar
  96. [1.95] {Sect. 1.3.8}
    N. Bloembergen: From nanosecond to femtosecond science, Rev. Mod. Phys. 71, p.283–287 (1999)Google Scholar
  97. [1.96] {Sect. 1.3.8}
    H. Frauenfelder, P.G. Wolynes, R.H. Austin: Biological Physics, Rev. Mod. Phys. 71, p.419–430 (1999)Google Scholar
  98. [1.97] {Sect. 1.3.8}
    W.E. Lamb, W.P. Schleich, M.O. Scully, C.H. Townes: Laser physics: Quantum controversy in action, Rev. Mod. Phys. 71, p.263–273 (1999)Google Scholar
  99. [1.98] {Sect. 1.3.8}
    L. Mandel: Quantum Effects in one-photon and two-photon interference, Rev. Mod. Phys. 71, p.274–282 (1999)Google Scholar
  100. [1.99] {Sect. 1.3.8}
    R.E. Slusher: Laser technology, Rev. Mod. Phys. 71, p.471–479 (1999)Google Scholar
  101. [1.100] {Sect. 1.4}
    B.Ya. Zel’dovich, V.I. Popovicher, V.V. Ragul’skii, F.S. Faizullow: Connection between the wavefronts of the reflected and the exciting light in stimulated Mandel’shtam-Brillouin scattering, Sov. Phys. JETP 15, p.109–112 (1972)Google Scholar
  102. [1.101] {Sect. 1.4}
    infinity — A Revolutionary Nd:YAG Laser System, Technical digest; CoherentGoogle Scholar
  103. [1.102] {Sect. 1.5}
    Harnessing Light (National Academy Press, Washington, D.C, 1998)Google Scholar
  104. [1.103] {Sect. 1.5.1}
    A. Melloni, M. Chinello, M. Martinelli: All-optical switching in phase-shifted fiber Bragg grating, IEEE Photonic Technol Lett 12, p.42–44 (2000)ADSGoogle Scholar
  105. [1.104] {Sect. 1.5.1}
    D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers: Nonlinear optics for high-speed digital information processing, Science 286, p. 1523–1528 (1999)Google Scholar
  106. [1.105] {Sect. 1.5.1}
    R.W. Eason, A. Miller (ed.): Nonlinear Optics in Signal Processing (Chapman & Hall, London, 1993)Google Scholar
  107. [1.106] {Sect. 1.5.2}
    A. Ghatak, K. Thyagarajan: Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998)Google Scholar
  108. [1.107] {Sect. 1.5.2}
    J. S. Sanghera, I. D. Aggarwal: Infrared Fibre Optics (CRC Press, Boca Raton, Boston, London, New York, Washington, D. C, 1998)Google Scholar
  109. [1.108] {Sect. 1.5.2}
    J.W. Lou, J.K. Andersen, J.C. Stocker, M.N. Islam, D.A. Nolan: Polarization insensitive demultiplexing of 100-Gb/s words using a twisted fiber nonlinear optical loop mirror, IEEE Photonic Technol Lett 11, p.1602–1604 (1999)ADSGoogle Scholar
  110. [1.109] {Sect. 1.5.2}
    D.S. Govan, W. Forysiak, N.J. Doran: Long-distance 40-Gbit/s soliton transmission over standard fiber by use of dispersion management, Optics Letters 23, p.1523–1525 (1998)ADSGoogle Scholar
  111. [1.110] {Sect. 1.5.2}
    M.A. Neifeld: Information, resolution, and space-bandwidth product, Optics Letters 23, p.1477–1479 (1998)ADSGoogle Scholar
  112. [1.111] {Sect. 1.5.2}
    C.C. Chang, A.M. Weiner: Fiber transmission for sub-500-fs pulses using a dispersion-compensating fiber, IEEE J QE-33, p. 1455–1464 (1997)Google Scholar
  113. [1.112] {Sect. 1.5.2}
    T. Ono, Y. Yano: Key technologies for terabit/second WDM systems with high spectral efficiency of over 1 bit/s/Hz, IEEE J QE-34, p.2080–2088 (1998)Google Scholar
  114. [1.113] {Sect. 1.5.2}
    E.A. Desouza, M.C. Nuss, W.H. Knox, D.A.B. Miller: Wavelength division multiplexing with femtosecond pulses, Optics Letters 20, p.1166–1168 (1995)ADSGoogle Scholar
  115. [1.114] {Sect. 1.5.3}
    A. Adibi, K. Buse, D. Psaltis: Multiplexing holograms in LiNbO3 : Fe : Mn crystals, Optics Letters 24, p.652–654 (1999)ADSGoogle Scholar
  116. [1.115] {Sect. 1.5.3}
    L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, F.C. Schilling: Recording media that exhibit high dynamic range for digital holographic data storage, Optics Letters 24, p.487–489 (1999)ADSGoogle Scholar
  117. [1.116] {Sect. 1.5.3}
    O. Matoba, B. Javidi: Encrypted optical storage with wavelength-key and random phase codes, Appl Opt 38, p.6785–6790 (1999)ADSGoogle Scholar
  118. [1.117] {Sect. 1.5.3}
    H.H. Suh: Color-image generation by use of binary-phase holograms, Optics Letters 24, p.661–663 (1999)ADSGoogle Scholar
  119. [1.118] {Sect. 1.5.3}
    C.A. Volkert, M. Wuttig: Modeling of laser pulsed heating and quenching in optical data storage media, J Appl Phys 86, p. 1808–1816 (1999)ADSGoogle Scholar
  120. [1.119] {Sect. 1.5.3}
    G. Xu, Q.G. Yang, J.H. Si, X.C. Liu, P.X. Ye, Z. Li, Y.Q. Shen: Application of all-optical poling in reversible optical storage in azopolymer films, Opt Commun 159, p.88–92 (1999)ADSGoogle Scholar
  121. [1.120] {Sect. 1.5.3}
    L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris: Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems, Optics Letters 23, p.1710–1712 (1998)ADSGoogle Scholar
  122. [1.121] {Sect. 1.5.3}
    A. Toriumi, S. Kawata, M. Gu: Reflection confocal microscope readout system for three-dimensional photochromic optical data storage, Optics Letters 23, p.1924–1926 (1998)ADSGoogle Scholar
  123. [1.122] {Sect. 1.5.3}
    H. Sasaki, K. Karaki: Direct pattern recognition of a motion picture by hole- burning holography of Eu3+:Y2SiO5, Appl Opt 36, p.1742–1746 (1997)ADSGoogle Scholar
  124. [1.123] {Sect. 1.5.3}
    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur: Three-dimensional optical storage inside transparent materials, Optics Letters 21, p.2023–2025 (1996)ADSGoogle Scholar
  125. [1.124] {Sect. 1.5.3}
    D. Lande, J.F. Heanue, M.C. Bashaw, L. Hesselink: Digital wavelength-multiplexed holographic data storage system, Optics Letters 21, p.1780–1782 (1996)ADSGoogle Scholar
  126. [1.125] {Sect. 1.5.3}
    T. Tomiyama, I. Watanabe, A. Kuwano, M. Habiro, N. Takane, M. Yamada: Rewritable optical-disk fabrication with an optical recording material made of naphthalocyanine and polythiophene, Appl Opt 34, p.8201–8208 (1995)ADSGoogle Scholar
  127. [1.126] {Sect. 1.5.3}
    E.S. Maniloff, S.B. Altner, S. Bernet, F.R. Graf, A. Renn, U.P. Wild: Recording of 6000 holograms by use of spectral hole burning, Appl. Opt. 34, p.4140–4148 (1995)ADSGoogle Scholar
  128. [1.127] {Sect. 1.5.3}
    R. Ao, S. Jahn, L. Kümmerl, R. Weiner, D. Haarer: Spatial Resolution and Data Adddressing of Frequency Domain Optical Storage Materials in the Near IR Regime, Jpn. J. Appl. Phys. 31, p.693–698 (1992)ADSGoogle Scholar
  129. [1.128] {Sect. 1.5.3}
    H.A. Haus, A. Mecozzi: Long-Term Storage of a Bit Stream of Solitons, Optics Letters 17, p. 1500–1502 (1992)ADSGoogle Scholar
  130. [1.129] {Sect. 1.5.3}
    A. Renn, U.P. Wild: Spectral hole burning and hologram storage, Appl. Opt. 26, p.4040–4042 (1987)ADSGoogle Scholar
  131. [1.130] {Sect. 1.5.3}
    U.P. Wild, S.E. Bucher, F.A. Burkhalter: Hole Burning, Stark Effect, and Data Storage, Appl. Opt. 24, p.1526–1530 (1985)ADSGoogle Scholar
  132. [1.131] {Sect. 1.5.4}
    D. Jaque, J. Capmany, J.G. Sole: Red, green, and blue laser light from a single Nd : YA13 (BO3) (4) crystal based on laser oscillation at 1.3 mu m, Appl Phys Lett 75, p.325–327 (1999)ADSGoogle Scholar
  133. [1.132] {Sect. 1.5.4}
    A. Parfenov: Diffraction light modulator based on transverse electro-optic effect in short-pitch ferroelectric liquid crystals, Appl Opt 38, p.5656–5661 (1999)ADSGoogle Scholar
  134. [1.133] {Sect. 1.5.4}
    K. Takizawa, T. Fujii, H. Kikuchi, H. Fujikake, M. Kawakita, Y. Hirano, F. Sato: Spatial light modulators for high-brightness projection displays, Appl Opt 38, p.5646–5655 (1999)ADSGoogle Scholar
  135. [1.134] {Sect. 1.5.4}
    Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, B.H.T. Chai: Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd : YCOB crystals, Opt Commun 164, p.33–37 (1999)ADSGoogle Scholar
  136. [1.135] {Sect. 1.5.4}
    A. Bewsher, I. Powell, W. Boland: Design of single-element laser-beam shape projectors, Appl Opt 35, p.1654–1658 (1996)ADSGoogle Scholar
  137. [1.136] {Sect. 1.5.4}
    S. Maruo, A. Arimoto, S. Kobayashi: Multibeam scanning optics with single laser source for full-color printers, Appl Opt 36, p.7234–7238 (1997)ADSGoogle Scholar
  138. [1.137] {Sect. 1.5.5}
    U.P. Wild, A. Renn: Molecular Computing: a Review, J. Mol. Electron. 7, p.1–20 (1991)Google Scholar
  139. [1.138] {Sect. 1.5.5}
    U.P. Wild, A. Renn, C. De Caro, S. Bernet: Spectral hole burning and molecular computing, Appl. Opt. 29, p.4329–4331 (1990)ADSGoogle Scholar
  140. [1.139] {Sect. 1.5.7}
    A.H. Zewail: Femtochemistry (World Scientific, Singapore 1994) Vols. I and IIGoogle Scholar
  141. [1.140] {Sect. 1.5.7}
    J. Manz, L. Wöste (eds.): Femtosecond Chemistry (VCH, Weinheim, 1995)Google Scholar
  142. [1.141] {Sect. 1.5.7}
    D.L. Andrews: Lasers in Chemistry, 3rd edn. (Springer, Berlin, Heidelberg 1997)Google Scholar
  143. [1.142] {Sect. 1.5.7}
    K.B. Eisenthal (ed.): Applications of Picosecond Spectroscopy to Chemistry (Reidel, Dordrecht 1984)Google Scholar
  144. [1.143] {Sect. 1.5.7}
    K. Kalyanasundaram: Photochemistry in microheterogeneous systems (Academic Press Inc, Florida 1987)Google Scholar
  145. [1.144] {Sect. 1.5.7}
    G.J. Kavarnos: Fundamentals of Photoinduced Electron Transfer (VCH Publ. Inc. 1993)Google Scholar
  146. [1.145] {Sect. 1.5.7}
    I. Prigogine, S. Rice (ed.): Advances in Chemical Physics (Wiley, New York 1983)Google Scholar
  147. [1.146] {Sect. 1.5.7}
    A. Callegari, J. Rebstein, R. Jost, T.R. Rizzo: State-to-state unimolecular reaction dynamics of HOCl near the dissociation threshold: The role of vibrations, rotations, and IVR probed by time- and eigenstate-resolved spectroscopy, J Chem Phys 111, p.7359–7368 (1999)ADSGoogle Scholar
  148. [1.147] {Sect. 1.5.7}
    J. Karczmarek, J. Wright, P. Corkum, M. Ivanov: Optical centrifuge for molecules, Phys Rev Lett 82, p.3420–3423 (1999)ADSGoogle Scholar
  149. [1.148] {Sect. 1.5.7}
    M. Oppel, G.K. Paramonov: Selective vibronic excitation and bond breaking by picosecond UV and IR laser pulses: application to a two-dimensional model of HONO2, Chem Phys Lett 313, p.332–340 (1999)ADSGoogle Scholar
  150. [1.149] {Sect. 1.5.7}
    J. Manz, K. Sundermann, R. deVivieRiedle: Quantum optimal control strategies for photoisomerization via electronically excited states, Chem Phys Lett 290, p.415–422 (1998)ADSGoogle Scholar
  151. [1.150] {Sect. 1.5.7}
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber: Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science 282, p.919–922 (1998)ADSGoogle Scholar
  152. [1.151] {Sect. 1.5.7}
    R.N. Zare: Laser control of chemical reactions, Science 279, p.1875–1879 (1998)ADSGoogle Scholar
  153. [1.152] {Sect. 1.5.7}
    L. Banares, T. Baumert, M. Bergt, B. Kiefer, G. Gerber: Femtosecond photodissociation dynamics of Fe (CO) (5) in the gas phase, Chem Phys Lett 267, p.141–148 (1997)ADSGoogle Scholar
  154. [1.153] {Sect. 1.5.7}
    R.J. Finlay, T.H. Her, C. Wu, E. Mazur: Reaction pathways in surface femtochemistry: routes to desorption and reaction in CO/O-2/Pt (111), Chem Phys Lett 274, p.499–504 (1997)ADSGoogle Scholar
  155. [1.154] {Sect. 1.5.7}
    W. Freyer, D. Leupold: A multiphotochromic tetraanthrapor-phyrazine based on the involvement of molecular singlet oxygen, J. Photochem. and Photobiol. A: Chemistry 105, p.153–158 (1997)Google Scholar
  156. [1.155] {Sect. 1.5.7}
    A. Kasapi: Enhanced isotope discrimination using electromag-netically induced transparency, Phys Rev Lett 77, p. 1035–1038 (1996)ADSGoogle Scholar
  157. [1.156] {Sect. 1.5.7}
    C. Desfrancois, H. Abdoulcarime, C.P. Schulz, J.P. Schermann: Laser separation of geometrical isomers of weakly bound molecular complexes, Science 269, p. 1707–1709 (1995)ADSGoogle Scholar
  158. [1.157] {Sect. 1.5.7}
    V. Vaida, J.D. Simon: The photoreactivity of chlorine dioxide, Science 268, p.1443–1448 (1995)ADSGoogle Scholar
  159. [1.158] {Sect. 1.5.7}
    L.C. Zhu, V. Kleiman, X.N. Li, S.P. Lu, K. Trentelman, R.J. Gordon: Coherent laser control of the product distribution obtained in the photoexcitation of HI, Science 270, p.77–80 (1995)ADSGoogle Scholar
  160. [1.159] {Sect. 1.5.7}
    P. Siders, R.A. Marcus, R.J. Cave: A Model for Orientation Effects in Electron Transfer Reactions, J Chem Phys 81, p.5613–5624 (1984)ADSGoogle Scholar
  161. [1.160] {Sect. 1.5.7}
    A.H. Zewail: Laser selective chemistry — is it possible?, Phys. Today Nov. 1980, p.27–33 (1980)Google Scholar
  162. [1.161] {Sect. 1.5.7}
    E.S. Yeung, C.B. Moore: Isotopic separation by photopredis-sociation, Appl. Phys. Lett. 21, p.109–110 (1972)ADSGoogle Scholar
  163. [1.162] {Sect. 1.5.8}
    D. Schuöcker: High-Power Lasers in Production Engineering (World Scientific Publishing, Singapore, 1998)Google Scholar
  164. [1.163] {Sect. 1.5.8}
    W. M. Steen: Laser Material Processing (Springer, London, Berlin, Heidelberg, New York, 1998)Google Scholar
  165. [1.164] {Sect. 1.5.9}
    M. She, D. Kim, C.P. Grigoropoulos: Liquid-assisted pulsed laser cleaning using near-infrared and ultraviolet radiation, J Appl Phys 86, p.6519–6524 (1999)ADSGoogle Scholar
  166. [1.165] {Sect. 1.5.9}
    G. Vereecke, E. Rohr, M.M. Heyns: Laser-assisted removal of particles on silicon wafers, J Appl Phys 85, p.3837–3843 (1999)ADSGoogle Scholar
  167. [1.166] {Sect. 1.5.9}
    A.A. Kolomenskii, H.A. Schuessler, V.G. Mikhalevich, A.A. Maznev: Interaction of laser-generated surface acoustic pulses with fine particles: Surface cleaning and adhesion studies, J Appl Phys 84, p.2404–2410 (1998)ADSGoogle Scholar
  168. [1.167] {Sect. 1.5.9}
    S. Siano, F. Margheri, R. Pini, P. Mazzinghi, R. Salimbeni: Cleaning processes of encrusted marbles by Nd:YAG lasers operating in free-running and Q-switching regimes, Appl Opt 36, p.7073–7079 (1997)ADSGoogle Scholar
  169. [1.168] {Sect. 1.5.10}
    R.P. Lucht, M.C. Allen, S. Downey: Laser applications to chemical and environmental analysis: An introduction, Appl Opt 36, p.3187 (1997)ADSGoogle Scholar
  170. [1.169] {Sect. 1.5.10}
    M. Bass (ed.): Handbook of Optics, Vol. I, chapter 44 (McGraw-Hill, New York, 1995)Google Scholar
  171. [1.170] {Sect. 1.5.10}
    R.M. Measure: Laser Remote Sensing: Fundamentals and Applications (Wiley, Toronto 1984)Google Scholar
  172. [1.171] {Sect. 1.5.10}
    A.I. Karapuzikov, A.N. Malov, I.V. Sherstov: Tunable TEA CO2 laser for long-range DIAL lidar, Infrared Phys Technol 41, p.77–85 (2000)ADSGoogle Scholar
  173. [1.172] {Sect. 1.5.10}
    A.I. Karapuzikov, I.V. Ptashnik, I.V. Sherstov, O.A. Romanovskii, G.G. Matvienko, Y.N. Ponomarev: Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages, Infrared Phys Technol 41, p.87–96 (2000)ADSGoogle Scholar
  174. [1.173] {Sect. 1.5.10}
    G.H. Pettengill, P.G. Ford: Winter clouds over the North Martian Polar Cap, Geophys Res Lett 27, p.609–612 (2000)ADSGoogle Scholar
  175. [1.174] {Sect. 1.5.10}
    P.E. Smith, N.M. Evensen, D. York: Under the volcano: A new dimension in Ar-Ar dating of volcanic ash, Geophys Res Lett 27, p.585–588 (2000)ADSGoogle Scholar
  176. [1.175] {Sect. 1.5.10}
    T. Eriksen, U.P. Hoppe, E.V. Thrane, T.A. Blix: Rocketborne Rayleigh lidar for in situ measurements of neutral atmospheric density, Appl Opt 38, p.2605–2613 (1999)ADSGoogle Scholar
  177. [1.176] {Sect. 1.5.10}
    F.J. Lubken, F. Dingier, H. vonLucke, J. Anders, W.J. Riedel, H. Wolf: MASERATI: a rocketborne tunable diode laser absorption spectrometer, Appl Opt 38, p.5338–5349 (1999)ADSGoogle Scholar
  178. [1.177] {Sect. 1.5.10}
    V. Sherlock, A. Hauchecorne, J. Lenoble: Methodology for the independent calibration of Raman backscatter water-vapor lidar systems, Appl Opt 38, p.5816–5837 (1999)ADSGoogle Scholar
  179. [1.178] {Sect. 1.5.10}
    J.H. Churnside, V.V. Tatarskii, J.J. Wilson: Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight, Appl Opt 37, p.3105–3112 (1998)ADSGoogle Scholar
  180. [1.179] {Sect. 1.5.10}
    G.P. Gobbi: Parameterization of stratospheric aerosol physical properties on the basis of Nd:YAG lidar observations, Appl Opt 37, p.4712–4720 (1998)ADSGoogle Scholar
  181. [1.180] {Sect. 1.5.10}
    J. Kasparian, J.P. Wolf: A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar, Opt Commun 152, p.355–360 (1998)ADSGoogle Scholar
  182. [1.181] {Sect. 1.5.10}
    C.L. Korb, B.M. Gentry, S.X. Li, C. Flesia: Theory of the double-edge technique for Doppler lidar wind measurement, Appl Opt 37, p.3097–3104 (1998)ADSGoogle Scholar
  183. [1.182] {Sect. 1.5.10}
    A. Kouzoubov, M.J. Brennan, J.C. Thomas: Treatment of polarization in laser remote sensing of ocean water, Appl Opt 37, p.3873–3885 (1998)ADSGoogle Scholar
  184. [1.183] {Sect. 1.5.10}
    G.C. Papen, D. Treyer: Comparison of an Fe Boltzmann temperature Lidar with a Na narrow-band lidar, Appl Opt 37, p.8477–8481 (1998)ADSGoogle Scholar
  185. [1.184] {Sect. 1.5.10}
    H.R. Lange, G. Grillon, J.-F. Ripoche, M.A. Franco, B. Lamouroux, B.S. Prade, A. Mysyrowicz: Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?, Opt. Lett. 23, p.120–122 (1998)ADSGoogle Scholar
  186. [1.185] {Sect. 1.5.10}
    P. Askebjer, S.W. Barwick, L. Bergstrom, A. Bouchta, S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, et al.: Optical properties of deep ice at the South Pole: Absorption, Appl Opt 36, p.4168–4180 (1997)ADSGoogle Scholar
  187. [1.186] {Sect. 1.5.10}
    Y.Y.Y. Gu, C.S. Gardner, P.A. Castleberg, G.C. Papen, M.C. Kelley: Validation of the lidar in-space technology experiment: Stratospheric temperature and aerosol measurements, Appl Opt 36, p.5148–5157 (1997)ADSGoogle Scholar
  188. [1.187] {Sect. 1.5.10}
    M.J. Mcgill, W.R. Skinner, T.D. Irgang: Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar, Appl Opt 36, p.1253–1268 (1997)ADSGoogle Scholar
  189. [1.188] {Sect. 1.5.10}
    S.H. Melfi, K.D. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer: Observation of Raman scattering by cloud droplets in the atmosphere, Appl Opt 36, p.3551–3559 (1997)ADSGoogle Scholar
  190. [1.189] {Sect. 1.5.10}
    J.R. Quagliano, P.O. Stoutland, R.R. Petrin, R.K. Sander, R.J. Romero, M.C. Whitehead, C.R. Quick, J.J. Tiee, L.J. John: Quantitative chemical identification of four gases in remote infrared (9–11 mu m) differential absorption lidar experiments, Appl Opt 36, p. 1915–1927 (1997)ADSGoogle Scholar
  191. [1.190] {Sect. 1.5.10}
    J.D. Spinhirne, S. Chudamani, J.F. Cavanaugh, J.L. Bufton: Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mu m by airborne hard-target-calibrated Nd:YAG/methane Raman lidar, Appl Opt 36, p.3475–3490 (1997)ADSGoogle Scholar
  192. [1.191] {Sect. 1.5.10}
    P.S. Argall, F. Jacka: High-pulse-repetition-frequency lidar system using a single telescope for transmission and reception, Appl Opt 35, p.2619–2629 (1996)ADSGoogle Scholar
  193. [1.192] {Sect. 1.5.10}
    J. Roths, T. Zenker, U. Parchatka, F.G. Wienhold, G.W. Harris: Four-laser airborne infrared spectrometer for atmospheric trace gas measurements, Appl Opt 35, p.7075–7084 (1996)ADSGoogle Scholar
  194. [1.193] {Sect. 1.5.10}
    R. Targ, B.C. Steakley, J.G. Hawley, L.L. Ames, P. Forney, D. Swanson, R. Stone, R.G. Otto, V. Zarifis, P. Brockman, et al.: Coherent lidar airborne wind sensor. 2. Flight-test results at 2 and 10 mu m, Appl Opt 35, p.7117–7127 (1996)ADSGoogle Scholar
  195. [1.194] {Sect. 1.5.10}
    J. Zeyn, W. Lahmann, C. Weitkamp: Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar, Optics Letters 21, p. 1301–1303 (1996)ADSGoogle Scholar
  196. [1.195] {Sect. 1.5.10}
    V. Vaida, J.D. Simon: The photoreactivity of chlorine dioxide, Science 268, p.1443–1448 (1995)ADSGoogle Scholar
  197. [1.196] {Sect. 1.5.10}
    W. Steinbrecht, K.W. Rothe, H. Walther: Lidar setup for daytime and nighttime probing of stratospheric ozone and measurements in polar and equitorial regimes, Appl. Opt. 28, p.3616–3624 (1989)ADSGoogle Scholar
  198. [1.197] {Sect. 1.5.10}
    H. Edner, S. Svanberg, L. Uneus, W. Wendt: Gas-correlation Lidar, Opt. Lett. 9, p.493–495 (1984)ADSGoogle Scholar
  199. [1.198] {Sect. 1.5.10}
    J. Werner, K.W. Rothe, H. Walther: Monitoring of the Stratospheric Ozone Layer by Laser Radar, Appl. Phys. B 32p.113–118 (1983)ADSGoogle Scholar
  200. [1.199] {Sect. 1.5.11}
    J.H. Schon, C. Kloc, E. Bucher, B. Batiogg: Efficient organic photovoltaic diodes based on doped pentacene, Nature 403, p.408–410 (2000)ADSGoogle Scholar
  201. [1.200] {Sect. 1.5.11}
    T. Tesfamichael, E. Wackelgard: Angular solar absorptance of absorbers used in solar thermal collectors, Appl Opt 38, p.4189–4197 (1999)ADSGoogle Scholar
  202. [1.201] {Sect. 1.5.11}
    S. Hamma, P.I. RocaiCabarrocas: Determination of the mobility gap of microcrystalline silicon and of the band discontinuities at the amorphous microcrystalline silicon interface using in situ Kelvin probe technique, Appl Phys Lett 74, p.3218–3220 (1999)ADSGoogle Scholar
  203. [1.202] {Sect. 1.5.11}
    K.L. Narayanan, M. Yamaguchi: Boron ion-implanted C-60 hetero junction photovoltaic devices, Appl Phys Lett 75, p.2106–2107 (1999)ADSGoogle Scholar
  204. [1.203] {Sect. 1.5.11}
    M.K. Nazeeruddin, S.M. Zakeeruddin, R. HumphryBaker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.H. Fischer, M. Gratzel: Acid-base equilibria of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium (II) complexes and the effect of protonation on charge- transfer sensitization of nanocrystalline titania, Inorg Chem 38, p.6298–6305 (1999)Google Scholar
  205. [1.204] {Sect. 1.5.11}
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner: Photovoltaic technology: The case for thin-film solar cells, Science 285, p.692–698 (1999)Google Scholar
  206. [1.205] {Sect. 1.5.11}
    J.T. Warren, D.H. Johnston, C. Turro: Ground state and photophysical properties of Ru (Phen) (2)quo (+): a strong excited state electron donor, Inorg Chem Commun 2, p.354–357 (1999)Google Scholar
  207. [1.206] {Sect. 1.5.11}
    J.T. Warren, W. Chen, D.H. Johnston, C. Turro: Ground-state properties and excited-state reactivity of 8-quinolate complexes of ruthenium (II), Inorg Chem 38, p.6187–6192 (1999)Google Scholar
  208. [1.207] {Sect. 1.5.11}
    J.H. Zhao, A.H. Wang, M.A. Green, F. Ferrazza: 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl Phys Lett 73, p.1991–1993 (1998)ADSGoogle Scholar
  209. [1.208] {Sect. 1.5.11}
    B.T. Boiko, G.S. Khripunov, V.B. Yurchenko, H.E. Ruda: Photovoltaic properties in CdS/CdTe thin-film heterosystems with graded-gap interfaces, Solar Energ Mater Solar Cells 45, p.303–308 (1997)Google Scholar
  210. [1.209] {Sect. 1.5.11}
    K. Kalyanasundaram, M. Gratzel: Photovoltaic performance of injection solar cells and other applications of nanocrystalline oxide layers, Proc Indian Acad Sci Chem Sci 109, p.447–469 (1997)Google Scholar
  211. [1.210] {Sect. 1.5.11}
    J.A. Quintana, P.G. Boj, J. Crespo, M. Pardo, M.A. Satorre: Line-focusing holographic mirrors for solar ultraviolet energy concentration, Appl Opt 36, p.3689–3693 (1997)ADSGoogle Scholar
  212. [1.211] {Sect. 1.5.11}
    I. Shibata, T. Nishide: Solar control coatings containing a sputter deposited SiWOx film, Solar Energ Mater Solar Cells 45, p.27–33 (1997)Google Scholar
  213. [1.212] {Sect. 1.5.11}
    R. Memming: Photoelectrochemical Solar Energy Conversion, Topics Curr. Chem. 143, p.81–112 (1988)Google Scholar
  214. [1.213] {Sect. 1.5.13}
    S.L. Marcus: In Lasers in Medicine, ed. by G. Petttit, R.W. Wayant (Wiley, New York 1995)Google Scholar
  215. [1.214] {Sect. 1.5.13}
    R. Pratesi, C.A. Sacci (eds.): Lasers in Photomedicine and Photobiology, (Springer Ser. Opt. Sci, Vol.31 (Springer, Berlin, Heidelberg 1980)Google Scholar
  216. [1.215] {Sect. 1.5.13}
    R. Steiner (ed.): Laser Lithotripsy (Springer, Berlin, Heidelberg 1988)Google Scholar
  217. [1.216] {Sect. 1.5.13}
    A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi (eds.): Biomedical Optical Instrumentation and Laser-Assisted Biotechnology (Kluwer Academic Publishers, Dordrecht, Boston, London, 1996)Google Scholar
  218. [1.217] {Sect. 1.5.13}
    J. A. S. Carruth, A. L. McKenzie: Medical Lasers (Adam Hilger Ltd, Bristol, Boston, 1986)Google Scholar
  219. [1.218] {Sect. 1.5.13}
    M. L. Wolbarsht: Laser Applications in Medicine and Biology (Plenum Publishing Corporation, New York, 1991)Google Scholar
  220. [1.219] {Sect. 1.5.13}
    B.A. Hooper, Y. Domankevitz, C.P. Lin, R.R. Anderson: Precise, controlled laser delivery with evanescent optical waves, Appl Opt 38, p.5511–5517 (1999)ADSGoogle Scholar
  221. [1.220] {Sect. 1.5.13}
    S.R. Goldstein, P.G. McQueen, R.F. Bonner: Thermal modeling of laser capture microdissection, Appl Opt 37, p.7378–7391 (1998)ADSGoogle Scholar
  222. [1.221] {Sect. 1.5.13}
    M. Frenz, H. Pratisto, F. Konz, E.D. Jansen, A.J. Welch, H.P. Weber: Comparison of the effects of absorption coefficient and pulse duration of 2.12-mu m and 2.79-mu m radiation on laser ablation of tissue, IEEE J QE-32, p.2025–2036 (1996)Google Scholar
  223. [1.222] {Sect. 1.5.13}
    S. Karrer, R.M. Szeimies, C. Abels, M. Landthaler: The use of photodynamic therapy for skin cancer, Onkologie 21, p.20–27 (1998)Google Scholar
  224. [1.223] {Sect. 1.5.13}
    F. H. Blum: Photodynamic Action and Diseases Caused by Light (Hafner Publ, New ork 1964)Google Scholar
  225. [1.224] {Sect. 1.5.13}
    J.G. Moser (ed.): Photodynamic Tumor Therapy- 2nd and 3rd Generation Photosensitizers (harwood academic publishers 1998)Google Scholar
  226. [1.225] {Sect. 1.5.13}
    R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini: Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast, Appl Phys Lett 74, p.874–876 (1999)ADSGoogle Scholar
  227. [1.226] {Sect. 1.5.13}
    S. Gorti, H. Tone, G. Imokawa: Triangulation method for determining capillary blood flow and physical characteristics of the skin, Appl Opt 38, p.4914–4929 (1999)ADSGoogle Scholar
  228. [1.227] {Sect. 1.5.13}
    M. Rajadhyaksha, R.R. Anderson, R.H. Webb: Video-rate confocal scanning laser microscope for imaging human tissues in vivo, Appl Opt 38, p.2105–2115 (1999)ADSGoogle Scholar
  229. [1.228] {Sect. 1.5.13}
    G. Zacharakis, A. Zolindaki, V. Sakkalis, G. Filippidis, E. Koumantakis, T.G. Papazoglou: Nonparametric characterization of human breast tissue by the Laguerre expansion of the kernels technique applied on propagating femtosecond laser pulses through biopsy samples, Appl Phys Lett 74, p.771–772 (1999)ADSGoogle Scholar
  230. [1.229] {Sect. 1.5.13}
    K. Dowling, M.J. Dayel, M.J. Lever, P.M.W. French, J.D. Hares, A.K.L. DymokeBradshaw: Fluorescence lifetime imaging with picosecond resolution for biomedical applications, Optics Letters 23, p.810–812 (1998)ADSGoogle Scholar
  231. [1.230] {Sect. 1.5.13}
    S.L. Jacques, S.J. Kirkpatrick: Acoustically modulated speckle imaging of biological tissues, Optics Letters 23, p.879–881 (1998)ADSGoogle Scholar
  232. [1.231] {Sect. 1.5.13}
    H.Q. Shangguan, L.W. Casperson: Estimation of scattered light on the surface of unclad optical fiber tips: a new approach, Opt Commun 152, p.307–312 (1998)ADSGoogle Scholar
  233. [1.232] {Sect. 1.5.13}
    Y.C. Guo, P.P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, R.R. Alfano: Second-harmonic tomography of tissues, Optics Letters 22, p.1323–1325 (1997)ADSGoogle Scholar
  234. [1.233] {Sect. 1.5.13}
    A. Joblin: Tumor contrast in time-domain, near-infrared laser breast imaging, Appl Opt 36, p.9050–9057 (1997)ADSGoogle Scholar
  235. [1.234] {Sect. 1.5.13}
    K. Konig, P.T.C. So, W.W. Mantulin, E. Gratton: Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes, Optics Letters 22, p.135–136 (1997)ADSGoogle Scholar
  236. [1.235] {Sect. 1.5.13}
    Y. Guo, P.P. Ho, A. Tirksliunas, F. Liu, R.R. Alfano: Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses, Appl Opt 35, p.6810–6813 (1996)ADSGoogle Scholar
  237. [1.236] {Sect. 1.5.13}
    A.P. Shepherd, P.A. Öbers (eds.): Laser Doppler Blood Flowmetry. (Klüwer, Boston 1990)Google Scholar
  238. [1.237] {Sect. 1.5.13}
    U. Morgner, W. Drexler, F.X. Kartner, X.D. Li, C. Pitris, E.P. Ippen, J.G. Fujimoto: Spectroscopic optical coherence tomography, Optics Letters 25, p.111–113 (2000)ADSGoogle Scholar
  239. [1.238] {Sect. 1.5.13}
    Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. deBoer, J.S. Nelson: Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, Optics Letters 25, p. 114–116 (2000)ADSGoogle Scholar
  240. [1.239] {Sect. 1.5.13}
    B.E. Bouma, G.J. Tearney: Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters 24, p.531–533 (1999)ADSGoogle Scholar
  241. [1.240] {Sect. 1.5.13}
    W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto: In vivo ultrahigh-resolution optical coherence tomography, Optics Letters 24, p.1221–1223 (1999)ADSGoogle Scholar
  242. [1.241] {Sect. 1.5.13}
    A.G. Podoleanu, D.A. Jackson: Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope, Appl Opt 38, p.2116–2127 (1999)ADSGoogle Scholar
  243. [1.242] {Sect. 1.5.13}
    XA. Wax, S. Bali, J.E. Thomas: Optical phase-space distributions for low-coherence light, Optics Letters 24, p. 1188–1190 (1999)ADSGoogle Scholar
  244. [1.243] {Sect. 1.5.13}
    X.J. Wang, T.E. Milner, J.F. deBoer, Y. Zhang, D.H. Pashley, J.S. Nelson: Characterization of dentin and enamel by use of optical coherence tomography, Appl Opt 38, p.2092–2096 (1999)ADSGoogle Scholar
  245. [1.244] {Sect. 1.5.13}
    S.R. Chinn, E.A. Swanson, J.G. Fujimoto: Optical coherence tomography using a frequency-tunable optical source, Optics Letters 22, p.340–342 (1997)ADSGoogle Scholar
  246. [1.245] {Sect. 1.5.13}
    B.E. Bouma, G.J. Tearney, LP. Bilinsky, B. Golubovic, J.G. Fujimoto: Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography, Optics Letters 21, p. 1839–1841 (1996)ADSGoogle Scholar
  247. [1.246] {Sect. 1.5.13}
    G. J. Müller, B. Chance: Medical Optical Tomography: Functional Imaging and Monitoring (SPIE Optical Engineering Press, London, 1993)Google Scholar
  248. [1.247] {Sect. 1.5.13}
    G. Müller (ed.): Optical Tomography (SPIE Bellingham 1994)Google Scholar
  249. [1.248] {Sect. 1.5.14}
    M.A. El-Sayed, I. Tanaka, Y. Molin: Ultrafast Processes in Chemistry and Biology (Blackwell, Oxford 1995)Google Scholar
  250. [1.249] {Sect. 1.5.14}
    T. Kobayashi: Primary Processes in Photobiology (Springer, Berlin, Heidelberg, 1987)Google Scholar
  251. [1.250] {Sect. 1.5.14}
    E. Kohen, R. Santus, J. Hirschberg: Photobiology (Academic Press, San Diego, 1995)Google Scholar
  252. [1.251] {Sect. 1.5.14}
    C.B. Moore (ed.): Chemical and Biochemical Applications of Lasers, Vols. 1–5 (Academic, New York 1974–1984)Google Scholar
  253. [1.252] {Sect. 1.5.14}
    XL. Moreaux, O. Sandre, M. BlanchardDesce, J. Mertz: Membrane imaging by simultaneous second-harmonic generation and two- photon microscopy, Optics Letters 25, p.320–322 (2000)ADSGoogle Scholar
  254. [1.253] {Sect. 1.5.14}
    D. Kelly, K.M. Grace, X. Song, B.I. Swanson, D. Frayer, S.B. Mendes, N. Peyghambarian: Integrated optical biosensor for detection of multivalent proteins, Optics Letters 24, p.1723–1725 (1999)ADSGoogle Scholar
  255. [1.254] {Sect. 1.5.14}
    S. Shikano, K. Horio, Y. Ohtsuka, Y. Eto: Separation of a single cell by red-laser manipulation, Appl Phys Lett 75, p.2671–2673 (1999)ADSGoogle Scholar
  256. [1.255] {Sect. 1.5.14}
    Y.C. Guo, P.P. Ho, F. Liu, Q.Z. Wang, R.R. Alfano: Noninvasive two-photon-excitation imaging of tryptophan distribution in highly scattering biological tissues, Opt Commun 154, p.383–389 (1998)ADSGoogle Scholar
  257. [1.256] {Sect. 1.5.14}
    M.S.Z. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante: Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science 276, p.1112–1116 (1997)Google Scholar
  258. [1.257] {Sect. 1.5.14}
    D. Leupold, I.E. Kochevar: Multiphoton Photochemistry in Biological Systems: Introduction, Photochem. and Photobiol. 66, p.562–565 (1997)Google Scholar
  259. [1.258] {Sect. 1.5.14}
    S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, W.W. Webb: Measuring serotonin distribution in live cells with three-photon excitation, Science 275, p.530–532 (1997)Google Scholar
  260. [1.259] {Sect. 1.5.14}
    M. Sauer, K.H. Drexhage, C. Zander, J. Wolfrum: Diode laser based detection of single molecules in solutions, Chem Phys Lett 254, p.223–228 (1996)ADSGoogle Scholar
  261. [1.260] {Sect. 1.5.14}
    G.J. Tearney, B.E. Bouma, S.A. Boppart, B. Golubovic, E.A. Swanson, J.G. Fujimoto: Rapid acquisition of in vivo biological images by use of optical coherence tomography, Optics Letters 21, p.1408–1410 (1996)ADSGoogle Scholar
  262. [1.261] {Sect. 1.5.14}
    L.H. Wang, D. Liu, N. He, S.L. Thomsen: Biological laser action, Appl Opt 35, p. 1775–1779 (1996)ADSGoogle Scholar
  263. [1.262] {Sect. 1.5.14}
    W.A. Carrington, R.M. Lynch, E.D.W. Moore, G. Isenberg, K.E. Fogarty, F.S. Fredric: Superresolution three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, p. 1483–1487 (1995)ADSGoogle Scholar
  264. [1.263] {Sect. 1.5.15}
    C. Kung, M.D. Barnes, N. Lermer, W.B. Whitten, J.M. Ramsey: Single-molecule analysis of ultradilute solutions with guided streams of 1-mu m water droplets, Appl Opt 38, p.1481–1487 (1999)ADSGoogle Scholar
  265. [1.264] {Sect. 1.5.15}
    M. Sauer, K.H. Drexhage, U. Lieberwirth, R. Muller, S. Nord, C. Zander: Dynamics of the electron transfer reaction between an oxazine dye and DNA oligonucleotides monitored on the single-molecule level, Chem Phys Lett 284, p.153–163 (1998)ADSGoogle Scholar
  266. [1.265] {Sect. 1.5.15}
    D.S. Ko, M. Sauer, S. Nord, R. Muller, J. Wolfrum: Determination of the diffusion coefficient of dye in solution at single molecule level, Chem Phys Lett 269, p.54–58 (1997)ADSGoogle Scholar
  267. [1.266] {Sect. 1.5.15}
    S.M. Nie, S.R. Emery: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, p. 1102–1106 (1997)Google Scholar
  268. [1.267] {Sect. 1.5.15}
    D.A. Vandenbout, W.T. Yip, D.H. Hu, D.K. Fu, T.M. Swager, P.F. Barbara: Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules, Science 277, p.1074–1077 (1997)Google Scholar
  269. [1.268] {Sect. 1.5.15}
    X.H. Xu, E.S. Yeung: Direct measurement of single-molecule diffusion and photodecomposition in free solution, Science 275, p. 1106–1109 (1997)Google Scholar
  270. [1.269] {Sect. 1.5.15}
    R.M. Dickson, D.J. Norris, Y.L. Tzeng, W.E. Moerner: Three-dimensional imaging of single molecules solvated in pores of poly (acrylamide) gels, Science 274, p.966–969 (1996)ADSGoogle Scholar
  271. [1.270] {Sect. 1.5.15}
    T. Plakhotnik, D. Walser, M. Pirotta, A. Renn, U.P. Wild: Nonlinear spectroscopy on a single quantum system: Two- photon absorption of a single molecule, Science 271, p.1703–1705 (1996)ADSGoogle Scholar
  272. [1.271] {Sect. 1.5.15}
    P. Astone, M. Bassan, P. Bonifazi, P. Carelli, E. Coccia, V. Fafone, S. DAntonio, S. Frasca, A. Marini, E. Mauceli et al.: Cosmic rays observed by the resonant gravitational wave detector NAUTILUS, Phys Rev Lett 84, p.14–17 (2000)ADSGoogle Scholar
  273. [1.272] {Sect. 1.5.15}
    B. Allen, J.K. Blackburn, P.R. Brady, J.D.E. Creighton, T. Creighton, S. Droz, A.D. Gillespie, S.A. Hughes, S. Kawamura, T.T. Lyons et al.: Observational limit on gravitational waves from binary neutron stars in the Galaxy, Phys Rev Lett 83, p. 1498–1501 (1999)ADSGoogle Scholar
  274. [1.273] {Sect. 1.5.15}
    G. Heinzel, A. Rudiger, R. Schilling, K. Strain, W. Winkler, J. Mizuno, K. Danzmann: Automatic beam alignment in the Garching 30-m prototype of a laser- interferometric gravitational wave detector (Vol 160, pg 321, 1999), Opt Commun 164, p.161 (1999)ADSGoogle Scholar
  275. [1.274] {Sect. 1.5.15}
    C.J. Walsh, A.J. Leistner, B.F. Oreb: Power spectral density analysis of optical substrates for gravitational-wave interferometry, Appl Opt 38, p.4790–4801 (1999)ADSGoogle Scholar
  276. [1.275] {Sect. 1.5.15}
    F. Benabid, M. Notcutt, L. Ju, D.G. Blair: Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors: II: Rayleigh scattering induced noise in a laser interferometric-wave detector, Opt Commun 170, p.9–14 (1999)ADSGoogle Scholar
  277. [1.276] {Sect. 1.5.15}
    T. Uchiyama, T. Tomaru, M.E. Tobar, D. Tatsumi, S. Miyoki, M. Ohashi, K. Kuroda, T. Suzuki, N. Sato, T. Haruyama et al.: Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors, Phys Lett A 261, p.5–11 (1999)ADSGoogle Scholar
  278. [1.277] {Sect. 1.5.15}
    P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker, G. Gonzalez: Alignment of an interferometric gravitational wave detector, Appl Opt 37, p.6734–6747 (1998)ADSGoogle Scholar
  279. [1.278] {Sect. 1.5.15}
    A.R. Agachev, A.B. Balakin, G.N. Buinov, S.L. Buchinskaya, R.A. Daishev, G.V. Kisunko, V.A. Komissaruk, S.V. Mavrin, Z.G. Murza-khanov, R.A. Rafikov et al.: Pentagonal two-loop ring interferometer, Tech Phys 43, p.591–595 (1998)Google Scholar
  280. [1.279] {Sect. 1.5.15}
    A.Y. Ageev, I.A. Bilenko, V.B. Braginsky: Excess noise in the steel suspension wires for the laser gravitational wave detector, Phys Lett A 246, p.479–484 (1998)ADSGoogle Scholar
  281. [1.280] {Sect. 1.5.15}
    P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker, G. Gonzalez: Alignment of an interferometric gravitational wave detector, Appl Opt 37, p.6734–6747 (1998)ADSGoogle Scholar
  282. [1.281] {Sect. 1.5.15}
    M.V. Plissi, K.A. Strain, C.I. Torrie, N.A. Robertson, S. Kill-bourn, S. Rowan, S.M. Twyford, H. Ward, K.D. Skeldon, J. Hough: Aspects of the suspension system for GEO 600, Rev Sci Instr 69, p.3055–3061 (1998)ADSGoogle Scholar
  283. [1.282] {Sect. 1.5.15}
    T. Uchiyama, D. Tatsumi, T. Tomaru, M.E. Tobar, K. Kuroda, T. Suzuki, N. Sato, A. Yamamoto, T. Haruyama, T. Shintomi: Cryogenic cooling of a sapphire mirror-suspension for interferometric gravitational wave detectors, Phys Lett A 242, p.211–214 (1998)ADSGoogle Scholar
  284. [1.283] {Sect. 1.5.15}
    S.V. Dhurandhar, P. Hello, B.S. Sathyaprakash, J.Y. Vinet: Stability of giant Fabry-Perot cavities of interferometric gravitational-wave detectors, Appl Opt 36, p.5325–5334 (1997)ADSGoogle Scholar
  285. [1.284] {Sect. 1.5.15}
    A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Muller, R.H. Rinkleff: White-light cavities, atomic phase coherence, and gravitational wave detectors, Opt Commun 134, p.431–439 (1997)ADSGoogle Scholar
  286. [1.285] {Sect. 1.5.15}
    S. Braccini, C. Bradaschia, R. Delfabbro, A. Divirgilio, I. Ferrante, F. Fidecaro, R. Flaminio, A. Gennai, A. Giazotto, P. Lapenna, et al.: Mechanical filters for the gravitational waves detector VIRGO: Performance of a two-stage suspension, Rev Sci Instr 68, p.3904–3906 (1997)ADSGoogle Scholar
  287. [1.286] {Sect. 1.5.15}
    H. Heitmann, C. Drezen: Measurement of position and orientation of optical elements in interferometric gravity wave detectors, Rev Sci Instr 68, p.3197–3205 (1997)ADSGoogle Scholar
  288. [1.287] {Sect. 1.5.15}
    P.W. Mcnamara, H. Ward, J. Hough, D. Robertson: Laser frequency stabilization for spaceborne gravitational wave detectors, Class Quantum Gravity 14, p.1543–1547 (1997)ADSGoogle Scholar
  289. [1.288] {Sect. 1.5.15}
    J. Mizuno, A. Ruiger, R. Schilling, W. Winkler, K. Danzmann: Frequency response of Michelson- and Sagnac-based interferometers, Opt Commun 138, p.383–393 (1997)ADSGoogle Scholar
  290. [1.289] {Sect. 1.5.15}
    M. Musha, K. Nakagawa, K. Ueda: Wideband and high frequency stabilization of an inject ion-locked Nd:YAG laser to a high-finesse Fabry-Perot cavity, Optics Letters 22, p.1177–1179 (1997)ADSGoogle Scholar
  291. [1.290] {Sect. 1.5.15}
    M. Musha, S. Telada, K. Nakagawa, M. Ohashi, K. Ueda: Measurement of frequency noise spectra of frequency- stabilized LD-pumped Nd:YAG laser by using a cavity with separately suspended mirrors, Opt Commun 140, p.323–330 (1997)ADSGoogle Scholar
  292. [1.291] {Sect. 1.5.15}
    N. Nakagawa, B.A. Auld, E. Gustafson, M.M. Fejer: Estimation of thermal noise in the mirrors of laser interferometric gravitational wave detectors: Two point correlation function, Rev Sci Instr 68, p.3553–3556 (1997)ADSGoogle Scholar
  293. [1.292] {Sect. 1.5.15}
    A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Muller, R.H. Rinkleff: White-light cavities, atomic phase coherence, and gravitational wave detectors, Opt Commun 134, p.431–439 (1997)ADSGoogle Scholar
  294. [1.293] {Sect. 1.5.15}
    J. Giaime, P. Saha, D. Shoemaker, L. Sievers: A passive vibration isolation stack for LIGO: Design, modeling, and testing, Rev Sci Instr 67, p.208–214 (1996)ADSGoogle Scholar
  295. [1.294] {Sect. 1.5.15}
    G. Heinzel, J. Mizuno, R. Schilling, W. Winkler, A. Ruiger, K. Danzmann: An experimental demonstration of resonant sideband extraction for laser-interferometric gravitational wave detectors, Phys Lett A 217, p.305–314 (1996)ADSGoogle Scholar
  296. [1.295] {Sect. 1.5.15}
    L. Ju, M. Notcutt, D. Blair, F. Bondu, C.N. Zhao: Sapphire beamsplitters and test masses for advanced laser interferometer gravitational wave detectors, Phys Lett A 218, p.197–206 (1996)ADSGoogle Scholar
  297. [1.296] {Sect. 1.5.15}
    D.E. Mcclelland: An overview of recycling in laser interferometric gravitational wave detectors, Aust J Phys 48, p.953–970 (1996)ADSGoogle Scholar
  298. [1.297] {Sect. 1.5.15}
    D. Nicholson, C.A. Dickson, W.J. Watkins, B.F. Schutz, J. Shuttleworth, G.S. Jones, D.I. Robertson, N.L. Mackenzie, K.A. Strain, B.J. Meers, et al.: Results of the first coincident observations by two laser-interferometric gravitational wave detectors, Phys Lett A 218, p. 175–180 (1996)ADSGoogle Scholar
  299. [1.298] {Sect. 1.5.15}
    P.J. Veitch, J. Munch, M.W. Hamilton, D. Ottaway, A. Green-tree, A. Tikhomirov: High power lasers and novel optics for laser interferometric gravitational wave detectors, Aust J Phys 48, p.999–1006 (1996)ADSGoogle Scholar
  300. [1.299] {Sect. 1.5.15}
    Y. Wang, A. Stebbins, E.L. Turner: Gravitational lensing of gravitational waves from merging neutron star binaries, Phys Rev Lett 77, p.2875–2878 (1996)ADSGoogle Scholar
  301. [1.300] {Sect. 1.5.15}
    G.W. Collins, P.M. Celliers, L.B. DaSilva, D.M. Gold, R. Cauble: Laser-shock-driven laboratory measurements of the equation of state of hydrogen isotopes in the megabar regime, High Pressure Res 16, p.281–290 (2000)ADSGoogle Scholar
  302. [1.301] {Sect. 1.5.15}
    A. Mohacsi, M. Szakall, Z. Bozoki, G. Szabo, Z. Bor: High stability external cavity diode laser system for photoacoustic gas detection, Laser Phys 10, p.378–381 (2000)Google Scholar
  303. [1.302] {Sect. 1.5.15}
    E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz: Combined scanning optical coherence and two-photon-excited fluorescence microscopy, Optics Letters 24, p.969–971 (1999)ADSGoogle Scholar
  304. [1.303] {Sect. 1.5.15}
    A. Garnache, A.A. Kachanov, F. Stoeckel, R. Planei: High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers, Optics Letters 24, p.826–828 (1999)ADSGoogle Scholar
  305. [1.304] {Sect. 1.5.15}
    J. Han: Fabry-Perot cavity chemical sensors by silicon micro-machining techniques, Appl Phys Lett 74, p.445–447 (1999)ADSGoogle Scholar
  306. [1.305] {Sect. 1.5.15}
    E. Lacot, R. Day, F. Stoeckel: Laser optical feedback tomography, Optics Letters 24, p.744–746 (1999)ADSGoogle Scholar
  307. [1.306] {Sect. 1.5.15}
    J. Nolte, M. Paul: ICP-OES analysis of coins using laser ablation, At Spectrosc 20, p.212–216 (1999)Google Scholar
  308. [1.307] {Sect. 1.5.15}
    H. Okayama, L.Z. Wang: Measurement of the spatial coherence of light influenced by turbulence, Appl Opt 38, p.2342–2345 (1999)ADSGoogle Scholar
  309. [1.308] {Sect. 1.5.15}
    K.A. Peterson, D.B. Oh: High-sensitivity detection of CH radicals in flames by use of a diode- laser-based near-ultraviolet light source, Optics Letters 24, p.667–669 (1999)ADSGoogle Scholar
  310. [1.309] {Sect. 1.5.15}
    F.M. Xu, H.E. Pudavar, P.N. Prasad, D. Dickensheets: Con-focal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings, Optics Letters 24, p.1808–1810 (1999)ADSGoogle Scholar
  311. [1.310] {Sect. 1.5.15}
    G. Zikratov, F.Y. Yueh, J.P. Singh, O.P. Norton, R.A. Kumar, R.L. Cook: Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces, Appl Opt 38, p. 1467–1475 (1999)ADSGoogle Scholar
  312. [1.311] {Sect. 1.5.15}
    C.-T. Hsieh, C.-K. Lee: Cylindrical-type nanometer-resolution laser diffxactive optical encoder, Appl. Opt. 38, p.4743–4750 (1999)ADSGoogle Scholar
  313. [1.312] {Sect. 1.5.15}
    V. Lecoeuche, D.J. Webb, C.N. Pannell, D.A. Jackson: Brillouin based distributed fibre sensor incorporating a mode-locked Brillouin fibre ring laser, Opt Commun 152, p.263–268 (1998)ADSGoogle Scholar
  314. [1.313] {Sect. 1.5.15}
    K.J. Schulz, W.R. Simpson: Frequency-matched cavity ring-down spectroscopy, Chem Phys Lett 297, p.523–529 (1998)ADSGoogle Scholar
  315. [1.314] {Sect. 1.5.15}
    F. Kühnemann, K. Schneider, A. Hecker, A.A.E. Martis, W. Urban, S. Schiller, J. Mlynek: Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator, Appl. Phys. B 66, p.741–745 (1998)ADSGoogle Scholar
  316. [1.315] {Sect. 1.5.15}
    Y.M. Chang, L. Xu, H.W.K. Tom: Observation of coherent surface optical phonon oscillations by time-resolved surface second-harmonic generation, Phys Rev Lett 78, p.4649–4652 (1997)ADSGoogle Scholar
  317. [1.316] {Sect. 1.5.15}
    J.C. Cotteverte, J. Poirson, A. LeFloch, F. Bretenaker, A. Chauvin: Laser magnetometer measurement of the natural remanent magnetization of rocks, Appl Phys Lett 70, p.3075–3077 (1997)ADSGoogle Scholar
  318. [1.317] {Sect. 1.5.15}
    J. Larsson, Z. Chang, E. Judd, P.J. Schuck, R.W. Falcone, P.A. Heimann, H.A. Padmore, H.C. Kapteyn, P.H. Bucksbaum, M.M. Mur-nane, et al.: Ultrafast x-ray diffraction using a streak-camera detector in averaging mode, Optics Letters 22, p.1012–1014 (1997)ADSGoogle Scholar
  319. [1.318] {Sect. 1.5.15}
    B.W. Lee, H.J. Jeong, B.Y. Kim: High-sensitivity mode-locked fiber laser gyroscope, Optics Letters 22, p. 129–131 (1997)ADSGoogle Scholar
  320. [1.319] {Sect. 1.5.15}
    R.M. Mihalcea, D.S. Baer, R.K. Hanson: Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows, Appl Opt 36, p.8745–8752 (1997)ADSGoogle Scholar
  321. [1.320] {Sect. 1.5.15}
    R.B. Rogers, W.V. Meyer, J.X. Zhu, P.M. Chaikin, W.B. Rusel, M. Li, W.B. Turner: Compact laser light-scattering instrument for microgravity research, Appl Opt 36, p.7493–7500 (1997)ADSGoogle Scholar
  322. [1.321] {Sect. 1.5.15}
    E.W. Rothe, P. Andresen: Application of tunable excimer lasers to combustion diagnostics: A review, Appl Opt 36, p.3971–4033 (1997)ADSGoogle Scholar
  323. [1.322] {Sect. 1.5.15}
    A. Brockhinke, K. Kohsehoinghaus, P. Andresen: Double-pulse one-dimensional Raman and Rayleigh measurements for the detection of temporal and spatial structures in a turbulent H-2-air diffusion flame, Optics Letters 21, p.2029–2031 (1996)ADSGoogle Scholar
  324. [1.323] {Sect. 1.5.15}
    S.L. Min, A. Gomez: High-resolution size measurement of single spherical particles with a fast Fourier transform of the angular scattering intensity, Appl Opt 35, p.4919–4926 (1996)ADSGoogle Scholar
  325. [1.324] {Sect. 1.5.15}
    P. Repond, M.W. Sigrist: Photoacoustic spectroscopy on trace gases with continuously tunable CO2 laser, Appl Opt 35, p.4065–4085 (1996)ADSGoogle Scholar
  326. [1.325] {Sect. 1.5.15}
    P.A. Roos, M. Stephens, C.E. Wieman: Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode, Appl Opt 35, p.6754–6761 (1996)ADSGoogle Scholar
  327. [1.326] {Sect. 1.5.15}
    T. Dresel, G. Häusler, H. Venzke: Three-dimensional sensing of rough surfaces by coherence radar, Appl. Opt. 31, p.919–925 (1992)ADSGoogle Scholar
  328. [1.327] {Sect. 1.5.15}
    T.J. Kane, W.J. Kozlovsky, R.L. Byer, C.E. Byvik: Coherent laser radar at 1.06 μm using Nd:YAG lasers, Opt. Lett. 12, p.239–241 (1987)ADSGoogle Scholar
  329. [1.328] {Sect. 1.5.16}
    A. Guttman, T. Lengyel, M. Szoke, M. SasvariSzekely: Ultrathin-layer agarose gel electrophoresis — II. Separation of DNA fragments on composite agarose-linear polymer matrices, J Chromatogr A 871, p.289–298 (2000)Google Scholar
  330. [1.329] {Sect. 1.5.16}
    M. Neumann, D.R Herten, A. Dietrich, J. Wolfrum, M. Sauer: Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments, J Chromatogr A 871, p.299–310 (2000)Google Scholar
  331. [1.330] {Sect. 1.5.16}
    H.H. Zhou, A.W. Miller, Z. Sosic, B. Buchholz, A.E. Barron, L. Kotler, B.L. Karger: DNA sequencing up to 1300 bases in two hours by capillary electrophoresis with mixed replaceable linear Polyacrylamide solutions, Anal Chem 72, p. 1045–1052 (2000)Google Scholar
  332. [1.331] {Sect. 1.5.16}
    S.O. Kelley, J.K. Barton: Electron transfer between bases in double helical DNA, Science 283, p.375–381 (1999)ADSGoogle Scholar
  333. [1.332] {Sect. 1.5.16}
    G.V. Shivashankar, A. Libchaber: Biomolecular recognition using submicron laser lithography, Appl Phys Lett 73, p.417–419 (1998)ADSGoogle Scholar
  334. [1.333] {Sect. 1.5.16}
    R. Muller, D.P. Herten, U. Lieberwirth, M. Neumann, M. Sauer, A. Schulz, S. Siebert, K.H. Drexhage, J. Wolfrum: Efficient DNA sequencing with a pulsed semiconductor laser and a new fluorescent dye set, Chem Phys Lett 279, p.282–288 (1997)ADSGoogle Scholar
  335. [1.334] {Sect. 1.5.16}
    A. Anders: Selective Laser Excitation of Bases in Nucleic Acids, Appl. Phys. 20, p.257–259 (1979)ADSGoogle Scholar
  336. [1.335] {Sect. 1.5.16}
    A. Anders: Models of DNA-Dye-Complexes: Energy Transfer and Molecular Structures as Evaluated by Laser Excitation, Appl. Phys. 18, p.333–338 (1979)ADSGoogle Scholar
  337. [1.336] {Sect. 1.5.17}
    H. Daido, S. Sebban, N. Sakaya, Y. Tohyama, T. Norimatsu, K. Mima, Y. Kato, S. Wang, Y. Gu, G. Huang et al.: Experimental characterization of short-wavelength Ni-like soft-x-ray lasing toward the water window, J Opt Soc Am B Opt Physics 16, p.2295–2299 (1999)ADSGoogle Scholar
  338. [1.337] {Sect. 1.5.17}
    C. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch, M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz: Generation of coherent X-rays in the water window using 5-femtosecond laser pulses, Science 278, p.661–664 (1997)ADSGoogle Scholar
  339. [1.338] {Sect. 1.5.17}
    P. Gibbon: Harmonic generation by femtosecond laser-solid interaction: A coherent “water-window” light source?, Phys Rev Lett 76, p.50–53 (1996)ADSGoogle Scholar
  340. [1.339] {Sect. 1.5.17}
    B. Lengeier, C.G. Schroer, M. Richwin, J. Tummler, M. Drakopoulos, A. Snigirev, I. Snigireva: A microscope for hard x rays based on parabolic compound refractive lenses, Appl Phys Lett 74, p.3924–3926 (1999)ADSGoogle Scholar
  341. [1.340] {Sect. 1.5.17}
    Y. Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Paw-ley, K. Gerber, J. Sethian, C.M. Brown, J. Seely, U. Feldman et al.: Highresolution monochromatic x-ray imaging system based on spherically bent crystals, Appl Opt 37, p.5253–5261 (1998)ADSGoogle Scholar
  342. [1.341] {Sect. 1.5.17}
    J.A. Koch, O.L. Landen, T.W. Barbee, P. Celliers, L.B. DaSilva, S.G. Glendinning, B.A. Hammel, D.H. Kalantar, C. Brown, J. Seely et al: High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility, Appl Opt 37, p. 1784–1795 (1998)ADSGoogle Scholar
  343. [1.342] {Sect. 1.5.17}
    C.C. Gaither, E.J. Schmahl, C.J. Crannell, B.R. Dennis, F.L. Lang, L.E. Orwig, C.N. Hartman, G.J. Hurford: Quantitative characterization of the x-ray imaging capability of rotating modulation collimators with laser light, Appl Opt 35, p.6714–6726 (1996)ADSGoogle Scholar
  344. [1.343] {Sect. 1.5.17}
    I.P. Christov, M.M. Murnane, H.C. Kapteyn: Generation of single-cycle attosecond pulses in the vacuum ultraviolet, Opt Commun 148, p.75–78 (1998)ADSGoogle Scholar
  345. [1.344] {Sect. 1.5.17}
    G. Schriever, K. Bergmann, R. Lebert: Narrowband laser produced extreme ultraviolet sources adapted to silicon/molybdenum multilayer optics, J Appl Phys 83, p.4566–4571 (1998)ADSGoogle Scholar
  346. [1.345] {Sect. 1.5.17}
    I.V. Tomov, P. Chen, P.M. Rentzepis: Pulse broadening in femtosecond x-ray diffraction, J Appl Phys 83, p.5546–5548 (1998)ADSGoogle Scholar
  347. [1.346] {Sect. 1.5.17}
    Z.H. Chang, A. Rundquist, H.W. Wang, M.M. Murnane, H.C. Kapteyn: Generation of coherent soft X rays at 2.7 nm using high harmonics, Phys Rev Lett 79, p.2967–2970 (1997)ADSGoogle Scholar
  348. [1.347] {Sect. 1.5.17}
    R.W. Schoenlein, W.P. Leemans, A.H. Chin, P. Voifbeyn, T.E. Glover, P. Balling, M. Zolotorev, K.J. Kim, S. Chattopadhyay, C.V. Shank: Femtosecond x-ray pulses at 0.4 angstrom generated by 90 degrees Thomson scattering: A tool for probing the structural dynamics of materials, Science 274, p.236–238 (1996)ADSGoogle Scholar
  349. [1.348] {Sect. 1.5.18}
    H.H. Solak, D. He, W. Li, S. SinghGasson, F. Cerrina, B.H. Sohn, X.M. Yang, P. Nealey: Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography, Appl Phys Lett 75, p.2328–2330 (1999)ADSGoogle Scholar
  350. [1.349] {Sect. 1.5.18}
    eds. Updated Roadmap identifies technical, stategic challenges, Solid State Technologyp.43–53 (1995)Google Scholar
  351. [1.350] {Sect. 1.5.20}
    V.I. Bespalov: Large-size monosectorial crystal elements for powerful laser systems, J Nonlinear Opt Physics Mat 6, p.467–472 (1997)ADSGoogle Scholar
  352. [1.351] {Sect. 1.5.20}
    T.R. Boehly, D.L. Brown, R.S. Craxton, R.L. Keck, J.P. Knauer, J.H. Kelly, T.J. Kessler, S.A. Kumpan, S.J. Loucks, S.A. Letzring, et al.: Initial performance results of the OMEGA laser system, Opt Commun 133, p.495–506 (1997)ADSGoogle Scholar
  353. [1.352] {Sect. 1.5.20}
    M.J. Guardalben: Conoscopic alignment methods for birefringent optical elements in fusion lasers, Appl Opt 36, p.9107–9109 (1997)Google Scholar
  354. [1.353] {Sect. 1.5.20}
    B.M. Vanwonterghem, J.R. Murray, J.H. Campbell, D.R. Speck, C.E. Barker, I.C. Smith, D.F. Browning, W.C. Behrendt: Performance of a prototype for a large-aperture multipass Nd: glass laser for in-ertial confinement fusion, Appl Opt 36, p.4932–4953 (1997)ADSGoogle Scholar
  355. [1.354] {Sect. 1.5.21}
    Y. Cheng, Z.Z. Xu: Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge, Appl Phys Lett 74, p.2116–2118 (1999)ADSGoogle Scholar
  356. [1.355] {Sect. 1.5.21}
    G. Malka, E. Lefebvre, J.L. Miquel: Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser, Phys Rev Lett 78, p.3314–3317 (1997)ADSGoogle Scholar
  357. [1.356] {Sect. 1.5.21}
    G. Malka, J. Fuchs, F. Amiranoff, S.D. Baton, R. Gaillard, J.L. Miquel, H. Pepin, C. Rousseaux, G. Bonnaud, M. Busquet, et al.: Suprathermal electron generation and channel formation by an ultrarela-tivistic laser pulse in an underdense preformed plasma, Phys Rev Lett 79, p.2053–2056 (1997)ADSGoogle Scholar
  358. [1.357] {Sect. 1.5.21}
    B. Rau, T. Tajima, H. Hojo: Coherent electron acceleration by subcycle laser pulses, Phys Rev Lett 78, p.3310–3313 (1997)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ralf Menzel
    • 1
  1. 1.Institut für PhysikUniversität PotsdamPotsdamGermany

Personalised recommendations