Advertisement

Inelastic Electron Scattering and Spectroscopy

  • Brent Fultz
  • James M. Howe

Abstract

This chapter describes several physical processes by which electrons are scattered inelastically. In order of increasing energy loss, E, these inelastic processes are:
  • phonon creation,

  • plasmon excitation,

  • core electron excitation.

Energy is conserved for all these inelastic processes — the spectrum of energy gains by the sample is mirrored in the spectrum of energy losses of the high-energy electrons.

Keywords

Inelastic Scattering Plasmon Peak Energy Filter Core Excitation Inelastic Electron Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. C. C. Ahn and O. L. Krivanek: EELS Atlas (Gatan, Inc., Pleasanton, CA 1983).Google Scholar
  2. M. M. Disko, C. C. Ahn and B. Fultz, Eds.: Transmission Electron Energy Loss Spectroscopy in Materials Science (Minerals, Metals & Materials Society, Warrendale, PA 1992).Google Scholar
  3. R. F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd Ed. (Plenum Press, New York 1996).CrossRefGoogle Scholar
  4. J. J. Hren, J. I. Goldstein and D. C. Joy, Eds.: Introduction to Analytical Electron Microscopy (Plenum Press, New York 1979).Google Scholar
  5. D. C. Joy, A. D. Romig Jr. and J. I. Goldstein, Eds.: Principles of Analytical Electron Microscopy (Plenum Press, New York 1986).Google Scholar
  6. H. Raether: Excitations of Plasmons and Interband Transitions by Electrons (Springer-Verlag, Berlin and New York 1980).Google Scholar
  7. L. Reimer, Ed.: Energy-Filtering Transmission Electron Microscopy (Springer-Verlag, Berlin 1995).Google Scholar
  8. L. Reimer: Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 4th Ed. (Springer-Verlag, New York 1997).CrossRefGoogle Scholar
  9. P. Schattchneider: Fundamentals of Inelastic Electron Scattering (Springer-Verlag, Vienna, New York 1986).CrossRefGoogle Scholar
  10. D. B. Williams: Practical Analytical Electron Microscopy in Materials Science (Philips Electron Instruments, Inc., Mahwah, NJ 1984).Google Scholar
  11. D. B. Williams and C. B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York 1996).CrossRefGoogle Scholar

References and Fingures

  1. 4.1
    D. H. Pearson: Measurements of White Lines in Transition Metals and Alloys using Electron Energy Loss Spectrometry. Ph.D. Thesis, California Institute of Technology, California (1991). Figure reprinted with the courtesy of Dr. D. H. Pearson.Google Scholar
  2. 4.2
    M. M. Disko: ‘Transmission Electron Energy-Loss Spectrometry in Materials Science’. In: Transmission Electron Energy Loss Spectroscopy in Materials Science, ed. by M. M. Disko, C. C. Ahn and B. Fultz (Minerals, Metals & Materials Society, Warrendale, PA 1992). Reprinted with courtesy of The Minerals, Metals & Materials Society.Google Scholar
  3. 4.3
    J. K. Okamoto: Temperature-Dependent Extended Electron Energy Loss Fine Structure Measurements from K, L 23, and M 45 Edges in Metals, Intermetallic Alloys, and Nanocrystalline Materials. Ph.D. Thesis, California Institute of Technology, California (1993). Figure reprinted with the courtesy of Dr. J. K. Okamoto.Google Scholar
  4. 4.4
    A. Hightower: Lithium Electronic Environments in Rechargeable Battery Electrodes. Ph.D. Thesis, California Institute of Technology, California (2000).Google Scholar
  5. 4.5
    R. F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, New York 1996). Figures reprinted with the courtesy of Plenum Press.CrossRefGoogle Scholar
  6. 4.6
    D. B. Williams and C. B. Carter: Transmission Electron Microscopy: A Textbook f or Materials Science (Plenum Press, New York 1996). Figure reprinted with the courtesy of Plenum Press.CrossRefGoogle Scholar
  7. 4.7
    R. D. Leapman: ‘EELS Quantitative Analysis’. In: Transmission Electron Energy Loss Spectroscopy in Materials Science ed. by M. M. Disko, C. C. Ahn and B. Fultz (Minerals, Metals & Materials Society, War-rendale, PA 1992). Reprinted with courtesy of The Minerals, Metals & Materials Society.Google Scholar
  8. 4.8
    Figure reprinted with the courtesy of K. T. Moore.Google Scholar
  9. 4.8
    D. B. Williams: Practical Analytical Electron Microscopy in Materials Science (Philips Electron Optics Publishing Group, Mahwah, NJ 1984). Figure reprinted with the courtesy of FEI/Philips.Google Scholar
  10. 4.10
    E. H. S. Burhop: The Auger Effect and Other Radiationless Transitions (Cambridge University Press 1952). Figure reprinted with the permission of Cambridge University Press.Google Scholar
  11. 4.11
    Figure reprinted with the courtesy of Dr. K. M. Krishnan.Google Scholar
  12. 4.12
    Figure reprinted with the courtesy of C. M. Garland.Google Scholar
  13. 4.13
    C. Nockolds, M. J. Nasir, G. Cliff and G. W. Lorimer, In: Electron Microscopy and Analysis — 1979, ed. by T. Mulvey (The Institute of Physics, Bristol and London, 1980) p. 417.Google Scholar
  14. 4.14
    J. M. Howe and R. Gronsky: Scripta Metall., 20, 1168 (1986). Figure reprinted with the courtesy of Elsevier Science Ltd.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Brent Fultz
    • 1
  • James M. Howe
    • 2
  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations