Skip to main content

Abstract

Spatial resolution is important for any microscopy. This chapter presents the theory, technique, and examples of achieving the ultimate resolution of a transmission electron microscope with the method of “high-resolution transmission electron microscopy.” Recall (Sect. 2.3.3) that the HRTEM image is an interference pattern between the forward-scattered and diffracted electron waves from the specimen. Interference patterns require close attention to the phases of the waves. While the ray optics approach is useful for a few geometrical arguments, the most important issues in HRTEM are best understood in terms of the phase of the electron wavefront and how this phase is altered by the specimen and by the objective lens. The specimen itself is approximated as an object that provides phase shifts to the electron wavefront, sometimes in proportion to its scattering potential. The method of HRTEM also demands close attention to the performance of the objective lens and other characteristics of the microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • The contents of the following are described in the Bibliography. S. Amelinckx and D. van Dyck: “Diffraction Contrast and High Resolution Microscopy of Structures and Structural Defects,” in Electron Diffraction Techniques, Volume 2, J. M. Cowley, Ed. (International Union of Crystallography, Oxford University Press, Oxford 1992).

    Google Scholar 

  • J. Barry: ‘Computing for High-Resolution Images and Diffraction Patterns’. In Electron Diffraction Techniques, Volume 1, J. M. Cowley, Ed. (International Union of Crystallography, Oxford University Press, Oxford 1992).

    Google Scholar 

  • P. R. Buseck, J. M. Cowley and L. Eyring: High-Resolution Transmission Electron Microscopy and Associated Techniques(Oxford University Press, Oxford 1988).

    Google Scholar 

  • J. M. Cowley: Diffraction Physics, 2nd edn., (North-Holland, Amsterdam. 1975).

    Google Scholar 

  • P. Grivet: Electron Optics, revised by A. Septier, translated by P. W. Hawkes (Pergamon, Oxford, 1965).

    Google Scholar 

  • S. J. Pennycook, D. E. Jesson, M. F. Chisholm, N. D. Browning, A. J. McGibbon, and M. M. McGibbon: ‘Z-Contrast Imaging in the Scanning Transmission Electron Microscope’, J. Micros. Soc. Amer. 1, 234 (1995).

    Google Scholar 

  • L. Reimer: Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 4th edn. (Springer-Verlag, New York 1997).

    Book  Google Scholar 

  • J. C. Russ: Computer-Assisted Microscopy: The Measurement and Analysis of Images, (Plenum Press, New York 1990).

    Book  Google Scholar 

  • F. G. Smith and J. H. Thomson: Optics, 2nd edn. (John Wiley and Sons, New York 1988).

    Google Scholar 

  • J. C. H. Spence: Experimental High-Resolution Electron Microscopy(Oxford University Press, Oxford 1988).

    Google Scholar 

  • G. Thomas and M. J. Goringe: Transmission Electron Microscopy of Materials(Wiley-Interscience, New York 1979).

    Google Scholar 

  • D. B. Williams and C. B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science(Plenum Press, New York 1996).

    Book  Google Scholar 

References and Figures

  1. J. M. Cowley and A. F. Moodie: Acta Cryst. 10, 609 (1957). Ibid. 12, 353, 360, 367 (1959).

    Article  CAS  Google Scholar 

  2. M. A. O’Keefe: ‘Electron image simulation; a complementary processing technique’. In: Proceedings of the 3rd Pfeffercorn Conference on Electron Optical Systems, Ocean City, MDed. by J. J. Hren, F. A. Lenz, E. Munro, P. B. Sewell, and S. A. Bhatt (Scanning Electron Microscopy, Inc., Illinois 1984) pp. 209–220.

    Google Scholar 

  3. S. R. Singh and J. M. Howe: Phil. Mag. A 66, 746 (1992). Figure reprinted with the courtesy of Taylor & Francis, Ltd.

    Google Scholar 

  4. S. Das, J. M. Howe and J. H. Perepezko: Metall. Mater. Trans. 27A, 1627 (1996). Figure reprinted with the courtesy of The Minerals, Metals & Materials Society.

    Article  Google Scholar 

  5. G. Rao, J. M. Howe and P. Wynblatt, unpublished research.

    Google Scholar 

  6. U. Dahmen: Micros. Soc. Amer. Bull. 24, 341 (1994). Figure reprinted with the courtesy of Microscopy Society of America.

    Google Scholar 

  7. D. F. Sundo and J. M. Howe: ‘Theoretical and Experimental Analysis of the Effects of Composition and Strain on Image Contrast in High-Resolution Transmission Electron Microscopy’. In: Electron Microscopy 1990 — Vol. 1, Imaging Sciencesed. by G. W. Bailey (San Francisco Press, Inc., San Francisco 1990) p. 67. Figure reprinted with the courtesy of San Francisco Press, Inc.

    Google Scholar 

  8. J. M. Howe, D. P. Basile, N. Prabhu and M. K. Hatalis: ‘Minimum Detectable Solute Concentration and Accuracy of Compositional Analysis in Atomic-Resolution Microscopy’. In: Analytical Electron Microscopy — 1987ed. by D. C. Joy (San Francisco Press, Inc., San Francisco 1987) p. 238. Figure reprinted with the courtesy of San Francisco Press, Inc.

    Google Scholar 

  9. Figure reprinted with the courtesy of R. Gronsky and D. Acklund.

    Google Scholar 

  10. J. M. Howe and S. J. Rozeveld: J. Micros. Res. Tech. 23, 233 (1992). Reprinted with the courtesy of Wiley-Liss, Inc.

    Google Scholar 

  11. M. M. Tsai: Determination of the Growth Mechanisms of TiH in Ti Using High-Resolution and Energy-Filtering Transmission Electron Microscopy. Ph.D. Thesis, University of Virginia, Charlottesville, VA (1997). Figure reprinted with the courtesy of Dr. M. M. Tsai.

    Google Scholar 

  12. such as Gatan Digital Micrograph™ or NIH Image.

    Google Scholar 

  13. B. Laird and J. M. Howe, unpublished research.

    Google Scholar 

  14. R. Kilaas and R. Gronsky: Ultramicros. 16, 193 (1985). Figure reprinted with the courtesy of Elsevier Science Publishing B.V.

    Article  CAS  Google Scholar 

  15. N. D. Browning, D. J. Wallis, P. D. Nellist and S. J. Pennycook: Micron 28, 334 (1997). Reprinted with the courtesy of Elsevier Science Ltd.

    Article  Google Scholar 

  16. S. J. Pennycook, D. E. Jesson, M. F. Chisholm, N. D. Browning, A. J. McGibbon, and M. M. McGibbon: J. Micros. Soc. Amer. 1, 234 (1995). Reprinted with the courtesy of Microscopy Society of America.

    Google Scholar 

  17. A. Amali and P. Rez: Microsc. and Microanal. 3, 28 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fultz, B., Howe, J.M. (2001). High-Resolution TEM Imaging. In: Transmission Electron Microscopy and Diffractometry of Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04516-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04516-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04518-3

  • Online ISBN: 978-3-662-04516-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics