Time Reversal and Unitary Symmetries

  • Fritz Haake
Part of the Springer Series in Synergetics book series (SSSYN, volume 54)

Abstract

A classical Hamiltonian system is called time-reversal invariant if from any given solution x(t), p(t) of Hamilton’s equations an independent solution x′(t′), p′(t′),is obtained with t′ = −t and some operation relating x′ and p′ to the original coordinates x and momenta p.

Keywords

Microwave Covariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 33.
    E.P. Wigner: Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra ( Academic, New York 1959 )Google Scholar
  2. 34.
    C.E. Porter (ed.): Statistical Theories of Spectra ( Academic, New York 1965 )Google Scholar
  3. 35.
    M.L. Mehta: Random Matrices and the Statistical Theory of Spectra (Academic, New York 1967; 2nd edition 1991 )Google Scholar
  4. 36.
    D. Delande, J.C. Gay: Phys. Rev. Lett. 57, 2006 (1986)Google Scholar
  5. 37.
    G. Wunner, U. Woelck, I. Zech, G. Zeller, T. Ertl, F. Geyer, W. Schweitzer, H. Ruder: Phys. Rev. Lett. 57, 3261 (1986)ADSCrossRefGoogle Scholar
  6. 38.
    T.H. Seligman, J.J.T. Verbaarschot: Phys. Lett. 108A, 183 (1985)MathSciNetCrossRefGoogle Scholar
  7. 39.
    G. Casati, B.V. Chirikov, D.L. Shepelyansky, I. Guarneri: Phys. Rep. 154, 77 (1987)ADSCrossRefGoogle Scholar
  8. 40.
    G. Casati, B.V. Chirikov, F.M. Izrailev, J. Ford: In G. Casati, J. Ford (eds.): Stochastic Behavior in Classical and Quantum Hamiltonian Systems Lecture Notes in Physics, Vol. 93 (Springer, Berlin, Heidelberg 1979 )Google Scholar
  9. 41.
    B.V. Chirikov: preprint no. 267, Inst. Nucl. Physics Novosibirsk (1969); Phys. Rep. 52, 263 (1979)Google Scholar
  10. 42.
    F. Haake, M. Ku§, R. Scharf: Z. Physik B65, 381 (1987);ADSGoogle Scholar
  11. 43.
    M. Ku§, R. Scharf, F. Haake: Z. Physic B66, 129 (1987)ADSCrossRefGoogle Scholar
  12. 44.
    F. Haake, M. Ku§, R. Scharf: In Fundamentals of Quantum Optics II, ed. by F. Ehlotzky, Lecture Notes in Physics Vol. 282 ( Springer, Berlin, Heidelberg 1987 )Google Scholar
  13. 45.
    R. Scharf, B. Dietz, M. Ku§, F. Haake, M.V. Berry: Europhys. Lett. 5, 383 (1988)ADSCrossRefGoogle Scholar
  14. 46.
    F. Dyson: J. Math. Phys. 3, 1199 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 47.
    M. Zirnbauer: private communication and to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Fritz Haake
    • 1
  1. 1.Institut für Theoretische Physik, Fachbereich 7, PhysikUniversity of EssenEssenGermany

Personalised recommendations