Advertisement

Time Reversal and Unitary Symmetries

  • Fritz Haake
Part of the Springer Series in Synergetics book series (SSSYN, volume 54)

Abstract

A classical Hamiltonian system is called time-reversal invariant if from any given solution x(t), p(t) of Hamilton’s equations an independent solution x′(t′), p′(t′),is obtained with t′ = −t and some operation relating x′ and p′ to the original coordinates x and momenta p.

Keywords

Time Reversal Canonical Transformation Universality Class Schrodinger Equation Geometric Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 33.
    E.P. Wigner: Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra ( Academic, New York 1959 )Google Scholar
  2. 34.
    C.E. Porter (ed.): Statistical Theories of Spectra ( Academic, New York 1965 )Google Scholar
  3. 35.
    M.L. Mehta: Random Matrices and the Statistical Theory of Spectra (Academic, New York 1967; 2nd edition 1991 )Google Scholar
  4. 36.
    D. Delande, J.C. Gay: Phys. Rev. Lett. 57, 2006 (1986)Google Scholar
  5. 37.
    G. Wunner, U. Woelck, I. Zech, G. Zeller, T. Ertl, F. Geyer, W. Schweitzer, H. Ruder: Phys. Rev. Lett. 57, 3261 (1986)ADSCrossRefGoogle Scholar
  6. 38.
    T.H. Seligman, J.J.T. Verbaarschot: Phys. Lett. 108A, 183 (1985)MathSciNetCrossRefGoogle Scholar
  7. 39.
    G. Casati, B.V. Chirikov, D.L. Shepelyansky, I. Guarneri: Phys. Rep. 154, 77 (1987)ADSCrossRefGoogle Scholar
  8. 40.
    G. Casati, B.V. Chirikov, F.M. Izrailev, J. Ford: In G. Casati, J. Ford (eds.): Stochastic Behavior in Classical and Quantum Hamiltonian Systems Lecture Notes in Physics, Vol. 93 (Springer, Berlin, Heidelberg 1979 )Google Scholar
  9. 41.
    B.V. Chirikov: preprint no. 267, Inst. Nucl. Physics Novosibirsk (1969); Phys. Rep. 52, 263 (1979)Google Scholar
  10. 42.
    F. Haake, M. Ku§, R. Scharf: Z. Physik B65, 381 (1987);ADSGoogle Scholar
  11. 43.
    M. Ku§, R. Scharf, F. Haake: Z. Physic B66, 129 (1987)ADSCrossRefGoogle Scholar
  12. 44.
    F. Haake, M. Ku§, R. Scharf: In Fundamentals of Quantum Optics II, ed. by F. Ehlotzky, Lecture Notes in Physics Vol. 282 ( Springer, Berlin, Heidelberg 1987 )Google Scholar
  13. 45.
    R. Scharf, B. Dietz, M. Ku§, F. Haake, M.V. Berry: Europhys. Lett. 5, 383 (1988)ADSCrossRefGoogle Scholar
  14. 46.
    F. Dyson: J. Math. Phys. 3, 1199 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 47.
    M. Zirnbauer: private communication and to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Fritz Haake
    • 1
  1. 1.Institut für Theoretische Physik, Fachbereich 7, PhysikUniversity of EssenEssenGermany

Personalised recommendations