Skip to main content

Direct Determination of Biomembrane Structures

  • Chapter
Lipid Bilayers

Part of the book series: Biological Physics Series ((BIOMEDICAL))

  • 326 Accesses

Abstract

In early attempts to reveal the molecular organization of cell membranes, x-ray diffraction was employed to probe multilamellar arrays of phospholipid bilayers [1–4]. Suitable multilayer samples were either built up by dipping a support surface through a Langmuir-Blodgett monolayer or by examination of stacked natural membranes. More recently, other techniques such as epitaxial crystallization on a substrate have been devised to orient phospholipid multilayers on an electron microscope grid to be studied by electron diffraction [5]. Studies of such lipid and biomembrane lamellar arrays are necessary because of the difficulty in crystallizing phospholipid samples suitable for x-ray diffraction. For example, the study of polydispersity in acyl chains (length, unsaturation), the principal factor controlling bilayer fluidity, has been frustrated since the least amount of impurity impedes the growth of suitable single crystals [6]. Needless to say, inclusion of other important bilayer lipids, such as cholesterol, that also control membrane properties [7], was also excluded from single crystal studies. Only after suitable single crystals were obtained, have the structures of representative diacyl phospholipids (phosphatidylethanolamine [8], phosphatidylcholine [9], phosphatidyl-N,N-dimethylethanolamine [10], phosphatidylglycerol [11] and phosphatidic acid [12]) been determined, to reveal preferred molecular conformations and packing arrangements of polar headgroups and diacyl glycerol moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fernandez-Moran, J. B. Finean: Electron microscope and x-ray diffraction studies of nerve myelin sheath, J. Cell. Biol. 3, 725–748 (1957)

    Article  Google Scholar 

  2. Y. K. Levine, M. H. F. Wilkins: Structure of oriented lipid bilayers, Nature New Biology 230, 69–72 (1971)

    Article  Google Scholar 

  3. D. L. D. Caspar, D. A. Kirschner: Myelin membrane structure at 10 A resolution, Nature New Biology 251, 46–52 (1971)

    Google Scholar 

  4. R. E. Burge, M. A. Fiddy: Phase assignment to diffraction patterns based on the analytic properties of scattered fields applied to the structure of nerve myelin, J. Appl Cryst. 14, 455–461 (1981)

    Article  Google Scholar 

  5. D. L. Dorset, W. A. Pangborn, A. J. Hancock: Epitaxial crystallization of alkane chain lipids for electron diffraction analysis, J. Biochem. Biophys. Meth. 8, 29–40 (1983)

    Article  Google Scholar 

  6. N. Albon: The growth of phospholipid crystals, J. Cryst. Growth 35, 105–109 (1976)

    Article  ADS  Google Scholar 

  7. D. C. Worcester, N. R. Franks: Structure analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction, J. Mol. Biol. 100, 359–378 (1976)

    Article  Google Scholar 

  8. M. Elder, P. Hitchcock, R. Mason, G. G. Shipley: A refinement analysis of the crystallography of the phospholipid, 1,2-dilauroylphosphatidylethanolamine, and some comments on lipid-lipid and lipid-protein interactions, Proc. Roy. Soc. (London) B354, 157–170 (1977)

    Article  ADS  Google Scholar 

  9. R. H. Pearson, I. Pascher: The molecular structure of lecithin dihydrate, Nature 281, 499–501 (1979)

    Article  ADS  Google Scholar 

  10. I. Pascher, S. Sundell: Membrane lipids: preferred conformational states and their interplay: the crystal structure of dilauroyl phosphatidyl N,N-dimethylethanolamine, Biochim. Biophys. Acta 855, 68–78 (1986)

    Article  Google Scholar 

  11. I. Pascher, S. Sundell, K. Harlos, H. Eibl: Conformation and packing properties of membrane lipids: the crystal structure of sodium dimyristoyl phosphatidyl glycerol, Biochim. Biophys. Acta 896, 77–88 (1987)

    Article  Google Scholar 

  12. K. Harlos, H. Eibl, I. Pascher, S. Sundell: Conformation and packing properties of phosphatidic acid: the crystal structure of monosodium dimyristoyl phosphatidate, Chem. Phys. Lipids 34, 115–126 (1984)

    Article  Google Scholar 

  13. D. F. Parsons and S. C. Nyburg: Electron diffraction structure analysis of a crystalline phospholipid, J. Appl. Phys. 37, 3920 (1966)

    Google Scholar 

  14. D. L. Dorset: Electron crystallography of alkyl chain lipids — identification of long chain packing, Ultramicroscopy 12, 19–28 (1983)

    Article  Google Scholar 

  15. J. M. Cowley: Diffraction intensities from bent crystals, Acta Cryst. 14, 920–927 (1961)

    Article  MathSciNet  Google Scholar 

  16. D. L. Dorset, H. A. Hauptman: Direct phase determination for quasi-kinema-tical electron diffraction intensity data from organic microcrystals, Ultramicroscopy 1, 195–201 (1976)

    Article  Google Scholar 

  17. B. K. Jap, M. Zulauf, T. Scheybani, A. Hefti, W. Baumeister, U. Aebi, A. En-gel: 2D crystallization: from art to science, Ultramicroscopy 46, 45–84 (1992)

    Article  Google Scholar 

  18. L. A. Amos, R. Henderson, P. N. T. Unwin: Three-dimensional structure deter-mination by electron microscopy of two-dimensional crystals, Progr. Biophys. Molec. Biol. 39, 183–231 (1982)

    Article  Google Scholar 

  19. R. S. Khare, C. R. Worthington: The structure of oriented sphingomyelin bilayers, Biochim. Biophys. Acta 514, 239–254 (1978)

    Article  Google Scholar 

  20. C. R. Worthington, R. S. Khare: Structure determination of lipid bilayers, Biophys. J. 23, 407–425 (1990)

    Article  Google Scholar 

  21. J. F. Nagle, M. D. Wiener: Relations for lipid bilayers. Connection of electron density profiles to other structural quantities, Biophys. J. 55, 309–313 (1989)

    Article  ADS  Google Scholar 

  22. W. C. Hamilton: Significance tests on the value of R, in Statistics in Physical Science: Estimation, Hypothesis Testing, and Least Squares(Ronald, New York, 1964) pp. 157–162

    Google Scholar 

  23. G. Biildt, J. Seelig: Conformation of phosphatidylethanolamine in the gel phase as seen by neutron diffraction, Biochemistry 19, 6170–6175 (1980)

    Article  Google Scholar 

  24. G. Biildt, U. Gaily, J. Seelig, G. Zaccai: Neutron diffraction studies on phosphatidyl choline model membrane. I. Head group conformation, J. Mol. Biol. 134, 673–691 (1979)

    Article  Google Scholar 

  25. G. Zaccai, G. Biildt, A. Seelig, J. Seelig: Neutron diffraction studies on phosphatidyl choline model membrane. II. Chain conformation and segmental disorder, J. Mol. Biol. 134, 693–706 (1979)

    Article  Google Scholar 

  26. P. B. Hitchcock, R. Mason, G. G. Shipley: Phospholipid arrangements in multilayer and artificial membranes: quantitative analysis of the x-ray data from a multilayer of 1,2-dimyristoyl-DL-phosphatidylethanolamine, J. Mol. Biol. 94, 297–299 (1975)

    Article  Google Scholar 

  27. D. L. Dorset, A. K. Massalski, J. R. Fryer: Interpretation of lamellar electron diffraction data from phospholipids, Z. Naturforsch. 42a, 381–391 (1987)

    Google Scholar 

  28. D. L. Dorset: Molecular packing of a crystalline ether-linked phosphatidyl choline — an electron diffraction study, Biochim. Biophys. Acta 898, 121–128 (1987)

    Article  Google Scholar 

  29. D. L. Dorset: Two untilted lamellar packings for an ether-linked phosphatidyl N-methyl ethanolamine: an electron crystallographic study, Biochim. Biophys. Acta 938, 279–292 (1988)

    Article  Google Scholar 

  30. D. L. Dorset, W. P. Zhang: Lamellar packing of a chiral N,N-dimethyl phosphatidyl ethanolamine: electron diffraction evidence for a lecithin-type head-group conformation, Biochim. Biophys. Acta 1028, 299–303 (1990)

    Article  Google Scholar 

  31. D. L. Dorset: How different are the crystal structures of chiral and racemic diacylphosphatidylethanolamines?, Z. Naturforsch. 43c, 319–327 (1988)

    Google Scholar 

  32. R. Hosemann, S. N. Bagchi: Direct Analysis of Diffraction by Matter(North-Holland, Amsterdam, 1962)

    MATH  Google Scholar 

  33. W. Lesslauer, J. K. Blasie: Direct determination of the structure of barium stearate multilayers by x-ray diffraction, Biophys. J. 12, 175–190 (1972)

    Google Scholar 

  34. C. R. Worthington, T. J. Mcintosh: Direct determination of the electron density profile of nerve myelin, Nature New Biology 245, 97–99 (1973)

    Article  Google Scholar 

  35. C. R. Worthington, G. I. King, T. J. Mcintosh: Direct structure determination of multilayered membrane-type stems which contain fluid layers, Biophys. J. 13, 480–491 (1973)

    Article  Google Scholar 

  36. J. Torbet, M. H. F. Wilkins: X-ray diffraction studies of lecithin bilayers, J. Theor. Biol. 62, 447–458 (1976)

    Article  Google Scholar 

  37. H. A. Hauptman: Crystal Structure Determination. The Role of the Cosine Seminvariants(Plenum Press, New York, 1972)

    Book  Google Scholar 

  38. D. L. Dorset, E. Beckmann, F. Zemlin: Direct determination of phospholipid lamellar structure at 0.34 nm resolution, Proc. Natl. Acad. Sci. USA 87, 7570–7573 (1990)

    Article  ADS  Google Scholar 

  39. D. L. Dorset: Direct determination of crystallographic phases for diffraction data from phospholipid multilamellar arrays, Biophys. J. 58, 1077–1087 (1990)

    Article  ADS  Google Scholar 

  40. D. L. Dorset: Direct determination of crystallographic phases for diffraction data from lipid bilayers. I. Reliability and phase refinement, Biophys. J. 60, 1356–1365 (1991)

    Article  ADS  Google Scholar 

  41. D. L. Dorset: Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures, Biophys. J. 60, 1366–1373 (1991)

    Article  ADS  Google Scholar 

  42. D. L. Dorset: Direct determination of layer packing for a phospholipid solid solution at 0.32 nm resolution, Proc. Natl. Acad. Sci. USA 91, 4920–4924 (1994)

    Article  ADS  Google Scholar 

  43. D. Sayre: The squaring method: a new method for phase determination, Acta Cryst. 5, 60–65 (1952)

    Article  Google Scholar 

  44. G. Bricogne, C. J. Gilmore: A multisolution method of phase determination by combined maximization of entropy and likelihood. I. Theory, algorithms, and strategy, Acta Cryst. A46, 284–297 (1990)

    Google Scholar 

  45. D. L. Dorset: Structural Electron Crystallography(Plenum Press, New York, 1995)

    Book  Google Scholar 

  46. P. H. Watts, Jr., W. A. Pangborn, A. Hybl: X-ray structure of racemic glycerol l,2(di-ll-bromoundecanoate)-3-(p-toluenesulfonate), Science 175, 60–61 (1972)

    Article  ADS  Google Scholar 

  47. I. Pascher, S. Sundell, H. Hauser: Glycerol conformation and the molecular packing of membrane lipids: the crystal structure of 2,3 dilauroyl-D-glycerol, J. Mol. Biol. 153, 791–806 (1981)

    Article  Google Scholar 

  48. D. L. Dorset, W. A. Pangborn: Polymorphic forms of 1,2-dipalmitoyl-sn-glycerol — combined x-ray and electron diffraction study, Chem. Phys. Lipids 48, 19–28 (1988)

    Article  Google Scholar 

  49. I. Pascher, S. Sundell: Molecular arrangements in sphingolipids. The crystal structure of cerebroside, Chem. Phys. Lipids 20, 175–191 (1977)

    Article  Google Scholar 

  50. P. G. Nyholm, I. Pascher, S. Sundell: The effect of hydrogen bonds on the conformation of a glycosphingolipid: Methylated and unmethylated cerebroside studied by x-ray single crystal analysis and model calculations, Chem. Phys. Lipids 52, 1–10 (1990)

    Article  Google Scholar 

  51. B. C. Wang: Resolution of phase ambiguity in macromolecular crystallography, Meth. Enzymol. 115, 90–112 (1985)

    Google Scholar 

  52. V. Luzzati, A. Tardieu, D. Taupin: A pattern-recognition approach to the phase problem. Application to the x-ray diffraction study of biological membranes and model systems, J. Mol. Biol. 64, 269–286 (1972)

    Article  Google Scholar 

  53. M. Suwalsky, L. Duk: X-ray studies on phospholipid bilayers. 7. Structure de-termination of an oriented film of L-a-dimyristoyl phosphatidyl ethanolamine (DMPE), Makromol. Chem. 188, 599–606 (1987)

    Article  Google Scholar 

  54. W. Lesslauer, A. J. Slotboom, G. D. de Haas: The interaction of phospho-lipase with lipid. I. Structure of the bimolecular leaflet of a lecithin analog structure, l-oleoyl-2-n-hexadecyl-2-deoxyglycero-3-phosphorylcholine, Chem. Phys. Lipids 11, 181–195 (1973)

    Article  Google Scholar 

  55. J. Katsaras, R. H. Stinson: High resolution electron density profiles reveal influence of fatty acids on bilayer structure, Biophys. J. 57, 649–655 (1990)

    Article  Google Scholar 

  56. J. Katsaras, R. H. Stinson, J. H. Davis: X-ray diffraction studies of oriented dilauroyl phosphatidyl choline bilayer in the LS and La phase, Acta Cryst. B50, 208–216 (1994)

    Google Scholar 

  57. J. M. Cowley, A. L. G. Rees, J. A. Spink: Secondary electron scattering in electron diffraction, Proc. Phys. Soc. (London) A64, 609–619 (1951)

    ADS  Google Scholar 

  58. J. M. Cowley, A. F. Moodie: The scattering of electrons by atoms and crystals. III. Single-crystal diffraction patterns, Acta Cryst. 12, 360–367 (1959)

    Article  Google Scholar 

  59. D. L. Dorset: A ‘primary extinction’ correction for electron diffraction intensities — improved phase determination in organic crystal structure analysis, Ultramicroscopy 41, 349–357 (1992)

    Article  Google Scholar 

  60. D. L. Dorset, M. P. McCourt, W. F. Tivol, J. N. Turner: Electron diffraction from phospholipids — correction for dynamical scattering and test for a correct phase determination, J. Appl. Cryst. 26, 778–786 (1993)

    Article  Google Scholar 

  61. D. C. Wack, W. W. Webb: Synchrotron x-ray study of the modulated lamellar phase Pβ’ecithin-water system, Phys. Rev. A40, 2712–2730 (1989)

    ADS  Google Scholar 

  62. W. J. Sun, S. Tristam-Nagle, R. M. Suter, J. F. Nagle: Structure of the ripple phase in lecithin bilayers, Proc. Natl. Acad. Sci. USA 93, 7008–7012 (1996)

    Article  ADS  Google Scholar 

  63. D. L. Dorset, C. J. Gilmore: Direct re-determination of the modulated lamellar ‘ripple’ phase of hydrated lecithin, Z. Krist. 213, 432–435 (1998)

    Article  Google Scholar 

  64. Y. Kimura, D. G. Vassylyev, A. Miyazawa, A. Kidera, M. Matsushira, K. Mit-suoka, K. Murata, T. Hirai, Y. Fujiyoshi: Surface of bacteriorhodopsin is revealed by high-resolution electron crystallography, Nature 389, 206–211 (1997)

    Article  ADS  Google Scholar 

  65. B. K. Jap, P. J. Walian, K. Gehring: Structural architecture of an outer membrane channel as determined by electron crystallography, Nature 350, 167–170 (1991)

    Article  ADS  Google Scholar 

  66. W. Kiihlbrandt, D. N. Wang, Y. Fujiyoshi: Atomic model of plant light-harvesting complex by electron crystallography, Nature 367, 614–621 (1994)

    Article  ADS  Google Scholar 

  67. R. Henderson, J. M. Baldwin, K. H. Downing, J. Lepault, F. Zemlin: Structure of purple membrane from Halobacterium halobium: Recording, measurement, and evaluation of electron micrographs at 3.5 A resolution, Ultramicroscopy 19, 147–178 (1986)

    Article  Google Scholar 

  68. C. J. Gilmore, K. Shankland, J. R. Fryer: Phase extension in electron crystallography using the maximum-entropy method and its application to two-dimensional purple membrane data from Halobacterium halobium, Ultramicroscopy 49, 132–146 (1993)

    Article  Google Scholar 

  69. D. L. Dorset, S. Kopp, J. R. Fryer, W. F. Tivol: The Sayre equation in electron crystallography, Ultramicroscopy 57, 59–89 (1995)

    Article  Google Scholar 

  70. D. L. Dorset: Direct phasing in protein electron crystallography — phase extension and the prospects for ab initio determination, Acta Cryst. A52, 480–491 (1996)

    Google Scholar 

  71. A. D. Podjarny, A. G. Urzhumtsev: Low-resolution phasing, Meth. Enzymol. 276, 641–658 (1997)

    Google Scholar 

  72. D. L. Dorset: Filling the missing cone in protein electron crystallography, Microsc. Res. Techn. 46, 98–103 (1999)

    Article  Google Scholar 

  73. D. L. Dorset: Direct structure analysis in protein electron crystallography -crystallographic phases for halorhodopsin to 6 A resolution, Proc. Natl. Acad. Sci. USA 92, 10074–10078 (1996)

    Article  ADS  Google Scholar 

  74. C. J. Gilmore, W. V. Nicholson, D. L. Dorset: Direct methods in protein crys-tallography; the ab initio determination of two membrane protein structures in projection with maximum entropy and likelihood, Acta Cryst. A52, 937–946 (1996)

    Google Scholar 

  75. D. Harker: The meaning of the average of \F\ 2 for large values of the inter-planar spacing, Acta Cryst. 6, 731–736 (1953)

    Article  Google Scholar 

  76. D. L. Dorset: Direct phase determination in protein electron crystallography -the pseudo-atom approximation, Proc. Natl. Acad. Sci. USA 94, 1791–1794 (1997)

    Article  ADS  Google Scholar 

  77. D. L. Dorset: Symbolic addition in protein electron crystallography — a method for finding projected helices, Acta Cryst. A54, 290–295 (1998)

    Google Scholar 

  78. D. L. Dorset, B. K. Jap: Direct phase determination in protein electron crystallography — aquaporin channel-forming integral membrane protein, Acta Cryst. D54, 615–621 (1998)

    Google Scholar 

  79. D. L. Dorset: The pseudo-atom approach to phase determination in protein electron crystallography — non-centrosymmetric structures, Acta Cryst A53, 445–455 (1997)

    Google Scholar 

  80. H. F. Fan, Q. Hao, M. M. Woolfson: Proteins and direct methods, Z. Krist. 197, 197–208 (1991)

    Article  Google Scholar 

  81. D. L. Dorset, C. J. Gilmore: Direct methods in protein electron crystallography — beef liver catalase in its fully-hydrated form at room temperature, Acta Cryst. A55, 448–456 (1999)

    Google Scholar 

  82. D. L. Dorset, M. P. McCourt: Restoration of the missing cone in protein electron crystallography by direct methods: bacteriorhodopsin, Z. Krist. 214, 803–807 (1999)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dorset, D.L. (2001). Direct Determination of Biomembrane Structures. In: Lipid Bilayers. Biological Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04496-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04496-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08702-8

  • Online ISBN: 978-3-662-04496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics