Skip to main content

New Insights into Biomembrane Structure from Two-Dimensional Nuclear Overhauser Enhancement Spectroscopy

  • Chapter

Part of the book series: Biological Physics Series ((BIOMEDICAL))

Abstract

According to the model of Singer and Nicolson, the biological membrane is a fluid mosaic of proteins and lipids [1]. The lipid molecules organize in liquid-crystalline bilayers with almost liquid-like conformational degrees of freedom covering the time-scale from pico- to microseconds and undergo lateral reorganization on the time-scale from microseconds to hours (Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Singer, G. L. Nicolson: The fluid mosaic model of the structure of cell membranes, Science 175, 720–731 (1972)

    Article  ADS  Google Scholar 

  2. M. C. Wiener, S. H. White: Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data III. Complete structure, Biophys. J. 61, 434–447 (1992)

    Article  ADS  Google Scholar 

  3. H. I. Petrache, N. Gouliaev, S. Tristram-Nagle, R. Zhang, R. M. Suter, J. F. Nagle: Interbilayer interactions from high resolution x-ray scattering, Phys. Rev. E. 57, 7014–7024 (1998)

    Article  ADS  Google Scholar 

  4. J. H. Davis: The description of membrane lipid conformation, order and dynamics by 2H NMR, Biochim. Biophys. Acta 737, 117–171 (1983)

    Article  Google Scholar 

  5. J. Seelig, A. Seelig: Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13, 19–61 (1980)

    Article  Google Scholar 

  6. R. Mendelsohn, R. G. Snyder: Infrared spectroscopic determination of conformational disorder and microphase separation in phospholipid acyl chains, in Biological Membranes: A Molecular Perspective from Computation and Experiment, ed. by K. M. Merz, B. Roux (Birkhauser, Basel, 1996) pp. 145–174

    Google Scholar 

  7. M. C. Wiener, S. H. White: Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution, Biophys. J. 59, 162–173 (1991)

    Article  ADS  Google Scholar 

  8. M. L. Brown, R. M. Venable, R. W. Pastor: A method for characterizing transition concertedness from polymer dynamics computer simulations, Biopoly-mers 35, 31–46 (1995)

    Article  Google Scholar 

  9. R. W. Pastor, S. E. Feller: Time scales of lipid dynamics and molecular dynamics, in Biological Membanes: A Molecular Perspective from Computation and Experiment, ed. by K. M. Merz, B. Roux (Birkhauser, Basel, 1996) pp. 3–29

    Google Scholar 

  10. S. Macura, R. R. Ernst: Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy, Mol. Phys. 41, 95–117 (1980)

    Article  ADS  Google Scholar 

  11. R. R. Ernst, G. Bodenhausen, A. Wokaun: Principles of Nuclear Magnetic Resonance in One and Two Dimensions(Clarendon Press, Oxford, 1987)

    Google Scholar 

  12. J. Forbes, C. Husted, E. Oldfield: High-field, high-resolution proton “magic-angle” sample-spinning nuclear magnetic resonance spectroscopic studies of gel and liquid crystalline lipid bilayers and the effects of cholesterol, J. Am. Chem. Soc. 110, 1059–1065 (1988)

    Article  Google Scholar 

  13. J. Forbes, J. Bowers, X. Shan, L. Moran, E. Oldfield, M. A. Moscarello: Some new developments in solid-state nuclear magnetic resonance spectroscopic studies of lipids and biological membranes, including the effect of cholesterol in model and natural systems, J. Chem. Soc, Faraday Trans. 184, 3821–3849 (1988)

    Google Scholar 

  14. J. F. Ellena, W. C. Hutton, D. S. Cafiso: Elucidation of cross-relaxation pathways in phospholipid vesicles utilizing two-dimensional H NMR spectroscopy, J. Am. Chem. Soc. 107, 1530–1537 (1985)

    Article  Google Scholar 

  15. Z.-C. Xu, D. S. Cafiso: Phospholipid packing and conformation in small vesicles revealed by two-dimensional 1H nuclear magnetic resonance cross-relaxation spectroscopy, Biophys. J. 49, 779–783 (1986)

    Article  Google Scholar 

  16. H. N. Halladay, R. E. Stark, S. Ali, R. Bittman: Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine, Biophys. J. 58, 1449–1461 (1990)

    Article  Google Scholar 

  17. Z. J. Chen, L. C. M. van Gorkom, R. M. Epand, R. E. Stark: Nuclear magnetic resonance studies of lipid hydration in monomethyldioleoylphosphatidyl-ethanolamine dispersions, Biophys. J. 70, 1412–1418 (1996)

    Article  ADS  Google Scholar 

  18. Z. J. Chen, R. E. Stark: Evaluating spin diffusion in MAS-NOESY spectra of phospholipid multibilayers, Solid State Nucl. Magn. Reson. 7, 239–246 (1996)

    Article  ADS  Google Scholar 

  19. Z. Zhou, B. G. Sayer, R. E. Stark, R. M. Epand: High-resolution magic-angle spinning 1H nuclear magnetic resonance studies of lipid dispersions using spherical glass amoules, Chem. Phys. Lipids 90, 45–53 (1997)

    Article  Google Scholar 

  20. N. E. Gabriel, M. F. Roberts: Short-chain lecithin/long-chain phospholipid unilamellar vesicles: Asymmetry, dynamics, and enzymatic hydrolysis of the short-chain component, Biochemistry 26, 2432–2440 (1987)

    Article  Google Scholar 

  21. F. Volke, A. Pampel: Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/Ci2E04 model membranes, Biophys. J. 68, 1960–1965 (1995)

    Article  ADS  Google Scholar 

  22. Z. Zhou, B. G. Sayer, D. W. Hughes, R. E. Stark, R. M. Epand: Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance, Biophys. J. 76, 387–399 (1999)

    Article  Google Scholar 

  23. D. Huster, K. Arnold, K. Gawrisch: Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid membranes, Biochemistry 37, 17299–17308 (1998)

    Article  Google Scholar 

  24. D. Huster, K. Arnold, K. Gawrisch: Investigation of lipid organization in biological membranes by two-dimensional nuclear Overhauser enhancement spectroscopy, J. Phys. Chem. B 103, 243–251 (1999)

    Article  Google Scholar 

  25. D. Huster, K. Gawrisch: NOESY NMR crosspeaks between lipid headgroups and hydrocarbon chains: spin diffusion or molecular disorder?, J. Am. Chem. Soc. 121, 1992–1993 (1999)

    Article  Google Scholar 

  26. K. Wiithrich: NMR of Proteins and Nucleic Acids(Wiley & Sons, New York, 1986)

    Google Scholar 

  27. J. Jeener, B. H. Meier, P. Bachmann, R. R. Ernst: Investigation of exchange processes by two-dimensional NMR spectroscopy, J. Chem. Phys. 71, 4546–4553 (1979)

    Article  ADS  Google Scholar 

  28. G. Wagner, K. WüSequential resonance assignments in protein 1H nuclear magnetic resonance spectra, J. Mol. Biol. 155, 347–366 (1982)

    Article  Google Scholar 

  29. R. Bruschweiler, P. E. Wright: Water self-diffusion model for protein-water NMR cross relaxation, Chem. Phys. Lett. 229, 75–81 (1994)

    Article  ADS  Google Scholar 

  30. Z. Zolnai, N. Juranic, S. Macura: Least-squares method for quantitative determination of chemical exchange and cross-relaxation rate constants from a series of two-dimensional exchange NMR spectra, J. Phys. Chem. A 101, 3707–3710 (1997)

    Article  Google Scholar 

  31. J. Bremer, G. L. Mendz, W. J. Moore: Skewed exchange spectroscopy. Two-dimensional method for the measurement of cross relaxation in 1H NMR spectroscopy, J. Am. Chem. Soc. 106, 4691–4696 (1984)

    Article  Google Scholar 

  32. C. L. Perrin, R. K. Gipe: Multisite kinetics by quantitative two-dimensional NMR, J. Am. Chem. Soc. 106, 4036–4038 (1984)

    Article  Google Scholar 

  33. J. Katsaras, R. F. Epand, R. M. Epand: Absence of chiral domains in mixtures of dipalmitoylphosphatidylcholine molecules of opposite chirality, Phys. Rev. E 55, 3751–3753 (1997)

    Article  ADS  Google Scholar 

  34. S. E. Feller, D. Huster, K. Gawrisch: Interpretation of NOESY cross-relaxation rates from molecular dynamics simulations of a lipid bilayer, J. Am. Chem. Soc. 121, 8963–8964 (1999)

    Article  Google Scholar 

  35. S. E. Feller, R. M. Venable, R. W. Pastor: Computer simulation of a DPPC phospholipid bilayer: structural changes as a function of molecular surface area, Langmuir 13, 6555–6561 (1997)

    Article  Google Scholar 

  36. A. G. Lee: Lipid phase transitions and phase diagrams. II. Mixtures involving lipids, Biochim. Biophys. Acta 472, 285–344 (1977)

    Article  Google Scholar 

  37. A. G. Lee: Calculation of phase diagrams for non-ideal mixtures of lipids, and a possible non-random distribution of lipids in lipid mixtures in the liquid crystalline phase, Biochim. Biophys. Acta 507, 433–444 (1978)

    Article  Google Scholar 

  38. M. Glaser: Lipid domains in biological membranes, Curr. Opin. Struct. Biol. 3, 475–481 (1993)

    Article  Google Scholar 

  39. M. Edidin: Lipid microdomains in cell surface membranes, Curr. Opin. Struct. Biol. 7, 528–532 (1997)

    Article  Google Scholar 

  40. R. D. Klausner, A. M. Kleinfeld: Lipid domains in membranes, in Cell Surface Dynamics: Concepts and Models, ed. by A. S. Perelson, C. DeLisi, F. W. Wiegel (Marcel Dekker, New York, 1984) pp. 23–58

    Google Scholar 

  41. M. B. Sankaram, T. E. Thompson: Cholesterol-induced fluid-phase immisci-bility in membranes, Proc. Natl. Acad. Sci. U. S. A. 88, 8686–8690 (1991)

    Article  ADS  Google Scholar 

  42. M. R. Vist, J. H. Davis: Phase equilibria of cholesterol/dipalmitoylphos-phatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry, Biochemistry 29, 451–464 (1990)

    Article  Google Scholar 

  43. D. C. Mitchell, B. J. Litman: Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers, Biophys. J. 75, 896–908 (1998)

    Article  ADS  Google Scholar 

  44. M. Pasenkiewicz-Gierula, W. K. Subczynsky, A. Kusumi: Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: Fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes, Biochemistry 29, 4059–4046 (1990)

    Article  Google Scholar 

  45. W. K. Subczynski, W. E. Antholine, J. S. Hyde, A. Kusumi: Microimmiscibility and three-dimensional dynamic structures of phosphatidyl-choline-cholesterol membranes: Translational diffusion of a copper complex in the membrane, Biochemistry 29, 7936–7945 (1990)

    Article  Google Scholar 

  46. L. L. Holte, K. Gawrisch: Micro-immiscibility and three-dimensional dynamic structures of phosphatidylcholine-cholesterol membranes: Translational diffusion of a copper complex in the membrane, Biochemistry 36, 4669–4674 (1997)

    Article  Google Scholar 

  47. W. M. Yau, W. C. Wimley, K. Gawrisch, S. H. White: The preference of tryptophan for membrane interfaces, Biochemistry 37, 14713–14718 (1998)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huster, D., Gawrisch, K. (2001). New Insights into Biomembrane Structure from Two-Dimensional Nuclear Overhauser Enhancement Spectroscopy. In: Lipid Bilayers. Biological Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04496-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04496-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08702-8

  • Online ISBN: 978-3-662-04496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics