Skip to main content

Conformations of Fluid Lipid Membranes

  • Chapter
Lipid Bilayers

Part of the book series: Biological Physics Series ((BIOMEDICAL))

Abstract

The function of living biological systems (cells, cell organelles and whole organisms) is essentially connected to the occurrence and structure of fluid biological membranes [1,2]. Biological membranes act as highly selective permeability barriers separating the contents of the cell from its environment. Moreover, membranes control a variety of processes (e.g., passive and active transport, cell-cell recognition, energy conversion processes, etc.) indispensable for life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Singer, G. L. Nicholson: The fluid mosaic model of the structure of cell membranes, Science 175, 720–731 (1972)

    Article  ADS  Google Scholar 

  2. M. Shinitzky: Membrane Fluidity and Cellular Functions. Physiology of Mem-brane Fluidity(CRC Press, Boca Raton, 1984)

    Google Scholar 

  3. G. Cevc, D. Marsh: Phospholipid Bilayers: Physical Principles and Models(Wiley Interscience, New York, 1987)

    Google Scholar 

  4. V. Luzzati, M. DeRousz, A. Gulik, A. Gambacorta: Polar lipids of thermophilic prokaryotic organisms: Chemical and physical structure, Ann. Rev. Biophys. Biophys. Chem. 16, 25–47 (1987)

    Article  Google Scholar 

  5. C. Tanford: The Hydrophobic Effect: Formation of Micelles and Biological Membranes(Wiley, New York, 1991)

    Google Scholar 

  6. J. Israelachvili: Intermolecular and Surface Forces(Academic Press, San Diego, 1994)

    Google Scholar 

  7. B. de Kruijff: Polymorphic regulation of membrane lipid composition, Nature 329, 587–588 (1987)

    Article  ADS  Google Scholar 

  8. P. R. Cullis, M. J. Hope, C. P. S. Tilcock: Lipid polymorphism and the roles of lipids in membranes, Chem. Phys. Lipids 40, 127–144 (1986)

    Article  Google Scholar 

  9. W. M. Gelbart, A. Ben-Shaul: The “new” science of “complex fluids”, J. Phys. Chem. 100, 13169–12189 (1996)

    Article  Google Scholar 

  10. W. Kauzmann: Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1–63, (1959)

    Article  Google Scholar 

  11. K. A. Thomas, A. N. Schlechter: Protein folding: Evolutionary, structural and chemical aspects, in Biological Regulation and Development, ed. by R. F. Gold-berger (Plenum Press, New York, 1980) pp. 43–100

    Chapter  Google Scholar 

  12. G. D. Rose, A. R. Geselowitz, G. J. Lesser, R. H. Lee, M. H. Zehfus: Hydropho-bicity of amino acid residues in globular proteins, Science 229, 834–838 (1985)

    Article  ADS  Google Scholar 

  13. Y.-K. Cheng, W.-S. Sheu, P. J. Rossky: Hydrophobic hydration of amphipathic peptides, Biophys. J. 76, 1734–1743 (1999)

    Article  Google Scholar 

  14. K. Gawrisch, D. Ruston, J. Zimmerberg, V. A. Parsegian, R. P. Rand, N. Fuller: Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces, Biophys. J. 61, 1213–1223 (1992)

    Article  Google Scholar 

  15. P. R. Cullis, B. de Kruijff, M. J. Hope, A. J. Verkleij, R. Nayar, S. B. Farren, C. P. S. Tilcock, T. D. Madden, M. B. Bally: Structural properties of lipids and their functional roles in biological membranes, in Membrane Fluidity in Biology, ed. by R. C. Aloia (Academic Press, New York, 1983) pp. 39–81

    Google Scholar 

  16. B. de Kruijff: Polymorphic regulation of membrane lipid composition, Nature 329, 587–588 (1987)

    Article  ADS  Google Scholar 

  17. Y. Bouligand: Remarks on the geometry of micelles, bilayers and cell membranes, Liq. Crystals 26, 501–515 (1999)

    Article  Google Scholar 

  18. J. Charvolin, A. Tardieu: Lyotropic liquid crystals: Structures and molecular motions, Sol. State Phys., suppl. 14, 209–257 (1978)

    Google Scholar 

  19. Chem. Phys. Lipids, (Special Issue) Vol. 57, (1990)

    Google Scholar 

  20. J. M. Seddon, R. Templer: Polymorphism of lipid-water systems, in Structure and Dynamics of Membranes, From Cells to Vesicles, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 97–160

    Google Scholar 

  21. G. Cevc: Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae, Biochim. Biophys. Acta 1062, 59–69 (1991)

    Article  Google Scholar 

  22. V. Luzzati, R. Vargas, A. Gulik, P. Mariani, J. M. Seddon, E. Rivas: Lipid polymorphism: A correction. The structure of the cubic phase of extinction symbol Fd-consists of two types of disjointed reverse micelles embedded in a three-dimensional hydrocarbon matrix, Biochemistry 31, 279–285 (1992)

    Article  Google Scholar 

  23. D. Danino, A. Kaplun, Y. Talmon, R. Zana: Cryo-transmission electron microscopy investigations of unusual amphiphilic systems in relation to their rheological properties, in Structure and Flow in Surfactant Solutions, ed. by C. A. Herb, R. K. Prud’homme (ACS Symposium Series, Washington DC, 1994) pp. 105–119

    Chapter  Google Scholar 

  24. H. Chung, M. Caffrey: The curvature elastic-energy function of the lipid-water cubic mesophase, Nature 368, 224–226 (1994)

    Article  ADS  Google Scholar 

  25. P. Fromherz, C. Rocker, D. Riippel: From discoid micelles to spherical vesicles. The concept of edge activity, Faraday Discuss. Chem. Soc. 81, 39–48 (1986)

    Article  Google Scholar 

  26. J. P. Reeves, R. M. Dowben: Formation and properties of thin-walled phospholipid vesicles, J. Cell. Physiol. 73, 49–60 (1969)

    Article  Google Scholar 

  27. B. M. Discher, Y.-Y. Won, D. S. Ege, J. C-M. Lee, F. S. Bates, D. E. Fischer, D. A. Hammer: Polysomes: tough vesicles made from diblock copolymers, Science 284: 1143–1146 (1999)

    Article  ADS  Google Scholar 

  28. B. Klosgen, W. Helfrich: Membrane roughness and dispersive phase as effects of higher order bending in fluid membranes, in Giant Vesicles, ed. by P. Luisi, P. Walde (Wiley & Sons, Chichester, 1999) pp. 243–252

    Google Scholar 

  29. B. Klosgen, W. Helfrich: Special features of phosphatidylcholine vesicles as seen in cryo-transmission electron microscopy, Eur. Biophys. J. 22, 329–340 (1993)

    Article  Google Scholar 

  30. B. Klosgen, W. Helfrich: Cryo-Transmission Electron microscopy of a superstructure of fluid dioleoyl phosphatidylcholine (DOPC) membranes, Biophys. J. 73, 3016–3029 (1997)

    Article  Google Scholar 

  31. A. Dunger, B. Klosgen, W. Helfrich: A dispersive phase of phosphatidylcholine bilayers seen by freeze-etching electron microscopy, Chem. Phys. Lipids, accepted

    Google Scholar 

  32. J. Thimmel, B. Klosgen, W. Helfrich, G. Rapp: Swelling and separation of DOPC multilayer systems, in Giant Vesicles, ed. by P. Luisi, P. Walde (Wiley & Sons, Chichester, 1999) pp. 253–259

    Google Scholar 

  33. W. Helfrich, B. Klosgen, J. Thimmel: The fragmented state of lipid bilayers in water: Discovery of a lower consolute point, Pranama-J. Phys. 53, 13–23 (1999)

    Article  ADS  Google Scholar 

  34. B. Klosgen, P. Guttmann: X-ray microscopy of fluid lipid membranes, in X-ray Microscopy and Spectromicroscopy, ed. by J. Thieme, G. Schmahl, D. Rudolph, E. Umbach (Springer Verlag, Berlin, Heidelberg, 1998) pp. 57–68

    Google Scholar 

  35. P. B. Canham: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theoret. Biol. 26, 61–81 (1970)

    Article  Google Scholar 

  36. W. Helfrich: Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. 28c, 693–703 (1973)

    Google Scholar 

  37. E. Evans: Bending resistance and chemically induced moments in membrane bilayers, Biophys. J. 14, 923–931 (1974)

    Article  Google Scholar 

  38. L. D. Landau, E. M. Lifschitz: Course of Statistical Physics, Theory of Elasticity(Pergamon Press, London, 1980)

    Google Scholar 

  39. P. Guttmann, B. Klosgen: X-ray microscopy studies of artificial lipid membranes in X-Ray Microscopy IV ed. by V. V. Aristov, A. I. Erko (Bogorodskii Pechatnik Publ. Comp., Chernogolovka / Moscow, Russia 1994) pp. 217–239

    Google Scholar 

  40. W. Helfrich: Hats and saddles in lipid membranes, Liquid Cryst. 5, 1647–1658 (1989)

    Article  Google Scholar 

  41. R. Goetz, W. Helfrich: The egg cartoon: Theory of a periodic superstructure of some lipid membranes, J. Phys. France 6, 215–223 (1996)

    Article  Google Scholar 

  42. A. Jud, PhD Thesis, Berlin 1998; A. Jud, W. Helfrich, private communication

    Google Scholar 

  43. W. Helfrich: Bending elasticity of fluid membranes, in Giant Vesicles, ed. by P. Walde, P. Luisi (Wiley & Sons, Chichester, 1999) pp. 51–70

    Google Scholar 

  44. K. Fukada, N. L. Gershfeld: Influence of hydration on the formation and stability of the critical bilayer state, J. Phys. Chem. B, 41, 8225–8230 (1997)

    Article  Google Scholar 

  45. A. Jin, M. Edidin, R. Nossal, N. L. Gershfield: A singular state of membrane lipids at cell growth temperatures, Biochemistry 38, 13275–13278 (1999)

    Article  Google Scholar 

  46. R. B. Gennis: Biomembranes: Molecular Structure and Function(Springer Verlag, New York, 1989)

    Google Scholar 

  47. M. P. Heyn: Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Letters 108, 359–364 (1979)

    Article  Google Scholar 

  48. J. R. Chantres, B. Elorza, M. A. Elorza, P. Rodado: Deoxycholate alters the order of acyl chains in freeze-thaw extrusion vesicles of L-a-dipalmitoyl phosphatidylcholine: Study of the l,6-diphenyl-l,2,3-hexatriene steady state fluorescence anisotropy, Int. J. Pharmaceutics 138, 139–148 (1996)

    Article  Google Scholar 

  49. A. Jutila, P. K. J. Kinnunen: Novel features of the main transition of dimyristoylphosphatidylcholine bilayers revealed by fluorescence spectroscopy, J. Phys. Chem. B 101, 7635–7640 (1997)

    Article  Google Scholar 

  50. D. Marsh: Electron spin resonance: Spin labels, in Membrane Spectroscopy, ed. by E. Grell (Springer Verlag, Berlin, 1981) pp. 51–142

    Chapter  Google Scholar 

  51. J. Seelig: Deuterium magnetic resonance: Theory and applications to lipid membranes, Q. Rev. Biophys. 10, 353–418 (1977)

    Article  Google Scholar 

  52. L. Trahms, E. Boroske: Pulse NMR study of phase transitions in dipalmitoyl phosphatidylcholine multilayer systems, Biochim. Biophys. Acta 552, 189–193 (1979)

    Article  Google Scholar 

  53. M. Bloom, E. Evans, O. Mouritsen: Physical properties of the fluid lipid-bilayer component of cell membranes, Q. Rev. Biophys. 24, 293–397 (1991)

    Article  Google Scholar 

  54. G. Lindblom: Nuclear magnetic resonance on lipids and surfactants, Curr. Opin. Colloid & Interface Sci. 1, 287–295 (1996)

    Article  Google Scholar 

  55. C. J. F. Bottcher, P. Bordewijk: Theory of Electric Polarization. Dielectrics in Time-dependent Fields(Elsevier, Amsterdam, 1978)

    Google Scholar 

  56. P. Debye: Polare Molekeln(Hirzel Verlag, Leipzig, 1929)

    MATH  Google Scholar 

  57. B. Klosgen, C. Reichle, S. Kohlsmann, K. D. Kramer: Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration, Biophys. J. 71, 3251–3260 (1996)

    Article  Google Scholar 

  58. M. Brecht, B. Klosgen, C. Reichle, K. D. Kramer: Distribution functions in the description of relaxation phenomena, Mol. Phys. 96, 149–160 (1999)

    Article  ADS  Google Scholar 

  59. Q. Ye, R. I. Biltonen: Differential scanning and dynamic calorimetric studies of cooperative phase transitions in phospholipid bilayer membranes, in Subcellular Biochemistry, Physicochemical Methods in the Study of Biomembranes, ed. by H. J. Hilderson, G. B. Ralston (Plenum Press, New York, 1994) pp. 121–160

    Chapter  Google Scholar 

  60. F. Franks: Water: A Comprehensive Treatise(Plenum Press, New York, 1973)

    Google Scholar 

  61. P. F. F. Almeida, W. L. C. Vaz: Lateral diffusion in membranes, in Structure and Dynamics of Membranes, From Cells to Vesicles, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 305–357

    Google Scholar 

  62. J. Gelles, M. P. Sheetz, B. J. Schnapp: Tracking kinesin driven movements with nanometer-scale precision, Nature 331, 450–453 (1988)

    Article  ADS  Google Scholar 

  63. M. J. Saxton: Lateral diffusion in an archipelago single particle diffusion, Bio-phys. J. 64, 1766–1780 (1993)

    Google Scholar 

  64. R. A. Moss, S. Bhattacharya: Transverse membrane asymmetry in model phospholipid bilayers: NBD-phosphatidylethanolamine and the separation of flip from flop, J. Am. Chem. Soc. 117, 8688–8689 (1995)

    Article  Google Scholar 

  65. F. Kamp D. Zakim, F. Zhang, N. Noy , J. A. Hamilton: Fatty acid flip-flop in phospholipid bilayers is extremely fast, Biochemistry 34, 11928–11937 (1995)

    Article  Google Scholar 

  66. A. M. Kleinfeld, P. Chu, J. Storch: Flip-flip is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles, Biochemistry 36, 5702–5711 (1997)

    Article  Google Scholar 

  67. T. H. Callisen, Y. Talmon: Direct imaging by cryo-TEM shows membrane break-up by phospholipase A2 enzymatic activity, Biochemistry, 37, 10987–10993 (1998)

    Article  Google Scholar 

  68. Y. Talmon: Cryogenic temperature transmission electron microscopy in the study of surfactant systems, in Modern Characterization Methods of Surfactant Systems, ed. by B. P. Binks (Dekker Inc., New York, Basel, 1999) pp. 147–178

    Google Scholar 

  69. A. Walter, P. K. Vinson, A. Kaplun, Y. Talmon: Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition, Biophys. J. 60, 1315–1325 (1991)

    Article  Google Scholar 

  70. B. Klosgen, T. Schroder, T. Schurholz: Intermediate states in the course of the cholesterol crystallization in a model bile system, in preparation

    Google Scholar 

  71. E. Evans, D. Needham: Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions, J. Phys. Chem. 91, 4219–4228 (1987)

    Article  Google Scholar 

  72. P. F. Devaux: Static and dynamic lipid asymmetry in cell membranes, Biochemistry 30, 1163–1173 (1981)

    Article  Google Scholar 

  73. H.-G. Dobereiner: Quantifying membrane asymmetry, Biophys. J. 76, 1723–1724 (1999)

    Article  Google Scholar 

  74. U. Seifert, K. Berndl, R. Lipowsky: Shape transformations of vesicles: Phase diagrams for spontaneous-curvature and bilayer-coupling models, Phys. Rev. A 44, 1181–1202 (1991)

    Article  ADS  Google Scholar 

  75. H.-G. Dobereiner, O. Selchow, R. Lipowsky: Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry, Eur. Biophys. J. 28, 174–178 (1999)

    Article  Google Scholar 

  76. W. Helfrich: Steric interaction of fluid membranes in multilayer systems, Z. Naturforsch. 33a, 305–315 (1977)

    ADS  Google Scholar 

  77. W. Helfrich, R. M. Servuss: Undulations, steric interaction and cohesion of fluid membranes, II Nuovo Cimento D3, 137–151 (1984)

    Article  ADS  Google Scholar 

  78. M. B. Schneider, J. T. Jenkins, W. W. Webb: Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles, J. Phys. 45, 1457–1472 (1984)

    Article  Google Scholar 

  79. E. Sackmann, H.-P. Duwe, H. Engelhardt: Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles, Faraday. Disc. Chem. Soc. 81, 281–290 (1986)

    Article  Google Scholar 

  80. M. Mutz, W. Helfrich: Bending rigidities of some biological model membranes as obtained from the Fourier analysis of contour sections, J. Phys. France 51, 991–1002 (1990)

    Article  Google Scholar 

  81. P. Meleard, C. Gerbeaud, T. Pott, L. Fernandez-Puente, I. Bivas, M. D. Mitov, J. Dufourcq, P. Bothorel: Bending elasticities of model membranes: Influences of temperature and sterol content, Biophys. J. 72, 2616–2629 (1997)

    Article  Google Scholar 

  82. D. V. Zhelev, D. Needham, R. M. Hochmuth: A novel micropipet method for measuring the bending modulus of vesicle membranes, Biophys. J. 67, 720–727 (1994)

    Article  Google Scholar 

  83. E. Evans, W. Rawicz: Entropy driven tension and bending elasticity in condensed-fluid phases, Phys. Rev. Lett. 64, 2094–2097 (1990)

    Article  ADS  Google Scholar 

  84. R. E. Waugh, J. Song, S. Svetina, B. Zeks: Local and non-local curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys. J. 61, 974–982 (1992)

    Article  Google Scholar 

  85. G. Niggemann, M. Kummrow, W. Helfrich: The bending rigidity of phos-phatidylcholine bilayers: Dependencies on experimental method, sample cell sealing and temperature, J. Phys. II France 5, 413–425 (1995)

    Article  Google Scholar 

  86. V. Heinrich, R. Waugh: A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes, Ann. Biomed. Eng. 24, 595–605 (1996)

    Article  MATH  Google Scholar 

  87. W. Helfrich: Tension-induced mutual adhesion and a conjectured superstructure of lipid membranes, in Structure and Dynamics of Membranes, Generic and Specific Interactions, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 691–721

    Chapter  Google Scholar 

  88. V. A. Parsegian, R. Podgornik, P. Lyngs Hansen, private communication

    Google Scholar 

  89. A. L. Makay: Periodic minimal surfaces, Nature 314, 604–606 (1985)

    Article  ADS  Google Scholar 

  90. J. Charvolin: Crystals of interfaces: The cubic phases of amphiphile/water systems, J. Phys. (Paris) Colloq. C 46, 173–190 (1985)

    Google Scholar 

  91. P. Mariani, V. Luzzatti, H. Delacroix: Cubic phases of lipid-containing systems. Structure analysis and biological applications, J. Mol. Biol. 204, 165–189 (1988)

    Article  Google Scholar 

  92. G. Lindblom, L. Rilfors: Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance, Biochim. Biophys. Acta 988, 221–256 (1989)

    Article  Google Scholar 

  93. J. M. Seddon, J. L. Hogan, N. A. Warrender, E. Pebay-Peyroula: Structural studies of phospholipid cubic phases, Progr. Colloid Polym. Sci. 82, 189–197 (1990)

    Article  Google Scholar 

  94. R. H. Templer: On the area neutral surface of inverse bicontinuous cubic phases of lyotropic liquid crystals, Langmuir 11, 334–340 (1995)

    Article  Google Scholar 

  95. W. Helfrich, H. Rennschuh: Landau theory of the lamellar-to-cubic phase transition, Colloque de Physique, Coll. 751, 189–195 (1990)

    Google Scholar 

  96. P. Mariani, L. Q. Amaral, L. Saturni, H. Delacroix: Hexagonal-cubic phase transitions in lipid containing systems: Epitaxial relationships and cylinder growth, J. Phys. II France 4, 1393–1416 (1994)

    Article  Google Scholar 

  97. D. P. Siegel: Inverted micellar intermediates and the transitions between lamellar, cubic and inverted hexagonal lipid phases. I. Mechanism of the La-Hn phase transitions, Biophys. J. 49, 1155–1170 (1986)

    Article  ADS  Google Scholar 

  98. D. P. Siegel: Inverted micellar intermediates and the transitions between lamellar, cubic and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion, Biophys. J. 49, 1171–1183 (1986)

    Article  Google Scholar 

  99. G. Gompper, J. Goos: Fluctuations and phase behavior of passages in a stack of fluid membranes, J. Phys. II France 5, 621–634 (1995)

    Article  Google Scholar 

  100. D. Roux, M. A. Cates: The sponge state: A striking isotropic liquid phase, in Dynamics and Patterns in Complex Fluids, ed. by A. Onuki, K. Kawasaki (Springer Verlag, Berlin, 1990) pp. 19–33

    Chapter  Google Scholar 

  101. D. Roux, C. Coulon, M. A. Cates: Sponge phases in surfactant solutions, J. Phys. Chem. 96, 4174–4187 (1992)

    Article  Google Scholar 

  102. J. B. Fournier, P. Galatola: Sponges, tubules and modulated phases of para-antinematic membranes, J. Phys. II France 7, 1509–1520 (1997)

    Article  Google Scholar 

  103. E. Freyssingeas, D. Roux, F. Nallet: Quasi-elastic light scattering study of highly swollen lamellar and “sponge” phases, J. Phys. France 7, 913–929 (1997)

    Article  Google Scholar 

  104. R. Gomati, M. Daoud, A. Gharbi: Sponge phase behaviour in concentrated surfactant-alcohol-brine system, Physica B 239, 405–412 (1997)

    Article  ADS  Google Scholar 

  105. C.-M. Chen, T. C. Lubensky, F. C. MacKintosh: Phase transitions and modulated phases in lipid bilayers, Phys. Rev. E 51, 504–513 (1995)

    Article  ADS  Google Scholar 

  106. E. Sackmann, D. Riippel, C. Gebhardt: Defect structures and texture of isolated bilayers of phospholipids and phospholipid mixtures, in Liquid Crystals of One- and Two-dimensional Order, ed. by W. Helfrich, G. Heppke (Springer Verlag, Berlin, 1980) pp. 309–326

    Chapter  Google Scholar 

  107. D. Riippel, E. Sackmann: On defects in different phases of two-dimensional lipid bilayers, J. Physique 44, 1025–1034 (1983)

    Article  Google Scholar 

  108. G. Cevc: Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae, Biochim. Biophys. Acta 1062, 59–69 (1991)

    Article  Google Scholar 

  109. S. Matuoka, S. Katao, M. Akiyama, Y. Amemiya , I. Hatta: Temperature dependence of the ripple structure in dimyristoylphosphatidylcholine studied by synchrotron x-ray small-angle diffraction, Biochim. Biophys. Acta 1028, 103–109 (1991)

    Google Scholar 

  110. M. Rappolt, G. Rapp: Structure of the stable and metastable ripple phase of dipalmitoylphosphatidylcholine, Eur. Biophys. J. 24, 381–386 (1996)

    Article  Google Scholar 

  111. J. A. N. Zasadzinski, M. B. Schneider: Ripple wavelength, amplitude, and configuration in lyotropic liquid crystals as a function of effective headgroup size, J. Physique 48, 2001–2011 (1987)

    Article  Google Scholar 

  112. J. Katsaras, V. A. Raghunathan: Molecular chirality and the “ripple” phase of phosphatidylcholine multibilayers, Phys. Rev. Lett. 74, 2022–2025 (1995)

    Article  ADS  Google Scholar 

  113. J. Bradshaw, M. S. Edenborough, P. J. H. Sizer, A. Watts: Observation of rippled dioleoyl phosphatidylcholine bilayers by neutron diffraction, Biochim. Biophys. Acta 987, 111–114 (1987)

    Google Scholar 

  114. S. Matuoka, S. Katao , I. Hatta: Temperature change of the ripple structure in fully hydrated dimyristoyl phosphatidylcholine/cholesterol multibilayers, Biophys. J. 67, 728–736 (1994)

    Article  Google Scholar 

  115. R. E. Brown, W. H. Anderson, V. S. Kulkarni: Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine, Biophys. J. 68, 1396–1405 (1995)

    Article  Google Scholar 

  116. R. M. Servuss: Spontaneous formation of giant phospholipid vesicles, Z. Natur-forsch. 43c, 938–947 (1988)

    Google Scholar 

  117. W. Harbich, R. M. Servuss, W. Helfrich: Passages in lecithin-water systems, Z. Naturforsch. 33a, 1013–1017 (1978)

    ADS  Google Scholar 

  118. W. Harbich, W. Helfrich: Phases of egg lecithin in an abundance of water, Chem. Phys. Lipids 55, 191–205 (1990)

    Article  Google Scholar 

  119. J. Nageotte: Morphologie des Gels Lipodes, in Actualites Scientifiques et In-dustrielles, Vol. 431–434 (Hermann & Cie., Paris, 1936)

    Google Scholar 

  120. Y. Talmon: Imaging surfactant dispersions by electron microscopy of vitrified specimens, Colloids Surfaces 19, 237–248 (1986)

    Article  Google Scholar 

  121. R. MacDonald, R. I. MacDonald, B. P. M. Menco, K. Takeshita, N. K. Sub-barao, L.-R. Hu: Small-volume extrusion apparatus for preparation of large, unilamellar vesicles, Biochim. Biophys. Acta 1061, 297–303 (1991)

    Article  Google Scholar 

  122. L. D. Mayer, M. J. Hope, P. R. Cullis: Vesicles of variable sizes produced by a rapid extrusion procedure, Biochim. Biophys. Acta 858, 161–168 (1986)

    Article  Google Scholar 

  123. D. W. Deamer, A. D. Bangham: Large volume liposomes by an ether injection method, Biochim. Biophys. Acta 443, 629–634 (1976)

    Google Scholar 

  124. S. Kim, G. M. Martin: Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution, Biochim. Biophys. Acta 646, 1–9 (1981)

    Article  Google Scholar 

  125. M. I. Angelova, D. S. Dimitrov: Liposome Electroformation, Faraday Discuss. Chem. Soc. 81, 303–311 (1986)

    Google Scholar 

  126. M. I. Angelova, S. Soleau, P. Meleard, J. F. Faucon, P. Bothorel: Preparation of giant vesicles by external AC electric fields. Kinetics and applications, Progr. Colloid Polym. Sci. 89, 127–131 (1992)

    Article  Google Scholar 

  127. D. V. Zhelev, D. Needham: Tension-stabilized pores in giant vesicles: Determination of pore size and pore line tension, Biochim. Biophys. Acta 1147, 89–104 (1993)

    Article  Google Scholar 

  128. C. Wilhelm, M. Winterhalter, U. Zimmermann, R. Benz: Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes, Biophys. J. 64, 121–128 (1993)

    Article  Google Scholar 

  129. H. J. Deuling, W. Helfrich: The curvature elasticity of fluid membranes: A catalogue of vesicle shapes, J. Physique 37, 1335–1345 (1976)

    Article  Google Scholar 

  130. U. Seifert, R. Lipowsky: Morphology of vesicles, in Structure and Dynamics of Membranes, From Cells to Vesicles, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 403–463

    Google Scholar 

  131. U. Seifert: Configurations of fluid membranes and vesicles, Adv. Phys. 46, 13–137 (1997)

    Article  ADS  Google Scholar 

  132. H. G. Dobereiner: Fluctuating vesicle shapes, in Giant Vesicles, ed. by P. Walde, P. Luisi (Wiley & Sons, Chichester, 1999) pp. 149–167

    Google Scholar 

  133. M. Wortis, M. Jaric, U. Seifert: Thermal shape fluctuations of fluid-phase phospholipid-bilayer membranes and vesicles, J. Mol. Liq. 71, 195–207 (1997)

    Article  Google Scholar 

  134. V. Heinrich, F. Sevsek, S. Svetina, B. Zeks: Large deviations of the average shapes of vesicles from equilibrium: Effects of thermal fluctuations in the presence of constraints, Phys. Rev. E 55, 1809–1818 (1997)

    Article  ADS  Google Scholar 

  135. F. Julicher, U. Seifert, R. Lipowsky: Phase diagrams and shape transformations of toroidal vesicles, J. Phys. France 3, 1681–1705 (1993)

    Article  Google Scholar 

  136. S. Svetina, B. Zeks: Membrane bending energy and shape determination of phospholipid vesicles and blood cells, Eur. Biophys. J. 17, 101–111 (1989)

    Article  Google Scholar 

  137. K. Berndl, J. Kas, R. Lipowsky, E. Sackmann, U. Seifert: Shape transformations of giant vesicles: Extreme sensitivity to bilayer asymmetry, Europhys. Lett. 13, 659–664 (1990)

    Article  ADS  Google Scholar 

  138. H.-G. Dobereiner, E. Evans, M. Kraus, U. Seifert, M. Wortis: Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory, Phys. Rev. E 55, 4558–4474 (1997)

    Article  Google Scholar 

  139. J. Kas, E. Sackmann: Shape transitions and shape stability of giant phospholipid vesicles in water induced by area-to-volume changes, Biophys. J. 60, 825–844 (1991)

    Article  Google Scholar 

  140. X. Michalet, D. Bensimon: Vesicles of toroidal topology: Observed morphology and shape transformation, J. Phys. II France 5, 263–287 (1995)

    Article  Google Scholar 

  141. E. Farge, P. F. Devaux: Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids, Biophys. J. 61, 347–357 (1992)

    Article  Google Scholar 

  142. L. Miao, U. Seifert, M. Wortis, H.-G. Dobereiner: Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity, Phys. Rev. E 49, 5389–5407 (1994)

    Article  ADS  Google Scholar 

  143. B. Fourcade, M. Mutz, D. Bensimon: Experimental and theoretical study of toroidal vesicles, Phys. Rev. Lett. 68, 2551–2554 (1992)

    Article  ADS  Google Scholar 

  144. U. Seifert: Vesicles of toroidal topology, Phys. Rev. Lett. 66, 2404–2407 (1991)

    Article  ADS  Google Scholar 

  145. F. Julicher, U. Seifert, R. Lipowsky: Conformal degeneracy and conformal diffusion of vesicles, Phys. Rev. Lett. 71, 452–455 (1993)

    Article  ADS  Google Scholar 

  146. T. Charitat, B. Fourcade: Lattice of passages connecting membranes, J. Phys. II France 7, 15–35 (1997)

    Article  Google Scholar 

  147. L. Golubovi: Passages and droplets in lamellar fluid membrane phases, Phys. Rev. E. 50, R2419-R2422 (1994)

    Article  ADS  Google Scholar 

  148. S. Funari, B. Madler, G. Rapp: Cubic topology in surfactant and lipid mixtures, Eur. Biophys. J. 24, 293–299 (1996)

    Article  Google Scholar 

  149. R. Koynova, B. Tenchov, G. Rapp: Low amounts of PEG-lipid induce cubic phase in phosphatidylethanolamine dispersions, Biochim. Biophys. Acta 1326, 167–170 (1997)

    Article  Google Scholar 

  150. S. Hyde: The Language of Shape (Elsevier, Amsterdam, 1997). See pp. 257–338

    Book  Google Scholar 

  151. B. Tenchov, R. Koynova, G. Rapp: Accelerated formation of cubic phases in phosphatidylethanolamine dispersions, Biophys. J. 75, 853–866 (1998)

    Article  Google Scholar 

  152. R. Lipowsky: Stacks and bunches of fluid membranes, J. Phys. Cond. Mat. 6, A409-A413 (1994)

    Article  ADS  Google Scholar 

  153. R. Lipowsky: From bunches of membranes to bundles of strings, Z. Phys. B 97, 193–203 (1995)

    Article  ADS  Google Scholar 

  154. R. Lipowsky: Adhesion of membranes via anchored stickers, Phys. Rev. Lett. 77, 1652–1655 (1996)

    Article  ADS  Google Scholar 

  155. R. Lipowsky, H.-G. Dobereiner, C. Hiergeist, V. Indrani: Membrane curvature induced by polymers and colloids, Physica A 249, 536–543 (1998)

    Article  Google Scholar 

  156. R. Lipowsky, S. Leibler: Unbinding transitions of interacting membranes, Phys. Rev. Lett. 56, 2541–2544 (1986)

    Article  ADS  Google Scholar 

  157. R. Lipowsky: Generic interactions of flexible membranes, in Structure and Dy-namics of Membranes, Generic and Specific Interactions, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 521–602

    Chapter  Google Scholar 

  158. W. Helfrich, B. Klosgen: Adhesion and roughness of biological model membranes, in Dynamics and Patterns in Complex Fluids, ed. by A. Onuki, K. Kawasaki (Springer Verlag, Berlin, 1990) pp. 2–16

    Chapter  Google Scholar 

  159. D. Sornette, N. Ostrowsky: Lamellar phases: Effect of fluctuations, in Micelles, Membranes, Microemulsions, and Monolayers, ed. by W. M. Gelbart, A. Ben-Shaul, D. Roux (Springer Verlag , New York, 1994) pp. 251–302

    Chapter  Google Scholar 

  160. E. A. Evans, A. Parsegian: Thermal-mechanical fluctuations enhance repulsion between bimolecular layers, Proc. Natl. Acad. Sci. USA 83, 7132–7136 (1986)

    Article  ADS  Google Scholar 

  161. W. Helfrich: Spontaneous and induced adhesion of fluid membranes, in Phase Transitions in Soft Condensed Matter, ed. by T. Riste, D. Sherrington, (Plenum Publ., New York, 1989) pp. 271–281

    Chapter  Google Scholar 

  162. M. Mutz, W. Helfrich: Unbinding transition of a biological membrane, Phys. Rev. Lett. 62, 2881–2884 (1989)

    Article  ADS  Google Scholar 

  163. W. Harbich, W. Helfrich: Adhesion in egg lecithin multilayer systems produced by cooling, J. Phys. France 51, 1027–1048 (1990)

    Article  Google Scholar 

  164. R. M. Servuss, W. Helfrich: Mutual adhesion of lecithin membranes at ultralow tensions, J. Phys. France 50, 809–827 (1989)

    Article  Google Scholar 

  165. R. P. Rand, V. A. Parsegian: Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta 988, 351–376 (1989)

    Article  Google Scholar 

  166. G. Biildt, H. U. Gaily, A. S. J. Seelig, G. Zacchai: Neutron diffraction studies on selectively deuterated phospholipid bilayers, Nature 271, 182–184 (1978)

    Article  ADS  Google Scholar 

  167. A. E. Blaurock: Evidence of bilayer structure and of membrane interactions from x-ray diffraction analysis, Biochim. Biophys. Acta 650, 167–207 (1982)

    Article  Google Scholar 

  168. C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, A. M. Belloq: Steric interactions in a model multimembrane system: A synchrotron x-ray study, Phys. Rev. Lett. 57, 2718–2721 (1986)

    Article  ADS  Google Scholar 

  169. S. M. Gruner, M. W. Tate, G. L. Kirk, P. T. C. So, D. C. Turner, D. T. Keane: X-ray diffraction study of the polymorphic behavior of N-methylated dioleoyl phosphatidylethanolamine, Biochemistry 27, 2853–2866 (1988)

    Article  Google Scholar 

  170. J. Katsaras, R. H. Stinson: High-resolution electron density profiles reveal influence of fatty acids on bilayer structure, Biophys. J. 57, 649–655 (1990)

    Article  Google Scholar 

  171. J. Katsaras, R. L. Donaberger, I. P. Swainson, D. C. Tennant, Z. Tun, R. R. Void, R. S. Prosser: Rarely observed phase transitions in a novel ly-otropic liquid crystal system, Phys. Rev. Lett. 78, 899–902 (1997)

    Article  ADS  Google Scholar 

  172. V. I. Gordeliy, V. G. Ivkov, Y. M. Ostanevich, L. S. Yaguzhinskij: Detection of structural defects in phosphatidylcholine membranes by small-angle neutron scattering. The cluster model of a lipid bilayer, Biochim. Biophys. Acta 1061, 39–48 (1991)

    Article  Google Scholar 

  173. S. Konig, W. Pfeiffer, T. Bayerl, D. Richter, E. Sackmann: Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering, J. Phys. II France 2, 1589–1615 (1992)

    Article  Google Scholar 

  174. M. C. Wiener, S. H. White: Structure of a fluid dioleoyl phosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure, Biophys J. 61, 434–447 (1992)

    Article  Google Scholar 

  175. D. Roux, C. R. Safinya, F. Nallet: Lyotropic lamellar La phases, in Micelles, Membranes, Microemulsions and Monolayers, ed. by W. M. Gelbart, A. Ben-Shaul, D. Roux (Springer Verlag, New York, 1994) pp. 303–346

    Chapter  Google Scholar 

  176. J. Lemmich K. Mortensen, J. H. Ipsen, T. Honger, R. Bauer, O. G. Mouritsen: Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model and experiments. Phys. Rev. E 53, 5169–5180 (1996)

    Article  ADS  Google Scholar 

  177. J. F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H. I. Petrache, R. M. Suter: X-ray structure determination of fully hydrated L a phase dipalmitoyl phosphatidylcholine bilayers, Biophys. J. 70, 1419–1431 (1996)

    Article  Google Scholar 

  178. H. I. Petrache, S. Tristram-Nagle, J. F. Nagle: Fluid phase structure of EPC and DMPC bilayers, Chem. Phys. Lipids 95, 83–94 (1998)

    Article  Google Scholar 

  179. M. Kodama, H. Aoki, H. Takahashi, I. Hatta: Interlamellar waters in dimyris-toyl phosphatidylethanolamine — water system as studied by calorimetry and x-ray diffraction, Biochim. Biophys. Acta 1329, 61–73 (1997)

    Article  Google Scholar 

  180. G. Cevc: Phospholipids Handbook(Marcel Dekker, New York, 1993)

    Google Scholar 

  181. J. Hartung, W. Helfrich, B. Klosgen: Transformation of phosphatidylcholine multilayer systems in excess water, Biophys. Chem. 49, 77–81 (1994)

    Article  Google Scholar 

  182. J. Cook-Roder, R. Lipowsky: Adhesion and unbinding for bunches of fluid membranes, Europhys. Lett. 18, 433–438 (1992)

    Article  ADS  Google Scholar 

  183. W. Helfrich: Size distributions of vesicles: The role of the effective rigidity of membranes, J. Physique 47, 321–329 (1986)

    Article  MathSciNet  Google Scholar 

  184. G. Beblik, R.M. Servuss, W. Helfrich: Bilayer bending rigidity of some synthetic lecithins, J. Physique 46, 1773–1778 (1985)

    Article  Google Scholar 

  185. J. Thimmel, B. Klosgen, G. Rapp, W. Helfrich: Characterization of “dark bodies” observed in the dilute lipid/water system, in EMBL Hamburg Outstation Annual Report1998, ed. by M. Wilmanns, V. S. Lamzin, (EMBL Hamburg Outstation at Deutsches Elektronen-Synchrotron DESY, Hamburg, 1999) pp. 455–456

    Google Scholar 

  186. W. Helfrich, B. Klosgen: Some complexities of simple lipid membranes, in Dy-namical Phenomena at Interfaces, Surfaces and Membranes, ed. by D. Beysens, N. Boccara, G. Forgacs (Nova Science, New York, 1993) pp. 11–22

    Google Scholar 

  187. R. M. Servuss: Color scatterers in egg lecithin water systems, Chem. Phys. Lipids 50, 87–97 (1989)

    Article  Google Scholar 

  188. V. A. Parsegian, R. P. Rand: Interaction in membrane assemblies, in Structure and Dynamics of Membranes, Generic and Specific Interactions, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 643–690

    Chapter  Google Scholar 

  189. S. Tristram-Nagle, H. I. Petrache, J. F. Nagle: Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers, Biophysical J. 75, 917–925 (1998)

    Article  ADS  Google Scholar 

  190. J. Thimmel, B. Klosgen, W. Helfrich, private communication

    Google Scholar 

  191. M. Vogel, C. Minister, W. Fenzl, T. Salditt: Thermal unbinding of highly oriented phospholipid membranes, Phys. Rev. Lett. 84, 390–393 (2000)

    Article  ADS  Google Scholar 

  192. M. Kummrow, W. Helfrich: Collapse of giant phosphatidylcholine vesicles, Chem. Phys. Lipids 79, 147–156 (1996)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klösgen, B. (2001). Conformations of Fluid Lipid Membranes. In: Lipid Bilayers. Biological Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04496-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04496-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08702-8

  • Online ISBN: 978-3-662-04496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics