Structure and Interactions of Lipid Bilayers: Role of Fluctuations

  • John F. Nagle
  • Stephanie Tristram-Nagle
Chapter
Part of the Biological Physics Series book series (BIOMEDICAL)

Abstract

The cell is the fundamental unit in biology. Each cell is spatially defined by its cytoplasmic membrane. The structural basis for each membrane is lipid in bilayer form. Following this reductionist point of view, it is therefore not surprising that lipid bilayers have been much studied using a great variety of techniques.

Keywords

Entropy Surfactant Hydrate DMSO Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tristram-Nagle, R. Zhang, R. M. Suter, C. R. Worthington, W.-J. Sun, J. F. Nagle: Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins, Biophys. J. 64, 1097–1109 (1993)CrossRefGoogle Scholar
  2. 2.
    J. F. Nagle: Area/lipid of bilayers from NMR. Biophys. J. 64, 1476–1481 (1993)CrossRefGoogle Scholar
  3. G. Biildt, H. U. Gaily, J. Seelig, G. Zaccai: Neutron diffraction studies on phosphatidylcholine model membranes. I. Headgroup conformation, J. Mol. Biol. 134, 673–691 (1979), see p. 689CrossRefGoogle Scholar
  4. 4.
    L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, V. A. Parsegian: Interactions between neutral phospholipid bilayer membranes, Biophys. J. 37, 657–666 (1982)Google Scholar
  5. 5.
    W.-J. Sun, R. M. Suter, M. A. Knewtson, C. R. Worthington, S. Tristram-Nagle, R. Zhang, J. F. Nagle: Order and disorder in fully hydrated unoriented bilayers of gel phase dipalmitoylphosphatidylcholine, Phys. Rev. E 49, 4665–4676 (1994)CrossRefADSGoogle Scholar
  6. 6.
    A. Tardieu, V. Luzzati, F. C. Reman: Structure and polymorphism of the hydrocarbon chains of lipids; a study of lecithin-water phases, J. Mol. Biol. 75, 711–733 (1973)CrossRefGoogle Scholar
  7. 7.
    J. F. Nagle, M. C. Wiener: Structure of fully hydrated bilayer dispersions, Biochim. Biophys. Acta 942, 1–10 (1988)CrossRefGoogle Scholar
  8. 8.
    D. P. Tieleman, S. J. Marrink, H. J. C. Berendsen: A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems, Biochim. Biophys. Acta 1331, 235–270 (1997)CrossRefGoogle Scholar
  9. 9.
    D. J. Tobias, K. Tu, M. L. Klein: Atomic-scale molecular dynamics simulations of lipid membranes, Curr. Opinion Coll. and Interface Sci. 2, 15–26 (1997)CrossRefGoogle Scholar
  10. 10.
    A. M. Smondyrev, M. L. Berkowitz: Molecular Dynamics Simulations of DPPC Bilayers in DMSO, Biophys. J. 76, 2472–2478 (1999)CrossRefGoogle Scholar
  11. 11.
    S. M. Gruner, E. Shyamsunder: Is the mechanism of general anesthesia related to lipid membrane spontaneous curvature?, Ann. N. Y. Acad. Sci 625, 685–691 (1991).CrossRefADSGoogle Scholar
  12. 12.
    J. F. Nagle, D. A. Wilkinson: Lecithin bilayers: Density measurements and molecular interactions, Biophys. J. 23, 159–175 (1978)CrossRefGoogle Scholar
  13. 13.
    M. C. Wiener, S. Tristram-Nagle, D. A. Wilkinson, L. E. Campbell, J. F. Nagle: Specific volumes of lipids in fully hydrated bilayer dispersions, Biochim. Biophys. Acta 938, 135–142 (1988)CrossRefGoogle Scholar
  14. 14.
    J. Katsaras, V. A. Raghunathan, see this volumeGoogle Scholar
  15. 15.
    H. I. Petrache, S. E. Feller, J. F. Nagle: Determination of component volumes of lipid bilayers from simulations, Biophys. J. 72, 2237–2242 (1997)CrossRefGoogle Scholar
  16. 16.
    M. C. Wiener, S. H. White: Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and netron diffraction data. III. Complete structure, Biophys. J. 61, 434–447 (1992)Google Scholar
  17. 17.
    V. A. Parsegian, R. P. Rand: Interaction in membrane assemblies, in Structure and Dynamics of Membranes, Generic and Specific Interactions, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 643–690CrossRefGoogle Scholar
  18. 18.
    G. Klose, B. W. Koenig, H. W. Meyer, G. Schulze, G. Degovics: Small-angle x-ray scattering and electron microscopy of crude dispersions of swelling lipids and the influence of the morphology on the repeat distance, Chem. Phys. Lipids 47, 225–234 (1988)CrossRefGoogle Scholar
  19. 19.
    M. Kodama, H. Aoki, H. Takahashi, I. Hatta: Inter lamellar waters in dimyristoylphosphatidylethanolamine-water system as studied by calorimetry and x-ray diffraction, Biochim. Biophys. Acta 1329, 61–73 (1997)CrossRefGoogle Scholar
  20. 20.
    T. J. Mcintosh, S. Simon: Hydration force and bilayer deformation: A revaluation, Biochemistry 25, 4058–4066 (1986)CrossRefGoogle Scholar
  21. 21.
    B. W. Koenig, H. H. Strey, K. Gawrisch: Membrane lateral compressibility determined by NMR and X-ray diffraction: Effect of acyl chain polyunsaturate, Biophys. J. 73, 1954–66 (1997)CrossRefGoogle Scholar
  22. 22.
    M. J. Ruocco, G. G. Shipley: Characterization of the sub-transition of hydrated DPPC bilayers; kinetic, hydration and structural study, Biochim. Biophys. Acta 691, 309–320 (1982)CrossRefGoogle Scholar
  23. 23.
    T. J. Mcintosh, A. D. Magid, S. A. Simon: Range of the solvation pressure between lipid membranes: Dependence on the packing density of solvent molecules, Biochem. 28, 7904–7912 (1989)CrossRefGoogle Scholar
  24. 24.
    H. I. Petrache, S. Tristram-Nagle, J. F. Nagle: Fluid phase structure of EPC and DMPC bilayers, Chem. Phys. Lipids 95, 83–94 (1998)CrossRefGoogle Scholar
  25. 25.
    R. P. Rand, V. A. Parsegian: Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta 988, 351–376 (1989)CrossRefGoogle Scholar
  26. 26.
    E. A. Evans, D. Needham: Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions, J. Phys. Chem. 91, 4219–4228 (1987)CrossRefGoogle Scholar
  27. 27.
    J. F. Nagle, M. C. Wiener: Relations for lipid bilayers: Connection of electron density profiles to other structural quantities, Biophys. J. 55, 309–313 (1989)CrossRefGoogle Scholar
  28. 28.
    W.-J. Sun, S. Tristram-Nagle, R. M. Suter, J. F. Nagle: Structure of gel phase saturated lecithin bilayers: Temperature and chain length dependence, Biophys. J. 71, 885–891 (1996)CrossRefGoogle Scholar
  29. 29.
    S. Tristram-Nagle, H. I. Petrache, J. F. Nagle: Structure and interactions of fully hydrated dioleoylphospatidylcholine bilayers, Biophys. J. 75, 917–925 (1998)CrossRefGoogle Scholar
  30. 30.
    M. C. Wiener, R. M. Suter, J. F Nagle: Structure of the fully hydrated gel phase of DPPC, Biophys. J. 53, 315–325 (1989)CrossRefGoogle Scholar
  31. 31.
    J. F. Nagle, R. Zhang, S. Tristram-Nagle, W.-J. Sun, H. I. Petrache, R. M. Suter: X-ray structure determination of fully hydrated La phase di-palmitoylphosphatidylcholine bilayers, Biophys. J. 70, 1419–1431 (1996)CrossRefGoogle Scholar
  32. 32.
    T. J. Mcintosh, S. A. Simon: Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers, Biochemistry 25, 4948–4952 (1986)CrossRefGoogle Scholar
  33. 33.
    M. C. Wiener, S. H. White: Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction I. Fluid bilayer models and the limits of resolution, Biophys. J. 59, 162–173 (1991)CrossRefGoogle Scholar
  34. 34.
    N. Gouliaev, J. F. Nagle: Simulations of interacting membranes in the soft confinement regime, Phys. Rev. Lett. 81, 2610–2613 (1998)CrossRefADSGoogle Scholar
  35. 35.
    A. Caille: Physique cristalline — Remargues sur la diffusion des rayons X dans les smectiques A., C. R. Acad. Sc. Paris Serie B 274, 891–893 (1972)Google Scholar
  36. 36.
    J. Als-Nielsen, J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaad-Anderson, S. Mathiesen: Observation of algebraic decay of positional order in a smectic liquid crystal, Phys. Rev. B 22, 312–320 (1980)CrossRefADSGoogle Scholar
  37. 37.
    D. Roux, C. R. Safinya: A synchrotron X-ray study of competing undulation and electrostatic interlayer interactions in fluid multimembrane lyotropic phases, J. Phys. France 49, 307–318 (1988)CrossRefGoogle Scholar
  38. A. Guinier: X-Ray Diffraction (Freeman, San Francisco, 1963) pp. 300 and 304Google Scholar
  39. 39.
    R. Hosemann, S. N. Bagchi: Direct Analysis of Diffraction by Matter (North-Holland, Amsterdam, 1962)MATHGoogle Scholar
  40. 40.
    R. Zhang, S. Tristram-Nagle, W.-J. Sun, R. L. Headrick, T. C. Irving, R. M. Suter, J. F. Nagle: Small-angle X-ray scattering from lipid bilayers is well described by modified Caille theory but not by paracrystalline theory, Biophys. J. 70, 349–357 (1994)CrossRefGoogle Scholar
  41. 41.
    R. Zhang, R. M. Suter, J. F. Nagle: Theory of the structure factor of lipid bilayers, Phys. Rev. E 50, 5047–5060 (1994).CrossRefADSGoogle Scholar
  42. 42.
    T. J. Mcintosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, S. A. Simon: Experimental tests for protrusion and undulation pressures in phospholipid bilayers, Biochem. 34, 8520–8532 (1995)CrossRefGoogle Scholar
  43. 43.
    W. Helfrich: Steric interaction of fluid membranes in multilayer systems, Z. Naturforsch. 33a, 305–315 (1978)ADSGoogle Scholar
  44. 44.
    C. R. Safinya, E. B. Sirota, D. Roux, G. S. Smith: Universality in interacting membranes: The effect of cosurfactants on the interfacial rigidity, Phys. Rev. Lett. 62, 1134 (1989)CrossRefADSGoogle Scholar
  45. 45.
    R. R. Netz, R. Lipowsky: Stacks of fluid membranes under pressure and tension, Europhys. Lett. 29, 345–350 (1995)CrossRefADSGoogle Scholar
  46. 46.
    D. Sornette, N. Ostrowsky: Importance of membrane fluidity on bilayer interactions, J. Chem. Phys. 84, 4062–4067 (1986)CrossRefADSGoogle Scholar
  47. 47.
    R. Podgornik, V. A. Parsegian: Thermal-mechanical fluctuations of fluid membranes in confined geometries: The case of soft confinement, Langmuir 8, 577–562 (1992)CrossRefGoogle Scholar
  48. 48.
    T. J. Mcintosh, S. A. Simon: Contributions of hydration and steric (entropic) pressure to the interactions between phosphatidylcholine bilayers: Experiments with the subgel phase, Biochemistry 32, 8374–8384 (1993)CrossRefGoogle Scholar
  49. 49.
    T. J. Mcintosh, S. A. Simon: Hydration and steric pressures between phospholipid bilayers, Annu. Rev. Biophys. Biomol. Stuct. 23, 27–51 (1994).CrossRefGoogle Scholar
  50. 50.
    H. I. Petrache, N. Gouliaev, S. Tristram-Nagle, R. Zhang, R. M. Suter, J. F. Nagle: Interbilayer interactions from high resolution X-ray scattering, Phys. Rev. E. 57, 7014–7024 (1998)CrossRefADSGoogle Scholar
  51. 51.
    N. Gouliaev, J. F. Nagle: Simulations of a single membrane between two walls using a new Monte Carlo method, Phys. Rev. E 58, 881–888 (1998)CrossRefADSGoogle Scholar
  52. 52.
    N. Gouliaev: Monte-Carlo simulations of membrane systems, CMU Doctoral Dissertation, 1998.Google Scholar
  53. 53.
    E. A. Evans, W. Rawicz: Entropy-driven tension and bending elasticity in condensed-fluid membranes, Phys. Rev. Lett. 64, 2094–2097 (1990)CrossRefADSGoogle Scholar
  54. 54.
    P. Meleard, C. Gerbeaud, T. Pott, L. Fernandez-Puente, I. Bivas, M. D. Mitov, J. Dufourcq, P. Bothorel: Bending elasticities of model membranes: Influence of temperature and sterol content, Biophys. J. 72, 2616 (1997)CrossRefGoogle Scholar
  55. 55.
    V. A. Parsegian: Strength of van der Waals Attractions between Mica Surfaces across Lipid Bilayers, Langmuir 11, 1047 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • John F. Nagle
  • Stephanie Tristram-Nagle

There are no affiliations available

Personalised recommendations