Advertisement

Abstract

Glass and electrochemistry? The obviously “inert” character of most solid glasses seems to exclude the application of electrochemistry to these materials. In fact, one-component as well as multi-component glasses appear to be more suited as electrically insulating materials than as substances on which electrical or electrochemical experiments can be conducted. Nevertheless, a chapter covering more than one half of this book is devoted to the electrochemistry of these electrically “dull” materials. Is there a misunderstanding, or do reactions take place which one does not normally realize without specific instrumental support?

Keywords

Glass Electrode Surface Group Lithium Silicate Glass Membrane Interfacial Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    G.D. Moody, J.D.R. Thomas: Selective Ion Sensitive Electrodes ( Merrow, Watford 1971 )Google Scholar
  2. 2.2
    R.G. Bates: Determination of pH. Theory and Practice, 2nd ed. ( Wiley, New York 1973 )Google Scholar
  3. 2.3
    U. Fritze: “Richtlinien für die pH Messung in industriellen Anlagen”, Normenheft 22, ed. by Deutscher Normenausschuß (DNA) (Beuth, Berlin 1974 ) 2.4 K. Schwabe: pH-Meßtechnik, 4th ed. ( Steinkopff, Dresden 1976 )Google Scholar
  4. 2.5
    H. Galster: pH Measurement. Fundamentals, Methods, Applications, Instrumentation ( VCH, Weinheim 1991 )Google Scholar
  5. 2.6
    F. Honold, B. Honold: Zonenselektive Elektroden. Grundlagen und Anwendungen in Biologie und Medizin ( Birkhäuser, Basel 1991 )Google Scholar
  6. 2.7
    R. Degner, S. Leibl: pH messen. So wird’s gemachtl (VCH, Weinheim 1995 )Google Scholar
  7. 2.8
    K. Schwabe, H.D. Suschke: “Theorie der Glaselektrode”, Angew. Chem. 76, 39–49 (1964)Google Scholar
  8. 2.9
    K. Schwabe, H. Dahms: “Untersuchung des Ionenaustauschs an Glaselektroden mit Radioindikatoren”, Isotopentechnik 1, 34–39 (1960)Google Scholar
  9. 2.10
    G. Eisenman: “The origin of the glass electrode potential”, In: Glass Electrodes for Hydrogen and Other Cations, ed. by G. Eisenman ( Dekker, New York 1967 ) pp. 133–173Google Scholar
  10. 2.11
    L. Kratz: “Das Schrifttum über Glaselektroden”, Z. Elektrochem. 46, 259–264 (1940)Google Scholar
  11. 2.12
    M. Dole: The Glass Electrode, 2nd. ed. ( Wiley, New York 1947 )Google Scholar
  12. 2.13
    L. Kratz: Die Glaselektrode und ihre Anwendungen ( Steinkopff, Frankfurt 1950 )Google Scholar
  13. 2.14
    H.T.S. Britton: Hydrogen Ions. Their Determination and Importance in Pure and Industrial Chemistry, Vol. 1 ( Chapman and Hall, London 1955 )Google Scholar
  14. 2.15
    R.G. Bates: “The glass electrode”, In: Reference Electrodes. Theory and Practice, ed. by D.J.G. Ives, G.J. Janz ( Academic Press, New York 1961 ) pp. 231–267Google Scholar
  15. 2.16
    G. Eisenman (Ed.): Glass Electrodes for Hydrogen and Other Cations ( Dekker, New York 1967 )Google Scholar
  16. 2.17
    R.P. Buck: “Transient electrical behavior of glass membranes”, J. Electroanal. Chem. 18, 363–380 (1968)Google Scholar
  17. 2.18
    M. Lavallee, O.F. Schanne, N.C. Hebert (Eds.): Glass Microelectrodes ( Wiley, New York 1969 )Google Scholar
  18. 2.19
    B. Lengyel, B. Csakvari: “Zur Theorie der Glaselektrode”, Chemiker Z., Chem. Apparatur, Verfahrenstechn. 93, 763–770 (1969)Google Scholar
  19. 2.20
    R.G. Bates: Determination of pH. Theory and Practice, 2nd ed. ( Wiley, New York 1973 ) pp. 340–390Google Scholar
  20. 2.21
    G. Johansson, B. Karlberg, A. Wikby: “The hydrogen-ion selective glass electrode”, Talanta 22, 953–966 (1975)Google Scholar
  21. 2.22
    H. v. Helmholtz: “On the modern development of Faraday’s conceptions of electricity” (Faraday Lecture, 1881), J. Chem. Soc. 39, 277–304 (1881)Google Scholar
  22. 2.23
    W. Giese: “über den Verlauf der Rückstandsbildung in Leydener Flaschen bei constanter Potentialdifferenz der Belegungen”, Ann. Phys. Chem. NF 9, 161–208 (1880)ADSMATHGoogle Scholar
  23. 2.24
    M. Cremer: “Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten”, Z. Biol. 47, 562–608 (1906)Google Scholar
  24. 2.25
    S.P.L. Sorensen: “Enzymstudien. II. Mitteilung. Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen”, Biochem. Z. 21, 131–304 (1909)Google Scholar
  25. S.P.L. Sorensen: French: Compt. Rend. Lab. Carlsberg 8, 1–168 (1909)Google Scholar
  26. 2.26
    F. Haber, Z. Klemensiewicz: “über elektrische Phasengrenzkräfte”, Z. Phys. Chem. 67, 385–431 (1909)Google Scholar
  27. 2.27
    W. Nernst: “Über die Löslichkeit von Mischkrystallen”, Z. Phys. Chem. 9, 137–142 (1892)Google Scholar
  28. 2.28
    O. Schott: “Über das Eindringen von Wasser in die Glasoberfläche”, Z. Instrumentenkunde 9, 86–90 (1889)Google Scholar
  29. 2.29
    F. Förster: “über das chemische Verhalten des Glases. Einwirkung der Lösungen von Alkalien und Salzen auf Glas”, Ber. Deutsch. Chem. Ges. 25, 2494–2518 (1892)Google Scholar
  30. 2.30
    F. Förster: “Zur weiteren Kenntnis des chemischen Verhaltens des Glases”, Ber. Deutsch. Chem. Ges. 26, 2915–2922 (1893)Google Scholar
  31. 2.31
    F. Förster: “Vergleichende Prüfung einiger Glassorten hinsichtlich ihres chemischen Verhaltens”, Z. Anal. Chem. 34, 381–396 (1894)Google Scholar
  32. 2.32
    M. Dole: “The theory of the glass electrode”, J. Am. Chem. Soc. 53, 4260–4280 (1931)Google Scholar
  33. 2.33
    W.S. Hughes: “On Haber’s glass cell”, J. Chem. Soc. 53, 491–506 (1928)Google Scholar
  34. 2.34
    P. Gross, O. Halpern: “über Mischelektroden zweiter Art”, Z. Phys. Chem. 115, 54–60 (1925)Google Scholar
  35. 2.35
    B. Lengyel: “Über das Phasengrenzpotential Quarz/Elektrolytlösungen”, Z. Phys. Chem. A 153, 425–442 (1931)Google Scholar
  36. 2.36
    B. Lengyel: “Beiträge zum Verhalten der Quarzelektroden”, Part I, Z. Phys. Chem. A 159, 145–160 (1932)Google Scholar
  37. 2.37
    H. Freundlich, P. Rona: “über die Beziehungen zwischen dem elektrokinetischen Potentialsprung und der elektrischen Phasenkraft”, Sitzungsber. Preuss. Akad. Wiss. 20, 397–402 (1920)Google Scholar
  38. 2.38
    K.L. Cheng: “pH glass electrode and its mechanism”, In: Electrochemistry, Past and Present, ACS Symposium Series 390, ed. by J.T. Stock, M.V. Orna ( Am. Chem. Soc., Washington, DC 1989 ) pp. 286–302Google Scholar
  39. 2.39
    K.L. Cheng: “Capacitor theory for nonfaradaic potentiometry”, J. Microchem. 42, 5–24 (1990)Google Scholar
  40. 2.40
    K.J. Vetter: Elektrochemische Kinetik (Springer, Berlin, Heidelberg 1961 )Google Scholar
  41. 2.41
    M. Cremer: Beitr. Physiol. 2, 229 ff. (1924)Google Scholar
  42. 2.42
    F.G. Donnan: “The theory of membrane equilibria”, Chem. Rev. 1, 73–90 (1924)Google Scholar
  43. 2.43
    P. Henderson: “Zur Thermodynamik der Flüssigkeiten”, Z. Phys. Chem. 59, 118–127 (1907)Google Scholar
  44. 2.44
    P. Henderson: “Zur Thermodynamik der Flüssigkeiten”, Z. Phys. Chem. 63, 325–345 (1908)Google Scholar
  45. 2.45
    L. Michaelis: “Die Permeabilität von Membranen”, Naturwissenschaft 14, 33–42 (1926)ADSGoogle Scholar
  46. 2.46
    M. Dole: “The theory of the glass electrode. II. The glass as a water electrode”, J. Am. Chem. Soc. 54, 3095–3105 (1932)Google Scholar
  47. 2.47
    K. Schwabe, H. Dahms: “Versuche zur Frage der Durchlässigkeit von Glaselektroden für Wasserstoffionen mit Hilfe von Tritiummarkierung”, Monats-ber. Deutsch. Akad. Wiss. Berlin 1, 279–282 (1959)Google Scholar
  48. 2.48
    P.R. Hammond: “Studies on the glass electrode in solutions containing hydrogen isotopes”, Chem. Ind. 17, 311–312 (1962)Google Scholar
  49. 2.49
    Y. Abe, M. Maeda: “Do hydrogen ions really cross a glass membrane to enable pH measurement?”, Phys. Chem. Glasses 37, 176 (1996)Google Scholar
  50. 2.50
    F.M. Ernsberger: “Comments on ‘Do hydrogen ions really cross a glass membrane to enable pH measurement?’ by Y. Abe, M. Maeda”, Phys. Chem. Glasses 38, 282–283 (1997)Google Scholar
  51. 2.51
    Y. Abe, M. Nogami, M. Maeda: “Mobile hydrogen ion in glass to enable pH-measurement”, J. Non-Cryst. Solids 209, 204–206 (1997)ADSGoogle Scholar
  52. 2.52
    Y. Abe, H. Hosono, Y. Ohta, L.L. Hench: “Protonic conduction in oxide glasses — simple relations between electrical conductivity, activation energy, and OH bonding state”, Phys. Rev. B 38, 10166–10169 (1988)ADSGoogle Scholar
  53. 2.53
    Y. Abe, H. Hosonso, O. Akita, L.L. Hench: “Protonic conduction in phosphate glasses”, J. Electrochem. Soc. 141, L64 - L65 (1994)Google Scholar
  54. 2.54
    F.G.K. Baucke, H. Bach: “Investigation of glasses using surface profiling by spectrochemical analysis of sputter-induced radiation. II, Field-driven formation and electrochemical properties of protonated glasses containing various proton concentrations”, J. Am. Ceram. Soc. 65, 534–539 (1982)Google Scholar
  55. 2.55
    F.G.K. Baucke: “Electrochemistry and glass structure”, J. Non-Cryst. Solids 129, 233–239 (1991)ADSGoogle Scholar
  56. 2.56
    F.G.K. Baucke: “Field-driven redistribution of ‘guest protons’ within protonated silicate glasses”, J. Non-Cryst. Solids 40, 159–169 (1980)ADSGoogle Scholar
  57. 2.57
    B.P. Nicolsky: “Theory of the glass electrode I”, Acta Physicochim. USSR 7, 597–610 (1937)Google Scholar
  58. 2.58
    H. Schiller: “Uber die elektromotorischen Eigenschaften der Gläser”, Ann. Phys. 74, 105–135 (1924)Google Scholar
  59. 2.59
    K. Horovitz, J. Zimmermann: “Untersuchungen über Ionenaustausch an Gläsern”, Sitzungsber. Akad. Wiss. Wien, Abt. IIa, 134, 355–383 (1925)Google Scholar
  60. 2.60
    B.P. Nicolsky, M.M. Shults, A.A. Belyustin, A.A. Lev: “Recent developments in the ion-exchange theory of the glass electrode and its application in the chemistry of glass”, In: Glass Electrodes for Hydrogen and Other Cations. Principles and Practice, ed. by G. Eisenman ( Dekker, New York 1967 ) pp. 274–222Google Scholar
  61. 2.61
    G.A. Rechnitz: “Cation-sensitive glass electrodes in analytical chemistry”, In: Glass Electrodes for Hydrogen and Other Cations. Principles and Practice, ed. by G. Eisenman ( Dekker, New York 1967 ) pp. 322–343Google Scholar
  62. 2.62
    G. Eisenman: “Cation selective glass electrodes and their mode of operation”, J. Biophys. 2, 259–323 (1962)Google Scholar
  63. 2.63
    J.O. Isard: “The dependence of glass-electrode properties on composition”, In: Glass Electrodes for Hydrogen and Other Cations. Principles and Practice, ed. by G. Eisenman ( Dekker, New York 1967 ) pp. 51–100Google Scholar
  64. 2.64
    Z. Boksay, B. Csâkvâri: “The corrected formula of the phase-boundary potential of the glass electrode consistent with the structure of glass”, Acta Chim. Akad. Sci. Hung. 67, 157–160 (1971)Google Scholar
  65. 2.65
    F.G.K. Baucke: “Cation migration in electrode glasses”, In: Mass Transport Phenomena in Ceramics, ed. by A.R. Cooper, A.H. Heuer ( Plenum, New York 1975 ) pp. 337–353Google Scholar
  66. 2.66
    K. Schwabe, H. Dahms: “Vergleichende Untersuchungen der elektromotorischen Eigenschaften und des chemischen Verhaltens von Glaselektroden mit Hilfe radioaktiver Indikatoren, I. Untersuchungen im Gebiet des Alkalifehlers”, Z. Elektrochem. 65, 518–526 (1961)Google Scholar
  67. 2.67
    B. v. Lengyel, B. Csä,kväri, J. Toperczer: “über den Alkalifehler der Glaselektrode, III. Neuere Beiträge zur Deutung des Alkalifehlers”, Acta Chim. Hung. 45, 177–185 (1965)Google Scholar
  68. 2.68
    K. Schwabe: “Über den Alkalifehler der Glaselektrode”, Acta Chim. Hung. 51, 1–2 (1967)Google Scholar
  69. 2.69
    J.O. Isard: “The origin of the electric potential in the ion exchange theory of the glass electrode”, Phys. Chem. Glasses 17, 1–6 (1976)Google Scholar
  70. 2.70
    A. Wikby: “The surface resistance of glass electrodes in alkaline solutions”, J. Electroanal. Chem. 39, 103–109 (1972)Google Scholar
  71. 2.71
    F.G.K. Baucke: “The glass electrode — applied electrochemistry of glass surfaces”, J. Non-Cryst. Solids 73, 215–231 (1985)ADSGoogle Scholar
  72. 2.72
    F.G.K. Baucke: “Glass electrodes. Why and how they function”, Ber. Bun-songes. Phys. Chem. 100, 1466–1474 (1996)Google Scholar
  73. 2.73
    J.O’M. Bockris, A.K.N. Reddy: Modern Electrochemistry, Vol. 1 (Plenum, New York 1970 ) pp. 16–17Google Scholar
  74. 2.74
    G. Bouquet, S. Dobos, Z. Boksay: “Untersuchung der Oberflächenschicht des Glases”, Ann. Univ. Sci. Budapest (Rolando Eötvös Nominatae) Sect. Chim. 6, 5–13 (1964)Google Scholar
  75. 2.75
    Z. Boksay, G. Bouquet, S. Dobos: “Diffusion processes in the surface layer of glass”, Phys. Chem. Glasses 8, 140–144 (1967)Google Scholar
  76. 2.76
    A. Distèche, M. Dubuisson: “Transient response of the glass electrode to pH step variations”, Rev. Sci. Instrum. 25, 869–875 (1954)ADSGoogle Scholar
  77. 2.77
    G.A. Rechnitz, G.C. Kugler: “Transient phenomena at glass electrodes”, Anal. Chem. 39, 1682–1688 (1967)Google Scholar
  78. 2.78
    A. Wikby, G. Johansson: “The resistance and intrinsic time constant of glass electrodes”, J. Electroanal. Chem. 23, 23–40 (1969)Google Scholar
  79. 2.79
    A. Wikby: “The resistance of the surface layers of glass electrodes”, Phys. Chem. Glasses 15, 37–41 (1974)Google Scholar
  80. 2.80
    A. Wikby, B. Karlberg: “Correlation between the gel layer properties and the electrochemical behaviour of hydrogen selective glass electrodes”, Electrochim. Acta 19, 323–328 (1974)Google Scholar
  81. 2.81
    A. Wikby: “Chemical and electrical properties of the surface layers of some glass electrodes”, Electrochim. Acta 19, 329–336 (1974)Google Scholar
  82. 2.82
    Z. Boksay, M. Varga, A. Wikby: “Surface conductivity of leached glass”, J. Non-Cryst. Solids 17, 349–358 (1975)ADSGoogle Scholar
  83. 2.83
    H. Bach: “Zur Bestimmung der Reichweiten von beschleunigten Ionen in dünnen Oxidschichten”, Z. Angew. Phys. 28, 239–244 (1970)Google Scholar
  84. 2.84
    H. Bach: “Abtragraten und spezifische Energieverluste von 5,6 keV-Edelgasionen an Kieselglas”, Z. Naturforsch. 27, 333–338 (1972)ADSGoogle Scholar
  85. 2.85
    W.A. Lanford: “Hydrogen profiling: scientific applications”, Nucl. Instrum. Meth. 148, 1–8 (1978)ADSGoogle Scholar
  86. 2.86
    F.G.K. Baucke: “Investigation of surface layers, formed on glass electrode membranes in aqueous solutions, by means of an ion sputtering method”, J. Non-Cryst. Solids 14, 13–31 (1974)ADSGoogle Scholar
  87. 2.87
    F.G.K. Baucke: “The modern understanding of the glass electrode response”, Fresenius’ J. Anal. Chem. 349, 582–596 (1994)Google Scholar
  88. 2.88
    H. Bach, F.G.K. Baucke: “Investigation of glasses using surface profiling by spectro-chemical analysis of sputter-induced radiation: I, Surface profiling technique with high in-depth resolution”, J. Am. Ceram. Soc. 65, 527–533 (1982)Google Scholar
  89. 2.89
    W.A. Lanford, K. Davies, P. Lamarche, T. Laursen, R. Groleau, R.H. Doremus: “Hydration of sodalime glass”, J. Non-Cryst. Solids 33, 249–266 (1979)ADSGoogle Scholar
  90. 2.90
    P. March, F. Rauch: “Leaching studies of soda-lime-silica glass using deute- rium-and 8O-enriched solutions”, Glastechn. Ber. 63, 154–162 (1990)Google Scholar
  91. 2.91
    H. Scholze: “Der Einbau des Wassers in Gläsern”, part I, Glastechn. Ber. 32, 81–88 (1959)Google Scholar
  92. 2.92
    J.F. Ziegler, C.P. Wu, P. Williams, et al.: “Profiling hydrogen in materials using ion beams”, Nucl. Instrum. Meth. 149, 19–39 (1978)ADSGoogle Scholar
  93. 2.93
    R.A. Robinson, R.H. Stokes: Electrolyte Solutions, 2nd ed. ( Butterworths, London 1968 ) pp. 104–109Google Scholar
  94. 2.94
    W. Vogel: Chemistry of Glass, ed. by N. Kreidl ( Am. Ceram. Soc., Columbus, OH 1985 )Google Scholar
  95. 2.95
    F.G.K. Baucke: “Thermodynamic origin of the sub-Nernstian response of glass electrodes”, Anal. Chem. 66, 4519–4524 (1994)Google Scholar
  96. 2.96
    F.G.K. Baucke: “The origin of the glass electrode response”, In: Proc. Conf. on Glass Current Issues, ed. by A.F. Wright, J. Dupuy, NATO ASI Series, Appl. Sci. Eng. ( Nijhoff, Dordrecht 1985 ) pp. 481–505Google Scholar
  97. 2.97
    F.G.K. Baucke: “Simultaneous transfer of different cations across anodic electrolyte solution—glass interfaces in electric fields”, In: The Physics of Non-Crystalline Solids, ed. by G.H. Frischat ( Trans Tech Publications, Aedermannsdorf 1977 ) pp. 503–508Google Scholar
  98. 2.98
    A.A. Belyustin: “Dynamics of the potential and mechanism of operation of ion-selective glass electrodes”, Usp. Khim. 49, 1880–1903 (1980)Google Scholar
  99. 2.99
    G. Haugaard: “The mechanism of the glass electrode”, J. Phys. Chem. 45, 148–157 (1941)Google Scholar
  100. 2.100
    E.A. Guggenheim: Thermodynamics (North Holland, Amsterdam; Wiley, New York 1967) pp. 298 ff.Google Scholar
  101. 2.101
    G. Haugaard: “Studies on the glass electrode”, Compt. Rend. Lab. Carlsberg, Ser. Chem. 22, 199–204 (1938)Google Scholar
  102. 2.102
    L. Kratz: Die Glaselektrode and ihre Anwendungen,Wissenschaftliche Forschungsberichte, Naturwissenschaftliche Reihe, Vol. 59, ed. by R. Jäger (Steinkopff, Frankfurt 1950) pp. 72 ff.Google Scholar
  103. 2.103
    British Standard Specification BS 2586: “Glass electrodes” ( British Standard Institution, London 1979 )Google Scholar
  104. 2.104
    W.H. Beck, A.E. Bottom, A.K. Covington: “Errors of glass electrodes in certain standard buffer solutions at high discrimination”, Anal. Chem. 40, 501–505 (1968)Google Scholar
  105. 2.105
    T.S. Light, K.S. Fletcher III: “Accurate evaluation of glass electrodes in high ionic strength medium”, Anal. Chem. 39, 70–75 (1967)Google Scholar
  106. 2.106
    F.G.K. Baucke, R. Naumann, C. Alexander-Weber: “Multiple-point calibration with linear regression as a proposed standardization procedure for high-precision pH measurements”, Anal. Chem. 65, 3244–3251 (1993)Google Scholar
  107. 2.107
    G. Eisenman: “The electrochemistry of cation-sensitive glass electrodes”, In: Advances in Analytical Chemistry and Instrumentation, Vol. 4, ed. by C.N. Reilley ( Wiley-Interscience, New York 1965 ) pp. 213–369Google Scholar
  108. 2.108
    F.G.K. Baucke: “Further insight into the dissociation mechanism of glass electrodes. The response in heavy water”, J. Phys. Chem. B 102, 4835–4841 (1998)Google Scholar
  109. 2.109
    L. Bousse, P. Bergveld: “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sens. Actuators 6, 65–78 (1984)Google Scholar
  110. 2.110
    D.E. Yates, S. Levine, T.W. Healy: “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc. Faraday Trans. 1 (70), 1807–1818 (1974)Google Scholar
  111. 2.111
    U. Osch, Z. Drzozka, A. Xu, B. Rusterholz, et al.: “Design of neutral hydrogen ion carriers for solvent polymeric membrane electrodes of selected pH range”, Anal. Chem. 58, 2285–2289 (1986)Google Scholar
  112. 2.
    R.K. Iler: The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York 1979) pp. 123 ff.Google Scholar
  113. 2.113
    J.O’M. Bockris, A.K.N. Reddy: Modern Electrochemistry, Vol. 2 ( Plenum, New York 1970 )Google Scholar
  114. 2.114
    F.G.K. Baucke: “The glass electrode — proposal of kinetic measurements for the development of improved membrane glasses”, Glastechn. Ber. Sci. Technol. 70, 369–381 (1997)Google Scholar
  115. 2.115
    J.M. Hodgson: “Dependence upon work function of electrical conduction across the interface between a contact and a glass”, Glass Technol. 26, 208–211 (1985)Google Scholar
  116. 2.116
    K.J. Vetter: Elektrochemische Kinetik ( Springer, Berlin, Heidelberg 1961 ) P. 8–9Google Scholar
  117. 2.117
    B. Heinrich: Experimentelle Untersuchungen zur Wanderung von Silberionen in oxidischen Gläsern, Diploma Thesis ( FH Fresenius, Wiesbaden 1988 )Google Scholar
  118. 2.118
    T. Kaneko: “The field-assisted penetration of a silver film into glass”, J. Non Cryst. Solids 120, 188–198 (1990)ADSGoogle Scholar
  119. 2.119
    F.G.K. Baucke, J.A. Duffy: “Ion migration study in a sodium borate glass: proposal of a new oxide transport”, J. Electrochem. Soc. 127, 2230–2233 (1980)Google Scholar
  120. 2.120
    H. Kahnt, Ch. Kaps, J. Offermann: “A new method of simultaneous measurement of tracer diffusion coefficient and mobility of alkali ions in glasses”, Solid State Ionics 31, 215–220 (1988)Google Scholar
  121. 2.121
    F.G.K. Baucke: “Cation migration in electrode glasses”, In: Mass Transport Phenomena in Ceramics, ed. by A.R. Cooper, A.H. Heuer ( Plenum, New York 1975 ) pp. 337–354Google Scholar
  122. 2.122
    C.A. Kraus, E.H. Darby: “A study of the conduction process in ordinary soda-lime glass”, J. Am. Chem. Soc. 44, 2783–2797 (1922)Google Scholar
  123. 2.123
    D.E. Carlson, C.E. Tracy: “Injection of ions into glass from a glow discharge”, J. Appl. Phys. 46, 1575–1580 (1975)ADSGoogle Scholar
  124. 2.124
    D.E. Carlson, C.E. Tracy: “Metallization of glass using ion injection”, Ceram. Bull. 55, 530–532 (1976)Google Scholar
  125. 2.125
    D.L. Kinser, L.L. Hench: “Electrode polarization in alkali silicate glasses”, J. Am. Ceram. Soc. 55, 638–641 (1969)Google Scholar
  126. 2.126
    T.M. Proctor, P.M. Sutton: “Static space charge distribution with a single mobile charge carrier”, J. Chem. Phys. 30, 212–220 (1959)ADSGoogle Scholar
  127. 2.127
    T.M. Proctor, P.M. Sutton: “Space-charge development in glass”, J. Am. Ceram. Soc. 43, 173–179 (1960)Google Scholar
  128. 2.128
    F.M. Ernsberger: “Ion conduction in oxide glasses: blocking electrodes and space charge”, Phys. Chem. Glasses 36, 152–153 (1995)Google Scholar
  129. 2.129
    D.E. Carlson, K.W. Hang, G.F. Stockdale: “Electrode ‘polarization’ in alkali-containing glasses”, J. Am. Ceram. Soc. 55, 337–341 (1972)Google Scholar
  130. 2.130
    S.P. Mitoff, R.J. Charles: “Electrode polarization of ionic conductors”, J. Appl. Phys. 43, 927–934 (1972)ADSGoogle Scholar
  131. 2.131
    J.R. Macdonald: “Electrode polarization of ionic conductors”, J. Appl. Phys. 44, 3455–3458 (1973)ADSGoogle Scholar
  132. 2.132
    S.P. Mitoff, R.J. Charles: “Comments on ‘Electrode polarization of ionic conductors’ ’ ”, J. Appl. Phys. 44, 3786–3787 (1973)ADSGoogle Scholar
  133. 2.133
    F.G.K. Baucke: “Determination of cation mobilities in glasses by direct measurement of drift velocities (moving boundary)”, Z. Naturforsch. 26, 17–78 (1971)Google Scholar
  134. 2.134
    C.C. Rüssel: Polyvalente Elemente in oxidischen Glasschmelzen, Habilitation Thesis (Erlangen-Nürnberg 1991 ) pp. 132–138Google Scholar
  135. 2.135
    F.G.K. Baucke: “Transport properties of glasses containing mobile original and anodically introduced ‘guest’ ions”, In: Proc. Int. Congr. on Glass ( CVTS Dum techniky Praha, Prague 1977 ) pp. 347–356Google Scholar
  136. 2.136
    R.H. Doremus: “Interdiffusion of hydrogen and alkali ions in a glass surface”, J. Non-Cryst. Solids 19, 137–144 (1975)ADSGoogle Scholar
  137. 2.137
    N.N. Greenwood, A. Earnshaw: Chemistry of the Elements ( Pergamon, Oxford 1984 ) p. 86Google Scholar
  138. 2.138
    J. Bruinink: “Proton migration in solids”, J. Appl. Electrochem. 2, 239–249 (1972)Google Scholar
  139. 2.139
    L. Glasser: “Proton conduction and injection in solids”, Chem. Rev. 75, 21–65 (1975)Google Scholar
  140. 2.140
    A. Sendt: “Ion exchange and diffusion processes in glass”, In: Advances in Glass Technology ( Plenum, New York 1962 ) pp. 307–332Google Scholar
  141. 2.141
    W.A. Weyl, E.C. Marboe: “A new interpretation of the behavior of materials under stress”, Silic. Ind. 38, 5–19 (1973)Google Scholar
  142. 2.142
    M. Abouelleil, A.R. Cooper: “Analysis of field-assisted binary ion exchange”, J. Am. Ceram. Soc. 62, 390–395 (1979)Google Scholar
  143. 2.143
    Z. Boksay, B. Lengyel: “Vacancy type mechanism of the electrical relaxation processes in glass”, J. Non-Cryst. Solids 14, 79–87 (1974)ADSGoogle Scholar
  144. 2.144
    Z. Boksay: “Mass transport in non-crystalline solids”, In: The Physics of Non-Crystalline Solids, ed. by G.H. Frischat ( Trans Tech Publications, Aedermannsdorf 1977 ) pp. 428–446Google Scholar
  145. 2.145
    H. Scholze: “The build-in of water in glasses: I, Influence of water dissolved in glasses upon the infrared spectrum, and quantitative infrared-spectroscopic determination of water in glasses”, Glastechn. Ber. 32, 81–88 (1959)Google Scholar
  146. 2.146
    H. Scholze: “The build-in of water in glasses: II, Infrared measurements on silicate glasses with systematically varied composition, and interpretation of OH bands in silicate glasses”, Glastechn. Ber. 32, 142–152 (1959)Google Scholar
  147. 2.147
    N.N.: “Spectrometry nomenclature”, Anal. Chem. 43, 20–38 (1971)Google Scholar
  148. 2.148
    R.H. Doremus, A. Babinec, K. D’Angelo, M. Doody, W.A. Lanford, C. Burman: “Electrolysis of soda-lime silicate glass in water”, J. Am. Ceram. Soc. 67, 476–479 (1984)Google Scholar
  149. 2.149
    M. Tomozawa: “Dielectric characteristics of glass”, In: Glass I: Interaction with Electromagnetic Radiation, Treatise on Materials Science and Technology, Vol. 12, ed. by M. Tomozawa, R.H. Doremus ( Academic Press, New York 1977 ) pp. 283–342Google Scholar
  150. 2.150
    J.O’M. Bockris, A.K.N. Reddy: Modern Electrochemistry, Vol. 2 (Plenum, New York 1970 ) pp. 883–888Google Scholar
  151. 2.151
    K. Cammann: Untersuchungen zur Wirkungsweise ionenselektiver Elektroden (Abschätzung von Standardaustauschstromdichten), PhD Thesis (München 1975 ) pp. 105–118Google Scholar
  152. 2.152
    F.G.K. Baucke: “The effect of the cooling rate on electrochemical surface and bulk properties of some lithium silicate glasses”, In: Diffusion and Defect Data, Vols. 53–54, ed. by R.A. Weeks, D.L. Kinser (Trans Tech Publications, Aedermannsdorf 1987 ) pp. 197–202Google Scholar
  153. 2.153
    F. Quittner: “Einwanderung von Ionen aus wässriger Lösung in Glass”, Ann. Phys. (IV. Folge) 85, 745–769 (1928)ADSGoogle Scholar
  154. 2.154
    M.D. Ingram: “Ionic conductivity in glass”, Phys. Chem. Glasses 28, 215–234Google Scholar
  155. 2.155
    U.K. Krieger, W.A. Lanford: “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental”, J. Non-Cryst. Solids 102, 50–61 (1988)ADSGoogle Scholar
  156. 2.156
    J.O. Isard: “Mixed alkali effect in glasses”, J. Non-Cryst. Solids 1, 235–261 (1969)ADSGoogle Scholar
  157. 2.157
    R.H. Doremus: “Mixed alkali effect and interdiffusion of Na and K ions in glass”, J. Am. Ceram. Soc. 57, 478–480 (1974)Google Scholar
  158. 2.158
    G. Tomandl, H.A. Schaeffer: “Relation between the mixed-alkali effect and the electrical conductivity of ion-exchanged glasses”, In: The Physics of Non-Crystalline Solids, ed. by G.H. Frischat ( Trans Tech Publications, Aedermannsdorf 1977 ) pp. 480–485Google Scholar
  159. 2.159
    K. Hughes, J.O. Isard: “Ionic transport in glasses”, In: Transport Processes in Solid Electrolytes and in Electrodes, Physics of Electrolytes, Vol. 1, ed. by J. Hladik ( Academic Press, London 1972 ) pp. 351–400Google Scholar
  160. 2.160
    J.-P. Lacharme: “Mobilités électriques du sodium et du potassium dans les verres à alcalis mixtes Na2O-K2O”, Compt. Rend. Acad. Sci. Paris, Serie C, 275, 993–996 (1972)Google Scholar
  161. 2.161
    H. Jain, N.L. Peterson, H.L. Downing: “Tracer diffusion and electrical conductivity in sodium-cesium silicate glasses”, J. Non-Cryst. Solids 55, 283–305 (1983)ADSGoogle Scholar
  162. 2.162
    J.E. Davidson, M.D. Ingram, A. Bunde, K. Funke: “Ion hopping processes and structural relaxation in glassy materials”, J. Non-Cryst. Solids 203, 246–251 (1996)ADSGoogle Scholar
  163. 2.163
    Z. Boksay, G. Bouquet, E. Hari, J. Rohonczy: “Composition fluctuations in an alkali silicate glass”, Glastechn. Ber. 66, 9–14 (1993)Google Scholar
  164. 2.164
    A.Y. Kuznetsov: “Electrical conductivity of glasses in the Li2O-5iO2 system”, Russian J. Phys. Chem. 33, 20–22 (1959) (Zh. Fiz. Khim. 33, 1492–1494 (1959))Google Scholar
  165. 2.165
    C. Wagner: “Oxidation of alloys involving noble metals”, J. Electrochem. Soc. 103, 571–580 (1956)Google Scholar
  166. 2.166
    W.W. Mullins, R.F. Sekerka: “Stability of a planar interface during solidification of a dilute binary alloy”, J. Appl. Phys. 35, 444–451 (1964)ADSGoogle Scholar
  167. 2.167
    J.S. Kirkaldy, D.G. Fedak: “Nonplanar interfaces in two-phase ternary diffusion couples”, Trans. Met. Soc. AIME 224, 490–494 (1962)Google Scholar
  168. 2.168
    D.P. Whittle: “Oxidation mechanisms for alloys in single oxidant glasses”, In: High Temperature Corrosion, ed. by R.A. Rapp ( Nat. Ass. of Corrosion Eng., Houston 1983 ) pp. 171–183Google Scholar
  169. 2.169
    S. Schimschal-Thölke, H. Schmalzried, M. Martin: “Instability of moving interfaces between ionic crystals KC1/AgC1”, Ber. Bunsenges. Phys. Chem. 99, 1–6 (1995)Google Scholar
  170. 2.170
    M. Chemla: “Diffusion d’ions radioactifs dans des cristaux. Applications”, Ann. Physique 13, 959–1002 (1956)Google Scholar
  171. 2.171
    H. Ohta, M. Hara: “Ion-exchange in sheet glass by electrolysis”, J. Ceram. Assoc. Jpn. 78, 158–164 (1970)Google Scholar
  172. 2.172
    H. Ohta: “Migration of K+ ions from the ion-exchanged layer under the reverse electric field”, J. Ceram. Assoc. Jpn. 80, 16–24 (1972)Google Scholar
  173. 2.173
    R.H. Doremus: “Exchange and diffusion of ions in glass”, J. Phys. Chem. 68, 2212–2218 (1964)Google Scholar
  174. 2.174
    H. Franz, T. Kelen: “Conclusions on the structure of alkali silicate glasses and melts from the build-in of OH groups”, Glastechn. Ber. 40, 141–148 (1967)Google Scholar
  175. 2.175
    G. Eisenman: “The physical basis for the ionic specificity of the glass electrode”, In: Glass Electrodes for Hydrogen and Other Cations, Principles and Practice, ed. by G. Eisenman ( Dekker, New York 1967 ) pp. 223–237Google Scholar
  176. 2.176
    F.G.K. Baucke, J.A. Duffy: “Use of thallium(I) probe for identifying sites of mobile cations in glass during electrolysis”, J. Chem. Soc., Faraday Trans. 79, 661–667 (1983)Google Scholar
  177. 2.177
    F.G.K. Baucke, J.A. Duffy: “Electrolysis of a sodium borate glass: a new mechanism of oxide ion transport”, Glastechn. Ber. 56, 608–613 (1983)Google Scholar
  178. 2.178
    K. Takizawa: “Ionic conduction of Li2O2SiO2 glass under dc potential”, J. Am. Ceram. Soc. 61, 475–478 (1978)Google Scholar
  179. 2.179
    F.G.K. Baucke: “Electrochromic applications”, Mater. Sci. Eng. B 10, 285–292 (1991)Google Scholar
  180. 2.180
    J.A. Duffy, M.D. Ingram: “Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses”, J. Am. Chem. Soc. 93, 6448–6454 (1971)Google Scholar
  181. 2.181
    J.A. Duffy, M.D. Ingram: “An interpretation of glass chemistry in terms of the optical basicity concept”, J. Non-Cryst. Solids 21, 373–410 (1976)ADSGoogle Scholar
  182. 2.182
    J.H. Binks, J.A. Duffy: “A molecular orbital treatment of the basicity of oxyanion units”, J. Non-Cryst. Solids 37, 387–400 (1980)ADSGoogle Scholar
  183. 2.183
    J.A. Duffy, E.I. Kamitsos, G.D. Chryssicos, A.P. Patsis: “Trends in local optical basicity in sodium borate glasses and relation to ionic mobility”, Phys. Chem. Glasses 34, 153–157 (1993)Google Scholar
  184. 2.184
    F.G.K. Baucke: “The electrochemically structured interface between oxide glasses and solutions”, In: Abstracts, Glass Meeting 89, Lake Buena Vista, Sept. 17–19, 1989 ( Am. Ceram. Soc., Columbus, OH 1989 )Google Scholar
  185. 2.185
    E. Pungor: “Working mechanisms of ion-selective electrodes”, Pure Appl. Chem. 64, 503–507 (1992)Google Scholar
  186. 2.186
    T.M. Sullivan, A.J. Machiels: “Influence of the electric double layer on glass leaching”, J. Non-Cryst. Solids 55, 269–282 (1983)ADSGoogle Scholar
  187. 2.187
    H. Scholze, D. Helmreich, I. Bakardjiev: “Untersuchungen über das Verhalten von Kalk-Natrongläsern in verdünnten Säuren”, Glastechn. Ber. 48, 237–247 (1975)Google Scholar
  188. 2.188
    F.G.K. Baucke: “Equilibria of functional groups of glass surfaces with cations in contacting solutions”, In: The Glassy State, Proc.7th All-Union-Conf., Leningrad, Oct. 13–15, 1981 ( Acad. Sci. USSR, Leningrad 1983 ) pp. 96–108Google Scholar
  189. 2.189
    R.H. Doremus: “Exchange and diffusion of ions in glass”, J. Phys. Chem. 68, 2212–2213 (1964)Google Scholar
  190. 2.190
    F.G.K. Baucke: “Contribution to the electrochemistry of pH glass electrode membranes”, In: Ion-Selective Electrodes, ed. by E. Pungor ( Elsevier, Amsterdam 1978 ) pp. 215–134Google Scholar
  191. 2.191
    F.G.K. Baucke: “Reversible and irreversible reactions at the surface of glass electrode membranes”, In: Extended Abstracts, Part I., 29th Meeting, Int. Soc. Electrochem., ed. by L. Sândor (MTA, Budapest 1978 ) pp. 50–52Google Scholar
  192. 2.192
    F.G.K. Baucke: “Investigation of electrode glass membranes: proposal of a dissociation mechanism for pH glass electrodes”, J. Non-Cryst. Solids 19, 75–86 (1975)ADSGoogle Scholar
  193. 2.193
    H. Bach, F.G.K. Baucke: “Measurement of ion concentration profiles in surface layers of leached (’swollen’) glass electrode membranes by means of luminescence exited by ion sputtering”, Electrochim. Acta 16, 1311–1319 (1971)Google Scholar
  194. 2.194
    L.L. Hench, D.E. Clark: “Physical chemistry of glass surfaces”, J. Non-Cryst. Solids 28, 83–105 (1978)ADSGoogle Scholar
  195. 2.195
    K. Horovitz: “Der Ionenaustausch am Dielektrikum I. Die Elektrodenfunktion der Gläser”, Z. Phys. 15, 369–398 (1923)ADSGoogle Scholar
  196. 2.196
    H. Leng: “Adsorptionsversuche an Gläsern and Filtersubstanzen nach der Methode der radioaktiven Indikatoren”, Sitzungsber. Akad. Wiss. Wien (Ila) 136, 19–42 (1927)Google Scholar
  197. 2.197
    J. Hensley, A. Long, J. Willard: “Reactions of ions in aqueous solution with glass and metal surfaces. Studies with radioactive tracers”, Ind. Eng. Chem. 41, 1415–1421 (1949)Google Scholar
  198. 2.198
    J. Hensley: “Adsorption of tagged phosphate ions on glass surfaces as related to alkaline attack”, J. Am. Ceram. Soc. 34, 188–192 (1951)Google Scholar
  199. 2.199
    A. Long, J. Willard: “Reactions of ions in aqueous solution with glass. Studies with radioactive tracers”, Ind. Eng. Chem. 44, 916–920 (1952)Google Scholar
  200. 2.200
    E. Trebge, R. Fischer: “Spezielle Untersuchungen an Glaselektroden mit 24Na unter besonderer Berücksichtigung des Alkalifehlers”, Silikattechnik 10, 385–389 (1959)Google Scholar
  201. 2.201
    R.K. Iler: The Colloid Chemistry of Silica and Silicates (Cornell Univ. Press, Ithaca 1955) Chap. 8Google Scholar
  202. 2.202
    Z. Boksay, G. Bouquet, S. Dobos: “The kinetics of the formation of leached layers on glass surfaces”, Phys. Chem. Glasses 9, 69–71 (1968)Google Scholar
  203. 2.203
    A. Wikby: “The surface resistance of glass electrodes in neutral solutions”, J. Electroanal. Chem. 38, 429–443 (1972)Google Scholar
  204. 2.204
    Th. Richter, G.H. Frischat, G. Borchardt, St. Scherrer: “Initial stages of glass corrosion in water”, Glastechn. Ber. Glass Sci. Technol. 63, 300–308 (1990)Google Scholar
  205. 2.
    F.G.K. Baucke: unpublished resultsGoogle Scholar
  206. 2.206
    F.G.K. Baucke: “Corrosion of glasses and its significance for glass coating”, Electrochim. Acta 39, 1223–1228 (1994)Google Scholar
  207. 2.207
    H. Bach, F.G.K. Baucke: “Investigations of reactions between glasses and gaseous phases by means of photon emission induced during ion beam etching”, Phys. Chem. Glasses 13, 123–129 (1974)Google Scholar
  208. 2.208
    R.W. Douglas, J.O. Isard: “The action of water and of sulphur dioxide on glass surfaces”, Glass Technology 33, 289–335 (1949)Google Scholar
  209. 2.209
    G. Karreman, G. Eisenman: “Electrical potentials and ion fluxes in ion exchangers. I. ‘n-type’ non-ideal systems with zero current”, Bull. Math. Biophys. 24, 413–427 (1962)Google Scholar
  210. 2.210
    F. Conti, G. Eisenman: “The non-steady state membrane potential of ion exchangers with fixed sites”, J. Biophys. 5, 247–256 (1965)Google Scholar
  211. 2.211
    R.H. Doremus: “Diffusion potentials in glass”, In: Glass Electrodes for Hydrogen and Other Cation. Principles and Practice, ed. by G. Eisenman ( Dekker, New York 1967 ) pp. 101–132Google Scholar
  212. 2.212
    H. Dutz: “Eigenschaften einer selektiven Natriumelektrode”, Glastechn. Ber. 39, 139–140 (1966)Google Scholar
  213. 2.213
    K. Cammann: Das Arbeiten mit ionenselektiven Elektroden, 2nd ed. ( Springer, Berlin, Heidelberg 1977 ) pp. 57–58Google Scholar
  214. 2.214
    K. Sykut, A. Kusak: “Natriumselektive Glasmembran-Elektroden aus Lithium-Aluminium-Silikat-Gläsern mit Zusätzen von TiO2 and ZrO2”, Ann. Univ. Mariae Curie-Sklodowska, Lublin — Polonia, Sectio AA 33, 17–27 (1978)Google Scholar
  215. 2.215
    Chung-Chang Young: “pH responsive glass compositions and electrodes”, US Patent No. 4 028 196 (1977)Google Scholar
  216. 2.216
    I.S. Ivanovskaja, A.A. Belyustin, I.D. Pozdnyakova: “The effect of treatment of cation-selective glass electrodes with AgNO3 solution on electrode properties”, Sens. Actuators B 24–25, 304–308 (1995)Google Scholar
  217. 2.217
    G.A. Perley: “pH-responsive glass electrode”, US Patent No. 2 444 845 (1948)Google Scholar
  218. 2.218
    G.A. Perley: “Glasses for measurement of pH”, Anal. Chem. 21, 394–401 (1949)Google Scholar
  219. 2.219
    F.G.K. Baucke: “Phosphate and fluoride error of pH glass electrodes. Erroneous potentials caused by a component of some membrane glasses”, J. Electroanal. Chem. 367, 131–139 (1994)Google Scholar
  220. 2.220
    A.E. Martell, R.M. Smith (Eds.): Critical Stability Constants, Vol. 4, Inorganic Complexes ( Plenum, New York 1976 ) p. 56Google Scholar
  221. 2.221
    I.V. Tananaev, I.A. Rozanov, E.N. Beresnev: “The solubility product in the method of residual concentrations”, Izv. Akad. Nauk. SSSR, Neorg. Mater. 5, 419–426 (1969)Google Scholar
  222. 2.222
    R.C.L. Mooney: “Crystal structures of a series of rare earth phosphates”, J. Chem. Phys. 16, 1003 (1948)ADSGoogle Scholar
  223. 2.223
    R.C.L. Mooney: “X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification”, Acta Cryst. 3, 337–340 (1950)Google Scholar
  224. 2.224
    F.M. Ernsberger: “Molecular water in glass”, J. Am. Ceram. Soc. 60, 91–92 (1977)Google Scholar
  225. 2.225
    I.S. Ivanovskaja, A.A. Belyustin, M.M. Shul’ts, T.P. Vorob’eva: “Distribution of sodium in the surface layers of sodium silicate glasses after interaction with aqueous solutions”, Sov. J. Glass Phys. Chem. 1, 139–143 (1975)Google Scholar
  226. 2.226
    M.M. Shul’ts, A.A. Belyustin, V.V. Mogileva, I.S. Ivanovskaja: “Concentration distribution and interdiffusion of ions in surface layers of a sodium-aluminosilicate glass treated with aqueous solutions”, Proc. Acad. Sci. USSR 241, 603–608 (1978)Google Scholar
  227. 2.227
    F. Geotti-Bianchini, L. De Riu, G. Gagliardi, M. Guglielmi, C.G. Pantano: “New interpretation of the IR reflectance spectra of SiO2-rich films on soda-lime glass”, Glastechn. Ber. Glass Sci. Technol. 64, 205–217 (1991)Google Scholar
  228. 2.228
    B.C. Bunker: “Molecular mechanism for corrosion of silica and silicate glasses”, J. Non-Cryst. Solids 179, 300–308 (1994)ADSGoogle Scholar
  229. 2.229
    R.H. Doremus: Glass Science, 2nd ed. ( Wiley, New York 1994 ) p. 260Google Scholar
  230. 2.230
    J.P. Surman, I. Bosse: “Abfall des pH-Wertes wässriger Salzlösungen in Ampullen”, Pharm. Ind. 54, 66–68 (1992)Google Scholar
  231. 2.231
    F.G.K. Baucke: “Konstante pH-Werte wässriger Lösungen in Ampullen aus Neutralglas”, Pharm. Ind. 54, 886–889 (1992)Google Scholar
  232. 2.232
    P. Duffer: “How glass reacts with water and causes surface corrosion”, Glass Industry 76, 22–28 (1995)Google Scholar
  233. 2.233
    T.J. Hwang, W.T. Han: “Complex impedance analysis of the glass/solution interface in the glass electrode for pH measurement”, J. Non-Cryst. Solid 203, 345–352 (1996)ADSGoogle Scholar
  234. 2.234
    P.J. Jorgensen, F.J. Norton: “Proton transport during hydrogen permeation in vitreous silica”, Phys. Chem. Glasses 10, 23–27 (1969)Google Scholar
  235. 2.235
    J.C. Bazân: “On silica glass (Suprasil) protonic conductor”, Z. Phys. Chem. NF 110, 285–288 (1978)Google Scholar
  236. 2.236
    G.J. Hills, D.J.G. Ives: “The hydrogen electrode”, In: Reference Electrodes. Theory and Practice, ed. by D.J.G. Ives, G.J. Janz ( Academic Press, New York 1961 ) pp. 71–126Google Scholar
  237. 2.237
    R.G. Bates: Determination of pH. Theory and Practice, 2nd ed. ( Wiley, New York 1973 ) pp. 279–294Google Scholar
  238. 2.238
    J.A. Christiansen: “Manual of physico-chemical symbols and terminology”, J. Am. Chem. Soc. 82, 5517–5522 (1960)Google Scholar
  239. 2.239
    F.G.K. Baucke, H. Bach: “Investigation of glasses using surface profiling by spectrochemical analysis of sputter-induced radiation: II, Field-driven formation and electrochemical properties of protonated glasses containing various proton concentrations”, J. Am. Ceram. Soc. 65, 524–539 (1982)Google Scholar
  240. 2.240
    E. Pungor: “Ion-selective electrodes–analogies and conclusions”, Electroanalysis 8, 348–352 (1996)Google Scholar
  241. 2.241
    F.G.K. Baucke: “Contribution to the electrochemistry of glass electrode membranes”, In: Ion-Selective Electrodes, ed. by E. Pungor ( Elsevier, Amsterdam 1977 ) pp. 215–234Google Scholar
  242. 2.242
    W. Schmickler: “Die Elektrochemie im Umbruch”, Nachr. Chem. Tech. Lab. 10, 872–877 (1985)Google Scholar
  243. 2.243
    H.J.C. Tendeloo, A.J. Zwart Voorspusj: “Researches on adsorption electrodes. VI. Glass electrodes”, Rec. Tray. Chini. 63, 793–814 (1943)Google Scholar
  244. 2.244
    L.R. Pederson, B.P. McGrail, G.L. McVay, D.A. Petersen-Villalobos, N.S. Settles: “Kinetics of alkali silicate and aluminosilicate glass reactions in alkali chloride solutions: influence of surface charge”, Phys. Chem. Glasses 34, 140–148 (1993)Google Scholar
  245. 2.245
    G. Kortüm: Lehrbuch der Elektrochemie, 4th ed. ( VCH, Weinheim 1966 ) pp. 288–292Google Scholar
  246. 2.246
    R. Brdicka: Grundlagen der Physikalischen Chemie, 13th ed. ( VEB Deutscher Verlag der Wissenschaften, Berlin 1976 ) pp. 675–686Google Scholar
  247. 2.247
    P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky: Electrochromism, Fundamentals and Applications ( VCH, Weinheim 1995 ) p. 26Google Scholar
  248. 2.248
    R.G. Bates: Determination of pH. Theory and Practice, 2nd ed. ( Wiley, New York 1973 ) pp. 341–344Google Scholar
  249. 2.249
    F. Conti, G. Eisenman: “The steady state properties of ion exchange membranes with fixed sites”, J. Biophys. 5, 511–530 (1965)Google Scholar
  250. 2.250
    D. Mackay, P. Meares: “Ion-exchange across a cationic membrane in dilute solutions”, Kolloid Z. 171, 139–149 (1960)Google Scholar
  251. 2.251
    G. Eisenman, J.P. Sandblom, J.L. Walker, Jr.: “Membrane structure and ion permeation”, Science 155, 965–974 (1967)ADSGoogle Scholar
  252. 2.252
    R.H. Doremus: Glass Science, 2nd ed. ( Wiley, New York 1994 ) pp. 260–262Google Scholar
  253. 2.253
    P.K. Glasoe, F.A. Long: “Use of glass electrodes to measure acidities in deuterium oxide”, J. Phys. Chem. 64, 188–191 (1960)Google Scholar
  254. 2.254
    R.G. Bates: Determination of pH. Theory and Practice,2nd ed. (Wiley, New York 1973) pp. 251-253, 375–376Google Scholar
  255. 2.255
    A.K. Covington, M. Paabo, R.A. Robinson, R.G. Bates: “Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water”, Anal. Chem. 40, 700–706 (1968)Google Scholar
  256. 2.256
    S.P.L. Sorensen, K. Linderstrom-Lang: “On the determination and value of 70 in electrometric measurements of hydrogen ion concentrations”, Compt. Rend. Lab. Carlsberg 15, 1–40 (1924)Google Scholar
  257. 2.257
    A.K. Covington, R.G. Bates, R.A. Durst: “Definition of pH scales, standard reference values, measurement of pH and related terminology”, Pure Appl. Chem. 57, 531–542 (1985)Google Scholar
  258. 2.258
    G. Kortüm: Lehrbuch der Elektrochemie, 5th ed. ( VCH, Weinheim 1972 )Google Scholar
  259. 2.259
    B.E. Conway: Elektrochemische Tabellen (Govi, Frankfurt 1957 )Google Scholar
  260. 2.260
    W.L. Marshal, E.U. Frank: “Ion product of water substance, 0–1000 °C, 1–20 000 Bars. New international formulation and its background”, J. Phys. Chem. Ref. Data 10, 295–304 (1981)ADSGoogle Scholar
  261. 2.261
    BIPM, IEC, ISO, OIML: International Vocabulary of Basic and General Terms in Metrology, 2nd ed. ( ISO, Geneva 1994 ) pp. 45–47Google Scholar
  262. 2.262
    R.G. Bates: “Revised standard values for pH measurement from 0 to 95 °C”, J. Res. NBS 66, 179–184 (1962)ADSGoogle Scholar
  263. 2.263
    D.J.G. Ives, G.J. Janz: “General and theoretical introduction”, In: Reference Electrodes. Theory and Practice, ed. by D.J.G. Ives, G.J. Janz ( Academic Press, New York 1961 ) pp. 1–67Google Scholar
  264. 2.264
    R.G. Bates, E.A. Guggenheim: “Report on the standardization of pH and related terminology”, Pure Appl. Chem. 1, 163–168 (1960)Google Scholar
  265. 2.265
    J.G.H.M. Lito, F.G.F.C. Camoes, I.A. Ferra, A.K. Covington: “Calculation of pH reference values for standard solutions from the corresponding acid dissociation constants”, Anal. Chim Acta 239, 129–137 (1990)Google Scholar
  266. 2.266
    K.S. Pitzer (Ed.): Activity Coefficients in Electrolyte Solutions, 2nd ed. ( CRC, Boca Raton, FL 1991 )Google Scholar
  267. 2.267
    NBS Certificate: “Standard sample 189, potassium tetroxalate (pall standard)” (NBS, Washington, DC 1964 )Google Scholar
  268. 2.268
    F.G.K. Baucke: “Lower temperature limit of NBS (DIN) pH standard buffer solution potassium tetroxalate”, Electrochim. Acta 24, 95–97 (1979)Google Scholar
  269. 2.269
    F.G.K. Baucke: “Heißsterilisierte lagerfähige NBS-(DIN)-pH-Standardpufferlösungen. — Untersuchung ihrer thermischen Stabilität”, Chem. Ing. Tech. 49, 739–740Google Scholar
  270. 2.270
    F.G.K. Baucke: “Stabile pH-Werte nach Heißsterilisation. — Untersuchung lagerfähiger NBS-(DIN)-pH-Standardpufferlösungen”, Schott Information 4, 11–13 (1977)Google Scholar
  271. 2.271
    R. Naumann, C. Alexander-Weber, F.G.K. Baucke: “Limited stability of the pH reference material sodium tetraborate decahydrate (‘borax’)”, Fresenius’ J. Anal. Chem. 350, 119–121 (1994)Google Scholar
  272. 2.272
    PTB-Kalibrierschein: “PTB BO1, primäres pH-Wert-Referenzmaterial: di-Natriumtetraborat-Decahydrat” ( Physikalisch-Technische Bundesanstalt, Braunschweig 1994 )Google Scholar
  273. 2.273
    DIN 19266: “pH-Messung, Standardpufferlösungen” ( Beuth, Berlin 1999 )Google Scholar
  274. 2.274
    F.G.K. Baucke: “Differential-potentiometric cell for the restandardization of pH reference materials”, J. Electroanal. Chem. 368, 67–75 (1994)Google Scholar
  275. 2.275
    DKD-Zertifikat: “DKD-K-14301, 9410, Referenzmaterial zur Kalibrierung von pH-Meßeinrichtungen: di-Natriumtetraborat-Decahydrat, sekundäres Referenzmaterial” (E. Merck, Darmstadt 1994 )Google Scholar
  276. 2.276
    R. Naumann, C. Alexander-Weber, F.G.K. Baucke: “The standardization of pH measurements”, Fresenius’ J. Anal Chem. 349, 603–606 (1994)Google Scholar
  277. 2.277
    R. Naumann, C. Alexander-Weber, F.G.K. Baucke: “High-precision pH measurements by means of electrochemical cells with transference”, Fresenius’ J. Anal. Chem. 349, 639–642 (1994)Google Scholar
  278. 2.278
    S. Ebel, W. Parzefall: Experimentelle Einführung in die Potentiometrie (VCH, Weinheim 1975 )Google Scholar
  279. 2.279
    S. Ebel, E. Glaser, H. Mohr: “Fehler und Fehlerfortpflanzung bei der Bestimmung von pH-Werten”, Z. Anal. Chem. 293, 33–35 (1978)Google Scholar
  280. 2.280
    R.G. Bates: “The modern meaning of pH”, Crit. Rev. Anal. Chem. 10, 247–278 (1981)Google Scholar
  281. 2.281
    R.G. Bates, G.D. Pinching, E.R. Smith: “pH standards of high acidity and high alkalinity and the practical scale of pH”, J. Res. NBS 45, 418–429 (1950)Google Scholar
  282. 2.282
    A.K. Covington: “Recent developments in pH standardization and measurement for dilute aqueous solutions”, Anal. Chim. Acta 127, 1–21 (1981)Google Scholar
  283. 2.283
    M.F. Ryan: “Unreliable results”, Science 165, 851 (1969)ADSGoogle Scholar
  284. 2.284
    DIN 19260: “pH-Messung, Allgemeine Begriffe” ( Beuth, Berlin 1971 )Google Scholar
  285. 2.285
    DIN 19261: “pH-Messung, Begriffe für Meßverfahren mit Verwendung galvanischer Zellen” ( Beuth, Berlin 1971 )Google Scholar
  286. 2.286
    DIN 19262: “Steckbuchse und Stecker geschirmt für pH Elektroden” ( Beuth, Berlin 1959 )Google Scholar
  287. 2.287
    DIN 19263: “pH-Messung, Glaselektroden” ( Beuth, Berlin 1989 )Google Scholar
  288. 2.288
    DIN 19264: “pH-Messung, Bezugselektroden” ( Beuth, Berlin 1985 )Google Scholar
  289. 2.289
    DIN 19265: “pH-Messung, pH-Meßumformer, Anforderungen” ( Beuth, Berlin 1994 )Google Scholar
  290. 2.290
    DIN 19267: “pH-Messung, Technische Pufferlösungen vorzugsweise zur Eichung von technischen pH-Meßanlagen” ( Beuth, Berlin 1978 )Google Scholar
  291. 2.291
    DIN 19268: “pH-Messung von klaren, wäßrigen Lösungen” ( Beuth, Berlin 1985 )Google Scholar
  292. 2.292
    F.G.K. Baucke, P. Spitzer, R. Naumann: “pH controversy revisited”, Anal. Chem. News Features 70 (7), 226A (1998)Google Scholar
  293. 2.293
    F.G.K. Baucke: “The definition of pH. Proposal of improved IUPAC recommendations”, In: Traceability of pH Measurement, Lectures Delivered at the 126th PTB Seminar, PTB-Bericht W-68, ed. by P. Spitzer ( Physikalisch-Technische Bundesanstalt, Braunschweig 1997 ) pp. 10–20Google Scholar
  294. 2.294
    F.G.K. Baucke: “Reference electrodes for measurements with ion-sensitive electrodes. The importance of the potential”, In: Ion and Enzyme Electrodes in Biology and Medicine, ed. by M. Kessler, L.C. Clark, D.W. Lübbers, I.A. Silver, W. Simon ( Urban and Schwarzenberg, München 1976 ) pp. 200–204Google Scholar
  295. 2.295
    D.J.G. Ives, G.J. Janz: Reference Electrodes. Theory and Practice ( Academic Press, New York 1961 )Google Scholar
  296. 2.296
    F.G.K. Baucke, R. Bertram, K. Cruse: “The iodide-iodine system in acetonitrile”, J. Electroanal. Chem. 32, 247–256 (1971)Google Scholar
  297. 2.297
    R.G. Bates, V.E. Bower: “Standard potential of the silver-silver-chloride electrode from 0° to 95 °C and the thermodynamic properties of dilute hydrochloric acid solutions”, J. Res. NBS 53, 283–290 (1954)Google Scholar
  298. 2.298
    F.G.K. Baucke: “Thermodynamics of solid-state connected ion-sensitive membrane electrodes: the silver-silver chloride system. Part I. Standard potential EM at 25, 50, and 75 °C”, J. Electroanal. Chem. 67, 277–289 (1976)Google Scholar
  299. 2.299
    F.G.K. Baucke: “Potentials of electrodes of the second kind at low concentrations of common ion electrolyte — Part I. General discussion”, Electrochim. Acta 17, 845–849 (1972), Part II. “Quantitative treatment of electrodes with salts with negligible complex formation”, ibid. 851–859Google Scholar
  300. 2.300
    F.G.K. Baucke, G.H. Wagner: “Bezugselektroden für Korrosionsuntersuchungen bei höheren Temperaturen und Drücken”, Mat.-Wiss. Werkstofftechnik 22, 128–136 (1991)Google Scholar
  301. 2.301
    R.G. Bates: “Inner reference electrodes and their characteristics”, In: Glass Microelectrodes, ed. by M. Lavallée, O.F. Schanne, N.C. Hébert ( Wiley, New York 1969 ) pp. 1–24Google Scholar
  302. 2.302
    F.G.K. Baucke: “Thermodynamics of solid-state connected ion-sensitive membrane electrodes: the silver-silver chloride system. Part II. Standard potentials between 5 and 90°C of the 2nd kind silver—silver chloride reference electrode with 3.5 M and sat’d KC1 measured by means of membrane electrodes”, J. Electroanal. Chem. 67, 291–299 (1976)Google Scholar
  303. 2.303
    F.G.K. Baucke: “Standardpotentiale (ε0′ + ε j)T der Silber/Silberchlorid-Elektrode in 3.5 m und in ges. KC1 unter Verwendung entsprechender (‘Cl−-ionensensitiver’) Membranelektroden (0–95 °C)”, Chem.-Ing.-Techn. 47, 565–566 (1975)ADSGoogle Scholar
  304. 2.304
    G.J. Hills, D.J.G. Ives: “The calomel electrode and other mercury-mercurous salt electrodes”, In: Reference Electrodes. Theory and Practice, ed. by D.J.G. Ives, G.J. Janz ( Academic Press, New York 1961 ) pp. 127–178Google Scholar
  305. 2.305
    F.G.K. Baucke: “Standard potentials (ε0 + ε j) of the Thalamid® reference electrode, Hg,Tl(40wt%)/T1C1(s)/KC1(s)//..., in aqueous solution between 5 and 90°C”, J. Electroanal. Chem. 33, 135–144 (1971)Google Scholar
  306. 2.306
    F.G.K. Baucke: “Standardpotentiale 0 + ε j) und Polarisationsverhalten der Thalamid®-Bezugselektrode (3.5 mol/L und ges. KC1) zwischen 5 und 90°C”, Chem.-Ing.-Techn. 46, 71 (1974)Google Scholar
  307. 2.307
    F.G.K. Baucke: “Potenziali standard (ε0 + ε j) dell elettrodo di riferimento al Talamide® Hg,Tl(40 wt%)/T1C1(s) KC1(s)//..., in soluzione acquosa tra 5 e 90°C”, Italglas-Riv. trimestrale d’informazione 8, 3–8 (1972)Google Scholar
  308. 2.308
    F.G.K. Baucke: “The electrode Hg,T1(40 wt%)/T1Br(s), KBr(s)//... as reference electrode in aqueous solution: Reversibility of the system and standard potentials (ε0 + ε j) of the half-cell between 5 and 90 °C”, J. Electroanal. Chem. 39, 263–273 (1972)Google Scholar
  309. 2.309
    H.K. Fricke: “Eine neue Bezugs-und Ableitelektrode für GlaselektrodenMeßketten”, DECHEMA-Monographie, Vol. 43, MO- und Regeltechnik ( VCH, Weinheim 1962 ) pp. 161–172Google Scholar
  310. 2.310
    Schott Glas: Elektroden für Labor und Umwelt, Catalogue 3105 ( Schott-Geräte, Hofheim 1992 )Google Scholar
  311. 2.311
    Schott Glas: Elektroden für Prozefdchemie, Biotechnologie und Wasserwirtschaft, Catalogue 3106 ( Schott-Geräte, Hofheim 1991 )Google Scholar
  312. 2.312
    W.C. Smyrl, C.W. Tobias: “Thermodynamic properties of LiCI in dimethylsulfoxide”, J. Electrochem. Soc. 115, 33–36 (1968)Google Scholar
  313. 2.313
    F.G.K. Baucke, C.W. Tobias: “Thallium-thallous halide reference electrodes in propylene carbonate”, J. Electrochem. Soc. 116, 34–37 (1969)Google Scholar
  314. 2.314
    W. Ingold: “Silber-/Silberhalogenid-Ableitelektrode für Meßketten”, DE 1 168 120 (1957) ICP: GOlnGoogle Scholar
  315. 2.315
    P.R. Mussini, F. D’Andrea, A. Galli, P. Longhi, S. Rondinini: “Characterization and use of aqueous caesium chloride as an ultra-concentrated salt bridge”, J. Appl. Chem. Electrochem. 20, 651–655 (1990)Google Scholar
  316. 2.316
    Schott Glas: Duran Laboratory Glassware,Catalogue 50020, 1st ed. (Schott Glas, Mainz 1991) pp. 75 ff.Google Scholar
  317. 2.317
    G. Vasaru, D. Ursu, A. Mihala, P. Szentgyörgyi: Deuterium and Heavy Water ( Elsevier, Amsterdam 1975 )Google Scholar
  318. 2.318
    H.K. Rae (Ed.): Separation of Hydrogen Isotopes, ACS Symposium Series, Vol. 68 ( Am. Chem. Soc., Washington, DC 1978 )Google Scholar
  319. 2.319
    R. Gary, R.G. Bates, R.A. Robinson: “Dissociation constant of acetic acid in deuterium oxide from 5 to 50 °C. Reference points for a pD scale”, J. Phys. Chem. 69, 2750–2753 (1965)Google Scholar
  320. 2.320
    N.C. Li, P. Tang, R. Mathur: “Deuterium isotope effects on dissociation constants and formation constants”, J. Phys. Chem. 65, 1074–1076 (1961)Google Scholar
  321. 2.321
    P. Salomaa, L.L. Schaleger F.A. Long: “Solvent deuterium isotope effects on acid-base equilibria”, J. Am. Chem. Soc. 86, 1–7 (1964)Google Scholar
  322. 2.322
    C.K. Rule, V.K. La Mer: “Dissociation constants of deutero acids by emf measurements”, J. Am. Chem. Soc. 60, 1974–1981 (1974)Google Scholar
  323. 2.323
    R. Gary, R.G. Bates, R.A. Robinson: “Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50 °C”, J. Phys. Chem. 68, 3806–3809 (1964)Google Scholar
  324. 2.324
    R. Lumry, E.L. Smith, R.R. Glantz: “Kinetics of carboxypeptidase action. I. Effect of various extrinsic factors on kinetic parameters”, J. Am. Chem. Soc. 73, 4330–4340 (1951)Google Scholar
  325. 2.325
    H.H. Hyman, A. Kaganove, J.J. Katz: “The basicity of amino acids in D20”, J. Phys. Chem. 64, 1653–1655 (1960)Google Scholar
  326. 2.326
    K. Mikkelsen, S.O. Nielsen: “Acidity measurements with the glass electrode in H2O-D2O mixtures”, J. Phys. Chem. 64, 632–637 (1960)Google Scholar
  327. 2.327
    T.H. Fife, T.C. Bruice: “The temperature dependence of the pD correction for the use of the glass electrode in D2O”, J. Phys. Chem. 69, 1079–1080 (1961)Google Scholar
  328. 2.328
    B.M. Lowe, D.G. Smith: “Glass electrode measurements in deuterium oxide”, Anal. Lett. 6, 903–907 (1973)Google Scholar
  329. 2.329
    R.K. Forcé, J.D. Carr: “Temperature-dependent response of the glass electrode in deuteriumoxide”, Anal. Chem. 46, 2049–2052 (1974)Google Scholar
  330. 2.330
    B.M. Lowe, D.G. Smith: “The behaviour of cation selective glass electrodes in deuterium oxide”, Electroanal. Chem. Interfacial Electrochem. 51, 295–303 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Friedrich G. K. Baucke

There are no affiliations available

Personalised recommendations