Skip to main content

High-Performance Subsystem Memories

  • Chapter
VLSI Memory Chip Design

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 5))

Abstract

In the past, the high-speed SRAM cache and the DRAM main memory have contributed to enhancing the performance of hierarchical memory systems (Fig. 6.1) in personal computers (PCs), workstations, servers, and so on. Recently, however, to bridge the ever-increasing speed gap between microprocessor units (MPUs) and main memories, high-speed DRAMs [6.1–6.5] such as the synchronous DRAM (SDRAM) and the Rambus DRAM have become increasingly important. These DRAMs incorporate memory subsystem technologies that memory-system designers have used to enhance not only access and cycle times, but also throughput. Here, throughput is defined as the product of bus width and frequency. The resulting high throughput of the DRAM chips has been indispensable even for PC graphics, image processing, and other multimedia applications [6.6–6.8]. In particular, high throughput is a key to high-performance graphics systems, as shown in Fig. 6.1. There are two missions for a graphics memory. One is to output data to display devices such as the cathode-ray tube (CRT). The other is to transfer drawing data to and from the video processor. Display performance has achieved 200 Mbyte/s, but the perception of the human eye is limited in terms of resolution and after-image, and therefore the high-performance requirement is getting saturated. The need for high-drawing performance, however, is increasing incessantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special Report: Memory, IEEE SPECTRUM, pp. 4–57, Oct. 1992.

    Google Scholar 

  2. D.A. Patterson, J.L. Hennesy, Computer organization and Design, The hardware/software interface (Morgan Kaufmann).

    Google Scholar 

  3. D.A. Patterson, J.L. Hennesy, Computer architecture: a quantitative approach 2 nd ed. (Morgan Kaufmann).

    Google Scholar 

  4. K. Itoh et al., “Limitations and challenges of multi-gigabit DRAM circuits”, Symp. VLSI Circuits, Dig. Tech. Papers, pp. 2–7, June 1996.

    Google Scholar 

  5. S. Ohsima, T. Furuyama, IEICE Trans. E77-C(8), 1303 (1994).

    Google Scholar 

  6. T. Kizaki et al., Hitachi Review 46(1), 27 (1997).

    Google Scholar 

  7. J. Torborg, J.T. Kajiya, “Talisman: commodity realtime 3D graphics for the PC”, Computer Graphics Proc, Annual Conference Series, pp. 353–363, Aug. 1996.

    Google Scholar 

  8. K. Itoh, VLSI Memory Design (Baifukan, Tokyo 1994) (in Japanese).

    Google Scholar 

  9. T. Shimizu et al., “A multimedia 32 b RISC microprocessor with 16 Mb DRAM”, ISSCC Dig. Tech. Papers, pp. 216–217, Feb. 1996.

    Google Scholar 

  10. S.S. Iyer, H.L. Kalter, “Embedded DRAM technology”, IEEE Spectrum, pp. 56–64, Apr. 1999.

    Google Scholar 

  11. K. Ishibashi, IEICE Trans. Electron. E79-C(6), 724 (1996).

    Google Scholar 

  12. T. Furuyama et al., “A high random-access-data rate 4 Mb DRAM with pipeline operation”, Symp. VLSI Circuits, Dig. Tech. Papers, pp. 9–10, 1990.

    Google Scholar 

  13. K. Itoh, in Low power design methodologies, J.M. Rabaey, M. Pedram, Editors (Kluwer, Norwell, MA 1995).

    Google Scholar 

  14. K. Itoh et al., “VLSI memory technology: current status and future trends”, ESSCIRC99 Dig. Tech. Papers, pp. 3–10, Sept. 1999.

    Google Scholar 

  15. T. Kirihata et al., “390 mm2 16 Bank 1 Gb DDR SDRAM with hybrid bitline architecture”, ISSCC99 Dig. Tech. Papers, pp. 420–421, Feb. 1999.

    Google Scholar 

  16. S. Takase, N. Kushiyama, “1.6 GB/s DRAM with flexible mapping redundancy technique and additional refresh Scheme”, ISSCC99 Dig. Tech. Papers, pp. 410–411, Feb. 1999.

    Google Scholar 

  17. K. Itoh et al., IEEE J. Solid-State Circuits 32(5), 624 (1997).

    Article  Google Scholar 

  18. H.-J. Yoo et al., “A 150 MHz 8-banks 256 M synchronous DRAM with wave pipelining methods,” ISSCC95 Dig. Tech. Papers, pp. 250–251, Feb. 1995.

    Google Scholar 

  19. T. Saeki et al., “A 2.5 ns clock access 250 MHz 256 Mb SDRAM with a synchronous mirror delay”, ISSCC96 Dig. Tech. Papers, pp. 374–375, Feb. 1996.

    Google Scholar 

  20. H. Yoon et al., “A 2.5 V 333 Mb/s/pin 1 Gb double data rate SDRAM”, ISSCC99 Dig. Tech. Papers, pp. 412–413, Feb. 1999.

    Google Scholar 

  21. Y. Takai et al., “A 250 Mb/s/pin 1 Gb double data rate SDRAM with a bidirectional delay and an inter-bank shared redundancy scheme”, ISSCC99 Dig. Tech. Papers, pp. 418–419, Feb. 1999.

    Google Scholar 

  22. P. Gillingham, B. Vogley, “SLDRAM: high-performance, open-standard memory”, IEEE Micro, pp. 29–39, Nov./Dec. 1997.

    Google Scholar 

  23. Y. Nakase et al., IEEE J. Solid-State Circuits 34(4), 494 (1999).

    Article  Google Scholar 

  24. L. Paris et al., “A 800 MB/s 72 Mb SLDRAM with digitally calibrated DLL”, ISSCC99 Dig. Tech. Papers, pp. 416–417, Feb. 1999.

    Google Scholar 

  25. R. Crisp, “Direct Rambus technology: the new main memory standard”, IEEE Micro, pp. 18–28, Nov./Dec. 1997.

    Google Scholar 

  26. Y. Konishi et al., IEICE Trans. Electron. E82-C(3), 438 (1999).

    Google Scholar 

  27. HM5264165D-A60, in Hitachi catalog ADE-203–909A(Z) Rev. 1.0, Dec. 3, 1998.

    Google Scholar 

  28. Nikkei Electronics(708), pp. 139–152, Jan. 26, 1998.

    Google Scholar 

  29. Nikkei Microdevices, pp. 130–141, Feb. 1998.

    Google Scholar 

  30. http://www.rambus.com.

  31. T. Kimura et al., “64 Mb 6.8 ns random ROW access DRAM macro for ASICs”, ISSCC99 Dig. Tech. Papers, pp. 416–417, Feb. 1999.

    Google Scholar 

  32. I. Naritake et al., “A 12 ns 8 MB DRAM secondary cache for a 64 b microprocessor”, ISSCC99 Dig. Tech. Papers, pp. 420–421, Feb. 1999.

    Google Scholar 

  33. O. Takahashi et al., “1GHz fully pipelined 3.7 ns address access time 8k × 1024 embedded DRAM macro”, ISSCC Dig. Tech. Papers, pp. 396–397, Feb. 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Itoh, K. (2001). High-Performance Subsystem Memories. In: VLSI Memory Chip Design. Springer Series in Advanced Microelectronics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04478-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04478-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08736-3

  • Online ISBN: 978-3-662-04478-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics