Physical Oceanography of the Baltic Sea

  • A. Stigebrandt
Part of the Ecological Studies book series (ECOLSTUD, volume 148)


The physical transport system of the Baltic Sea is composed of currents and mixing processes. It may in principle explain the distribution of sea salt if the freshwater supply is known. To explain the large-scale ecology and biogeochemistry of the Baltic Sea, however, is a more difficult task since it requires understanding of not only the physical transport system but also important ecological and biogeochemical processes. The main objectives of this chapter are to describe the large-scale physical circulation of the Baltic Sea and the major processes of importance to this.


Physical Oceanography Buoyancy Flux Freshwater Supply Cont Shelf Sill Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarup T (1994) Satellite imagery of Danish and neighbouring waters. Interpretation of satellite ocean colour data of the transition zone between the North Sea and the Baltic Sea. PhD Diss, University of Copenhagen, Havforskning fra Miljvstyrelsen, 52, 154 ppGoogle Scholar
  2. Andersson L, Hâkansson B, Lundqvist J-E, Omstedt A, Rahm L, Sjöberg B, Svensson J (1992) Vattnet i vaster och öster. In: Sjöberg B (ed) Hav och Kust. Sver Nationalatlas 7: 56–72Google Scholar
  3. Armi L, Farmer DM (1986) Maximal two-layer exchange through a contraction with barotropic net flow. J Fluid Mech 164: 27–51CrossRefGoogle Scholar
  4. Aure J, Molvær J, Stigebrandt A (1997) Observations of inshore water exchange forced by a fluctuating offshore density field. Mar Pollut Bull 33: 112–119CrossRefGoogle Scholar
  5. Axell L (1998) On the variability of the Baltic Sea deepwater mixing. J Geophys Res 103: 21667–21682CrossRefGoogle Scholar
  6. BALTEX (1995) Baltic Sea Experiment, BALTEX. Initial implementation plan. International BALTEX Secretariat Publ no 2, GKSS Research Center, Geesthacht, Germany, 84 ppGoogle Scholar
  7. Bergsten F (1933) Wasserstandsvariationen des Baltischen Meeres. 4. Hydr Konf Balt Staten, Leningrad, 21 ppGoogle Scholar
  8. Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23: 280–287Google Scholar
  9. Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka B.P. Quat Int 27: 19–40CrossRefGoogle Scholar
  10. Brydsten L (1993) Characterization of transport bottoms in the Gulf of Bothnia–a model approach. Aqua Fenn 23 (2): 153–164Google Scholar
  11. Carlsson M (1998a) A coupled three-basin sea level model for the Baltic Sea. Cont Shelf Res 18: 1015–1038CrossRefGoogle Scholar
  12. Carlsson M (1998b) The mean sea level topography in the Baltic Sea determined by oceanographic methods. Mar Geod 21: 203–217CrossRefGoogle Scholar
  13. Dahlström B (1986) Determination of the areal precipitation for the Baltic Sea. Meteorology and climatology. Rep 54. SMHI, Norrköping, 72 ppGoogle Scholar
  14. Defant A (1960) Physical oceanography, vol 2. Pergamon Press, Oxford, 598 ppGoogle Scholar
  15. Dera J (1983) Fizyka morza. Panstwowe Wydawnictwo Naukowe, Warszawa, 432 ppGoogle Scholar
  16. Dera J, Rozwadowska A (1991) Solar radiation variability over the Baltic Sea due to weather conditions. Oceanologia 30: 5–36Google Scholar
  17. Ehlin U (1981) Hydrology of the Baltic Sea. In: Voipio A (ed) The Baltic Sea. Elsevier Oceanogr Ser 30. Elsevier, Amsterdam, pp 123–134Google Scholar
  18. Ehlin U, Ambjörn C (1977) Water transports through the Aland Sea. Ambio Spec Rep 5: 117–125Google Scholar
  19. Eilola K (1997) The development of a spring thermocline in low-saline seawater at temperatures below the temperature of maximum density with application to the Baltic Sea. J Geophys Res 102: 8657–8662CrossRefGoogle Scholar
  20. Eilola K, Stigebrandt A (1998) Spreading of juvenile freshwater in the Baltic proper. J Geophys Res 103: 27795–27807CrossRefGoogle Scholar
  21. Ekman M (1988) The world’s longest continued series of sea level observations. Pure Appl Geophys 127: 73–77CrossRefGoogle Scholar
  22. Ekman M (1992) Postglacial rebound and sea level phenomena, with special reference to Fennoscandia and the Baltic Sea. In: Kakkuri J (ed) Geodesy and geophysics. Publ Finn Geod Inst 115: 7–70Google Scholar
  23. Ekman M (1996) A common pattern for interannual and periodical sea level variations in the Baltic Sea and adjacent waters. Geophysica 32: 261–272Google Scholar
  24. Ekman M (1997) Anomalous winter climate coupled to extreme annual means in the Baltic sea level during the last 200 years. Small publications in historical geophysics no 3, 14 pp. (Can be ordered from M. Ekman, National Land Survey, 80182 Gävle, Sweden )Google Scholar
  25. Ekman M, Mäkinen J (1996) Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models. J Geophys Res 101: 11993–11999CrossRefGoogle Scholar
  26. Ekman M, Stigebrandt A (1990) Secular change of the seasonal variation in sea level and of the pole tide in the Baltic Sea. J Geophys Res 95C: 5379–5388CrossRefGoogle Scholar
  27. Elken J, Pajuste M, Köuts T (1988) On intrusive lenses and their role in mixing in the Baltic deep layers. In: Proc 16th Conf of the Baltic Oceanographers, Kiel, pp 367–376Google Scholar
  28. Engqvist A (1993) Water turnover in Örefjärden. Aqua Fenn 23: 17–27Google Scholar
  29. Engqvist A (1997) Self-similar multi-layer exchange flow through a contraction. J Fluid Mech 328: 49–66CrossRefGoogle Scholar
  30. Engqvist A, Omstedt A (1992) Water exchange and density structure in a multi basin estuary. Cont Shelf Res 12: 1003–1026CrossRefGoogle Scholar
  31. Falkenmark M (1986) Hydrology of the Baltic Sea area: temporal fluctuations in water balance. Ambio 15: 97–102Google Scholar
  32. Farmer DM, Armi L (1986) Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J Fluid Mech 164: 53–76CrossRefGoogle Scholar
  33. Fonselius SH (1969) Hydrography of the Baltic deep basins III. Fish Board of Sweden, Ser Hydrogr Rep 23, Göteborg, 97 ppGoogle Scholar
  34. Fonselius S (1996) Västerhavets och Östersjöns oceanografi. SMHI, Norrköping, 200 ppGoogle Scholar
  35. Fonselius S, Szaron J, Öström B (1984) Long-term salinity variations in the Baltic Sea deep water. Papp Réun Cons Int Explor Mer 185: 140–149Google Scholar
  36. Gidhagen L (1987) Coastal upwelling in the Baltic Sea–satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling. Estuarine Coastal Shelf Sci 24: 449–462CrossRefGoogle Scholar
  37. Gidhagen L, Hâkansson B (1992) A model of the deep water flow into the Baltic Sea. Tellus 44A: 414–424CrossRefGoogle Scholar
  38. Gill AE (1982) Atmosphere-ocean dynamics. Int Geophys Ser 30. Academic Press, New York, 662 ppGoogle Scholar
  39. Gill A, Turner JS (1976) A comparison of seasonal thermocline models with observation. Deep Sea Res 23: 391–401Google Scholar
  40. Gustafsson B (1997) Interaction between the Baltic Sea and the North Sea. Dtsch Hydrogr Z 49: 163–181CrossRefGoogle Scholar
  41. Gustafsson B, Stigebrandt A (1996) Dynamics of the freshwater-influenced surface layers in the Skagerrak. J Sea Res 35: 39–53CrossRefGoogle Scholar
  42. Gustafsson T, Kullenberg B (1936) Untersuchungen von Trägheitsströmungen in der Ostsee. Svenska Hydrogr-Biol Komm Skr Ny Ser Hydrogr 13, Lund, pp 1–28Google Scholar
  43. Hâkansson B, Broman B, Dahlin H (1993) The flow of water and salt in the Sound during the Baltic major inflow event in January 1993. ICES Statutory Meeting, Dublin. International Council for the Exploration of the seas, Copenhagen, C.M. 1933/C: 57Google Scholar
  44. Hâkansson B, Alenius P, Brydsten L (1996) Physical environment in the Gulf of Bothnia. Ambio Spec Rep 8: 5–12Google Scholar
  45. Haapala J, Leppäranta M (1996) Simulating the Baltic Sea ice season with a coupled ice-ocean model. Tellus 48A: 622–643CrossRefGoogle Scholar
  46. Hela I (1944) Über die Schwankungen des Wasserstandes in der Ostsee mit besonderer Berücksichtigung des Wasseraustausches durch die dänischen Gewässer. Meerentutkimuslait. Julk./Haysforskningsinst Skr 134,1–108. Helsinki, FinlandGoogle Scholar
  47. Henning D (1988) Evaporation, water and heat balance of the Baltic Sea. Estimates of short-and long-term monthly totals. Meteorol Rdsch 41: 33–53Google Scholar
  48. ICES (1989) Baltic Sea Patchiness Experiment (PEX-86), part I and II, general report. ICES Cooperative Research Rep no 163. ICES, CopenhagenGoogle Scholar
  49. Jacobsen F (1997) Hydrographic investigations of the northern Kattegat front. Cont Shelf Res 17: 533–554CrossRefGoogle Scholar
  50. Jacobsen F, Lintrup MJ, Steen Moller J (1997) Observations of the specific resistance in the Oresund. Nordic Hydrol 28(3):2l7–232Google Scholar
  51. Jacobsen TS (1980) The Belt Project. Sea water exchange of the Baltic - measurements and methods. National Agency of Environmental Protection, Denmark, 106 ppGoogle Scholar
  52. Jensen TG, Kullenberg G (1981) On the efficiency of the wind to generate vertical mixing. Geophysica 17: 47–61Google Scholar
  53. Jerlov N (1968) Optical oceanography. Elsevier Oceanogr Ser 5. Elsevier, Amsterdam, 194 ppGoogle Scholar
  54. Kahru M, Nommann S (1990) The phytoplankton spring bloom in the Baltic Sea in 1985, 1986: multitude of spatio-temporal scales. Cont Shelf Res 10: 329–354Google Scholar
  55. Kahru M, Hâkansson B, Rud O (1995) Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery. Cont Shelf Res 15: 663–679CrossRefGoogle Scholar
  56. Knudsen M (1900) Ein hydrographischer Lehrsats. Ann Hydr 28: 316–320Google Scholar
  57. Köuts T, Omstedt A (1993) Deepwater exchange in the Baltic proper. Tellus 45A: 311–324CrossRefGoogle Scholar
  58. Köuts T, Elken J, Lips U (1990) Late autumn intensification of deep thermohaline anomalies and formation of lenses in the Gotland Deep. In: Proc 17th Conf of the Baltic Oceanographers, Norrköping, pp 280–293Google Scholar
  59. Krauss W (1972) Wind-generated internal waves and inertial-period motions. Dtsch Hydrogr Z 25: 241–250CrossRefGoogle Scholar
  60. Krauss W (1974) Two-dimensional seiches and stationary drift currents in the Baltic Sea. ICES special meeting on models and water circulation in the Baltic. Pap 10, ICES, Copenhagen, 32 pp (mimeogr)Google Scholar
  61. Krauss W (1981) The erosion of a thermocline. J Phys Oceanogr 11: 415–433CrossRefGoogle Scholar
  62. Krauss W, Brügge B (1991) Wind-produced water exchange between the deep basins of the Baltic Sea. J Phys Oceanogr 21: 373–384CrossRefGoogle Scholar
  63. Kullenberg G (1972) Apparent horizontal diffusion in stratified vertical shear flow. Tellus 24: 17–28CrossRefGoogle Scholar
  64. Kullenberg G (1981) Physical oceanography. In: Voipio A (ed) The Baltic Sea. Elsevier Oceanogr Ser 30. Elsevier, Amsterdam, pp 135–218Google Scholar
  65. Liljebladh B, Stigebrandt A (1996) Observations of the deepwater flow into the Baltic Sea. J Geophys Res 101: 8895–8912CrossRefGoogle Scholar
  66. Lilover M, Lips U, Laanearu J, Liljebladh B (1998) Flow regime in the Irbe Strait. Aquat Sci 60: 253–265CrossRefGoogle Scholar
  67. Lisitzin E (1974) Sea level changes. Elsevier, Amsterdam, 286 ppGoogle Scholar
  68. Lundberg P (1983) On the mechanics of the deep-water flow in the Bornholm Channel. Tellus 35A: 149–158Google Scholar
  69. Mälkki P (1975) On the variability of currents in a coastal region of the Baltic Sea. Merentutkimuslaitoksen Julk. Havforskningsinst Skr 240: 3–56Google Scholar
  70. Marmefelt E, Omstedt A (1993) Deepwater properties in the Gulf of Bothnia. Cont Shelf Res 13: 169–187CrossRefGoogle Scholar
  71. Matthäus W (1990) Mixing across the primary Baltic halocline. Beitr Meereskd (Berlin) 61: 21–31Google Scholar
  72. Matthäus W, Franck H (1992) Characteristics of major Baltic inflows–a statistical analysis. Cont Shelf Res 12: 1375–1400CrossRefGoogle Scholar
  73. Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25: 280–286CrossRefGoogle Scholar
  74. Mattsson J (1995) Observed linear flow resistance in the Oresund due to rotation. J Geophys Res 100 (C10): 20779–20791CrossRefGoogle Scholar
  75. Mattsson J (1996a) Some comments on the barotropic flow through the Danish Straits and the division of the flow between the Belt Sea and the Oresund. Tellus 48A: 456–464CrossRefGoogle Scholar
  76. Mattsson J (1996b) Analysis of the exchange of salt between the Baltic and the Kattegat through the Oresund using a three layer model. J Geophys Res 101: 16571–16584CrossRefGoogle Scholar
  77. Mellor GI, Durbin PA (1975) The structure and dynamics of the ocean surface mixed layer. J Phys Oceanogr 5: 718–728CrossRefGoogle Scholar
  78. Mikulski Z (1982) River inflow to the Baltic Sea. Polish Academy of Sciences, Polish National Committee of the IHP. Faculty of Geography and Regional Studies University of WarsawGoogle Scholar
  79. Mikulski Z, Falkenmark M (1986) Calculated freshwater budget of the Baltic as a system. In: Water balance of the Baltic Sea, chapter 10. Proc Symp on the Baltic Sea Environment, no 16. Baltic Marine Environment Protection Commission-Helsinki Commission, 174 ppGoogle Scholar
  80. Okubo A (1974) Some speculations on oceanic diffusion diagrams. Rapp P-v Réun Cons Int Explor Mer 167: 77–85Google Scholar
  81. Omstedt A (1987) Watercooling in the entrance of the Baltic Sea. Tellus 39A: 254–265Google Scholar
  82. Omstedt A (1990) Modelling the Baltic Sea as thirteen sub-basins with vertical resolution. Tellus 42A: 286–301CrossRefGoogle Scholar
  83. Omstedt A, Nyberg L (1995) A coupled ice-ocean model supporting winter navigation in the Baltic Sea, part 2. Thermodynamics and meteorological coupling. Rep RO 21. SMHI, Norrköping, 30 pp + appendicesGoogle Scholar
  84. Omstedt A, Nyberg L (1996) Response of the Baltic Sea ice to seasonal, interannual forcing and climate change. Tellus 48A: 644–662CrossRefGoogle Scholar
  85. Omstedt A, Sahlberg J, Svensson U (1983) Measured and numerically simulated autumn cooling in the Bay of Bothnia. Tellus 35A: 231–240Google Scholar
  86. Omstedt A, Marmefeldt E, Murphy R (1993) Some flow characteristics of the coastal boundary layer in the Bothnian Sea. Aqua Fenn 23: 5–16Google Scholar
  87. Omstedt A, Nyberg L, Leppäranta M (1994) A coupled ice-ocean model supporting winter navigation in the Baltic Sea. Part 1: ice dynamics and water levels. Rep RO17. SMHI, Norrköping, 17 ppGoogle Scholar
  88. Omstedt A, Mueller L, Nyberg L (1997) Interannual, seasonal and regional variations of precipitation and evaporation over the Baltic Sea. Ambio 26 (8): 484–492Google Scholar
  89. Pedersen FB (1977) On dense bottom currents in the Baltic deep water. Nord Hydrol 8: 297–316Google Scholar
  90. Pedersen FB (1993) Fronts in the Kattegat: the hydrodynamic regulating factor for biology. Estuaries 16: 104–112CrossRefGoogle Scholar
  91. Peeters F, Wüest A, Piepke G, Imboden DM (1996) Horizontal mixing in lakes. J Geophys Res 101: 18361–18375CrossRefGoogle Scholar
  92. Petrén O, Walin G (1976) Some observations of the deep flow in the Bornholm Strait during the period June 1973-December 1974. Tellus 28: 74–87CrossRefGoogle Scholar
  93. Polzin KL, Toole JM, Ledwell JR, Schmitt RW (1997) Spatial variation of turbulent mixing in the abyssal ocean. Science 276: 93–96PubMedCrossRefGoogle Scholar
  94. Prandke HA, Stips A (1990) Statistische Analyse lokaler Gradienten in den Distesprungschichten der Ostsee. Beitr Meereskd 61: 93–102Google Scholar
  95. Prandke HA, Stips A (1992) A model of the Baltic thermocline structure patches, deduced from experimental investigations. Cont Shelf Res 12: 643–659CrossRefGoogle Scholar
  96. Rahm L (1985) On the diffusive salt flux of the Baltic proper. Tellus 37A: 87–97Google Scholar
  97. Rahm L, Svensson U (1993) Note on dispersion in an ocean surface Ekman layer due to variable wind forcing. Dtsch Hydrogr Z 45 (1): 43–54CrossRefGoogle Scholar
  98. Rodhe J (1996) On the dynamics of the large-scale circulation of the Skagerrak. J Sea Res 35: 9–21CrossRefGoogle Scholar
  99. Rydberg L (1980) Rotating hydraulics in deep-water channel flow. Tellus 32: 77–89CrossRefGoogle Scholar
  100. Rydberg L (1987) Hydrography, oxygen and nutrient balance of the Kattegat and related phenomena. Doctoral Diss, Department of Oceanography, Göteborg University, 40 ppGoogle Scholar
  101. Samuelsson M (1996) Interannual salinity variations in the Baltic Sea during the period 1954–1990. Cont Shelf Res 16: 1463–1477CrossRefGoogle Scholar
  102. Samuelsson M, Stigebrandt A (1996) Main characteristics of the long-term sea level variability in the Baltic Sea. Tellus 48A: 672–683CrossRefGoogle Scholar
  103. Shaffer G (1979) Conservation calculations in natural coordinates (with an example from the Baltic). J Phys Oceanogr 9: 847–855CrossRefGoogle Scholar
  104. Simonsen K, Haugan PM (1996) Heat budgets of the Arctic Mediterranean and the sea surface heat flux parameterizations for the Nordic Seas. J Geophys Res 101: 6553–6576CrossRefGoogle Scholar
  105. Sjöberg B (ed) (1992) Kust och Hay. Sveriges Nationalatlas, vol 7Google Scholar
  106. Sjöberg B, Stigebrandt A (1992) Computations of the geographical distribution of the energy flux to mixing processes via internal tides: its horizontal distribution and the associated vertical circulation in the ocean. Deep Sea Res 39: 269–291CrossRefGoogle Scholar
  107. Smith SD (1980) Wind stress and heat flux over the ocean in gale force winds. J Phys Oceanogr 10: 709–726CrossRefGoogle Scholar
  108. Stigebrandt A (1975) Stationär tvâlagerströmning i estuarier. Vassdrags-og Havnelaboratoriet. Rep STF60 A75120. SINTEF, Trondheim, 68 ppGoogle Scholar
  109. Stigebrandt A (1977) On the effect of barotropic current fluctuations on the two-layer transport capacity of a constriction. J Phys Oceanogr 7: 118–122CrossRefGoogle Scholar
  110. Stigebrandt A (1980) Barotropic and baro clinic response of a semi-enclosed basin to barotropic forcing from the sea. In: Freeland HT, Farmer DM, Levings CD (eds) Fjord oceanography. Plenum, New York, pp 151–164Google Scholar
  111. Stigebrandt A (1981) A mechanism governing the estuarine circulation in deep, strongly stratified fjords. Estuarine Coast Shelf Res 13: 197–211CrossRefGoogle Scholar
  112. Stigebrandt A (1983) A model for the exchange of salt and water between the Baltic and the Skagerrak. J Phys Oceanogr 13: 411–427CrossRefGoogle Scholar
  113. Stigebrandt A (1984) Analysis of an 89-year-long sea level record from the Kattegat with special reference to the barotropically driven water exchange between the Baltic and the sea. Tellus 36A: 401–408Google Scholar
  114. Stigebrandt A (1985) A model for the seasonal pycnocline in rotating systems with application to the Baltic proper. J Phys Oceanogr 15: 1392–1404CrossRefGoogle Scholar
  115. Stigebrandt A (1987a) A model for the vertical circulation of the Baltic deep water. J Phys Oceanogr 17: 1772–1785CrossRefGoogle Scholar
  116. Stigebrandt A (1987b) Computations of the flow of dense water into the Baltic from hydrographical measurements in the Arkona Basin. Tellus 39A: 170–177Google Scholar
  117. Stigebrandt A (1990) On the response of the horizontal mean vertical density distribution in a fjord to low-frequency fluctuations in the coastal water. Tellus 42A: 605–614CrossRefGoogle Scholar
  118. Stigebrandt A (1992) Bridge-induced flow reduction in sea straits with reference to effects of a planned bridge across Oresund.Ambio 21: 130–134Google Scholar
  119. Stigebrandt A, Aure J (1990) De ytre drivkreftenes betydning for vannutskiftningen i fjordene fra Skagerrak til Finnmark. Rapport FO 9003. Institute for Marine Research, Bergen, 29 ppGoogle Scholar
  120. Stommel H, Farmer HG (1953) Control of salinity in an estuary by a transition. J Mar Res 12: 13–20Google Scholar
  121. Svansson A (1980) Exchange of water and salt in the Baltic and adjacent seas. Oceanol Acta 3: 431–440Google Scholar
  122. Svansson A (1984) Hydrographic features of the Kattegat. Reports et Proces-Verbaux des Reunions. Cons Int Explor Mer 185: 79–90Google Scholar
  123. Svensson N-O (1989) Late Weichselian and early Holocene shore displacement in the central Baltic, based on stratigraphical and morphological records from eastern Smâland and Gotland, Sweden. Lundqua Thesis 25, Diss, University of Lund, Lund, Sweden, 195 ppGoogle Scholar
  124. Svensson U (1979) The structure of the turbulent Ekman layer. Tellus 31: 340–350CrossRefGoogle Scholar
  125. Walin G (1972) On the hydrographic response to transient meteorological disturbances. Tellus 24: 169–186CrossRefGoogle Scholar
  126. Walin G (1977) A theoretical framework for the description of estuaries. Tellus 29: 128–136CrossRefGoogle Scholar
  127. Walin G (1981) On the deep water flow into the Baltic. Geophysica 17: 75–93Google Scholar
  128. Winterhalter B, Flodén T, Ignatius H, Axberg S, Niemistö L (1981) Geology of the Baltic Sea. In: Voipio A (ed) The Baltic Sea. Elsevier Oceanogr Ser 30. Elsevier, Amsterdam, pp 1–121Google Scholar
  129. Wübber C, Krauss W (1979) The two-dimensional seiches of the Baltic Sea. Oceanol Acta 2: 435–446Google Scholar
  130. Wulff F, Rahm L (1988) Long-term, seasonal and spatial variations of nitrogen, phosphorus and silicate in the Baltic: an overview. Mar Environ Res 26: 19–37CrossRefGoogle Scholar
  131. Wulff F, Stigebrandt A (1989) A time-dependent budget model for nutrients in the Baltic Sea. Global Biogeochem Cycles 3: 63–78CrossRefGoogle Scholar
  132. Wyrtki K (1954) Schwankungen im Wasserhaushalt der Ostsee. Dtsch Hydrogr Z 7: 91–129CrossRefGoogle Scholar
  133. Yurkovskis A, Wulff F, Rahm L, Andruzaitis A, Rodriguez-Medina M (1993) A nutrient budget of the Gulf of Riga; Baltic Sea. Estuarine Coast Shelf Sci 37: 113–127Google Scholar
  134. Zhurbas VM, Paka VT (1996) Observations of meso-scale eddy-like structures and thermohaline intrusions in the Gotland Basin after the 1993 major Baltic inflow. In: Hagen E (ed) GOBEX summary report. Marine Sci Rep 19. Baltic Sea Research Institute, Warnemünde, pp 38–59Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A. Stigebrandt

There are no affiliations available

Personalised recommendations