Advertisement

A Multicompartmental, Multi-Basin Fugacity Model Describing the Fate of PCBs in the Baltic Sea

  • F. Wania
  • D. Broman
  • J. Axelman
  • C. Näf
  • C. Agrell
Part of the Ecological Studies book series (ECOLSTUD, volume 148)

Abstract

Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons and organochlorinated compounds reach lakes, estuaries and the oceans through direct discharge, riverine inflow or atmospheric deposition. These generally quite hydrophobic chemicals have a low affinity for the aqueous phase and tend to partition into the organic phases of suspended solids and bottom sediments or the lipid fraction of aquatic biota. Some POPs show a potential to biomagnify and the highest concentrations are often found in the upper trophic levels of aquatic food chains.

Keywords

Polycyclic Aromatic Hydrocarbon Surface Sediment Particulate Organic Carbon Mass Balance Model Deep Sediment Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison RF (1989) Organochlorines and marine mammal reproduction. Can J Fish Aquat Sci 46: 360–368CrossRefGoogle Scholar
  2. Andrulewicz E, Trzosinska A (1985) Estimation of input and distribution of chlorinated hydrocarbons in the Baltic Sea. International Council for the Exploration of the Sea (ICES/SCOR WG42), Copenhagen, DenmarkGoogle Scholar
  3. Axelman J, Bandh C, Broman D, Carman R, Jonsson P, Larsson H, Linder H, Näf C, Pettersen H (1995) Time-trend analysis of PAH and PCB sediment fluxes in the northern Baltic proper using different dating methods. Mar Freshwater Res 46: 137–144Google Scholar
  4. Baker JE, Eisenreich SJ, Eadie BJ (1991) Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ Sci Technol 25: 500–509CrossRefGoogle Scholar
  5. Bignert A, Göthberg A, Jensen S, Litzén K, Odsjö T, Olsson M, Persson W, Reutergârdh L (1993) The need for adequate biological sampling in ecotoxicological investigations: a retrospective study of twenty years pollution monitoring. Sci Total Environ 128: 121–139CrossRefGoogle Scholar
  6. Bignert A, Litzén K, Odsjö T, Olsson M, Persson W, Reutergârdh L (1995) Time-related factors influence the concentrations of sDDT, PCBs and shell parameters in eggs of Baltic Guillemot (Urfa aalge), 1861–1989. Environ Pollut 89: 27–36CrossRefGoogle Scholar
  7. Blomqvist S, Larsson U (1994) Detrital bedrock metals as tracers of settling resuspended particulate matter in a coastal area of the Baltic Sea. Limnol Oceanogr 39: 880–896CrossRefGoogle Scholar
  8. Brannon JE, Pennington JC, Davis WM, Hayes C (1995) Flouranthene KDOC in sediment pore waters. Chemosphere 30: 419–428CrossRefGoogle Scholar
  9. Broman D, Näf C, Zebühr Y, Lexén K (1989) The composition, distribution and flux of PCDDs and PCDFs in settling particulate matter (SPM): a sediment trap study in the Northern Baltic. Chemosphere 19: 445–450CrossRefGoogle Scholar
  10. Broman D, Näf C, Zebühr Y (1991a) Long term high-and low-volume air sampling of polychlorinated dibenzo-p-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons along a transect from urban to remote areas on the Swedish Baltic coast. Environ Sci Technol 25: 1841–1850CrossRefGoogle Scholar
  11. Broman D, Näf C, Rolff C, Zebühr Y (1991b) Occurrence and dynamics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons in the mixed surface layer of remote coastal and offshore waters of the Baltic. Environ Sci Technol 25: 1850–1864CrossRefGoogle Scholar
  12. Broman D, Näf C, Zebühr Y (1992) Occurrence and dynamics of polychlorinated dibenzo-p-dioxins and dibenzofurans and other combustion related pollutants in the aquatic environment of the Baltic. Chemosphere 25: 125–128CrossRefGoogle Scholar
  13. Brorström-Lundén E (1995) Measurements of semivolatile organic compounds in air and deposition, PhD Thesis, Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  14. Brorström-Lundén E, Lindskog A, Mowrer J (1994) Concentrations and fluxes of organic compounds in the atmosphere of the Swedish west coast. Atmos Environ 22: 3605–3615CrossRefGoogle Scholar
  15. Diamond ML, Poulton DJ, Mackay D, Stride FA (1994) Development of a mass balance model of the fate of 17 chemicals in the Bay of Quinte. J Great Lakes Res 20: 643–666CrossRefGoogle Scholar
  16. Elmgren R (1984) Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp Réun Cons Int Explor Mer 183: 152–169Google Scholar
  17. Elmgren R (1989) Man’s impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 326–332Google Scholar
  18. Falconer RL, Bidleman TF (1994) Vapor pressure and predicted particle/gas distributions of polychlorinated biphenyl congeners as a function of temperature and chlorine substitution. Atmos Environ 28: 547–554CrossRefGoogle Scholar
  19. Gaul H (1991) Überwachung des Meeres. Bericht für das Jahr 1989. Teil II: Daten. Bundesamt für Seeschiffahrt und Hydrographie, Hamburg, 196 ppGoogle Scholar
  20. Gobas FAPC, Z’Graggen MN, Zhang X (1995) Time response of the Lake Ontario ecosystem to virtual elimination of PCBs. Environ Sci Technol 29: 2038–2046PubMedCrossRefGoogle Scholar
  21. Haahti H, Perttilä M (1988) Levels and trends of organochlorines in cod and herring in the northern Baltic. Mar Pollut Bull 19: 29–31CrossRefGoogle Scholar
  22. Helsinki Commission (1980) Assessment of the effects of pollution on the natural resources of the Baltic Sea, 1980, Baltic Marine Environment Protection Commission. Baltic Sea Environ Proc 5BGoogle Scholar
  23. Helsinki Commission (1986) Water balance of the Baltic Sea, Baltic Marine Environment Protection Commission. Baltic Sea Environ Proc 16: 174Google Scholar
  24. Hornbuckle KC, Jeremiasen JD, Sweet CW, Eisenreich SJ (1994) Seasonal variation in air-water exchange of polychlorinated biphenyls in Lake Superior. Environ Sci Technol 28: 1491–1501PubMedCrossRefGoogle Scholar
  25. Hornbuckle KC,, Sweet CW, Pearson RF, Swackhammer DL, Eisenreich SJ (1995) Assessing annual water-air fluxes of polychlorinated biphenyls in Lake Michigan. Environ Sci Technol 29: 869–877CrossRefGoogle Scholar
  26. Jansson B, Andersson R, Asplund L, Litzén K, Nylund K, Sellström U, Uvemo U-B, Wahlberg C, Wideqvist U, Odsjö T, Olsson M (1993) Chlorinated and brominated persistent organic compounds in biological samples from the environment. Environ Toxicol Chem 12: 1163–1174CrossRefGoogle Scholar
  27. Järnberg U, Asplund L, de Wit C, Grafström A-K, Haglund P, Jansson B, Lexén K, Strandell M, Olsson M, Jonsson B (1993) Polychlorinated biphenyls and polychlorinated naphthalenes in Swedish sediment and biota: Levels, patterns, and time trends. Environ Sci Technol 27: 1364–1374Google Scholar
  28. Jensen S, Johnels A, Olsson M, Otterlind G (1969) DDT and PCB in marine mammals from Swedish water. Nature 224: 247–250PubMedCrossRefGoogle Scholar
  29. Jeremiasen JD, Hornbuckle KC, Eisenreich SJ (1994) PCBs in Lake Superior, 1978–1992: decreases in water concentrations reflect loss by volatilization. Environ Sci Technol 28: 903–914CrossRefGoogle Scholar
  30. Johnels A (ed) (1992) Special issue: seals and seal protection. Ambio 21: 493–606Google Scholar
  31. Jonsson P (1992) Large-scale changes of contaminants in Baltic Sea sediments during the twentieth century, PhD Thesis, Uppsala Univ, Uppsala, SwedenGoogle Scholar
  32. Jonsson P, Carman R (1994) Changes in deposition of organic matter in the Baltic Sea during the twentieth century and notes on sediment dating problems. Mar Pollut Bull 28: 417–426CrossRefGoogle Scholar
  33. Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic–a tool for evaluating nutrient mass balances. Ambio 19: 152–158Google Scholar
  34. Kullenberg G, Jacobsen TS (1981) The Baltic Sea: an outline of its physical oceanography. Mar Pollut Bull 12: 183–186CrossRefGoogle Scholar
  35. Kjeller L-O, Rappe C (1995) Time trends in levels, patterns, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic proper. Environ Sci Technol 29: 346–355PubMedCrossRefGoogle Scholar
  36. Larsson U, Nellbring S (1990) Sedimentation av partikulärt material. In: Intensivövervakning av pelagialen vid landsortdjupet. Naturvârdsverket Rapport 3989, StockholmGoogle Scholar
  37. Lassig J, Leppänen J-M, Niemi A, Tamelander G (1978) Phytoplankton primary production in the Gulf of Bothnia in 1972–1975 as compared with other parts of the Baltic Sea. Finn Mar Res 244: 101–115Google Scholar
  38. Larsson P, Col.lvin L, Okla L, Meyer G (1992) Lake productivity and water chemistry as governors of the uptake of persistent pollutants in fish. Environ Sci Technol 26: 346–352Google Scholar
  39. Leppäkoski E, Bonsdorf E (1989) Ecosystem variability and gradients. Examples from the Baltic Sea as a background for hazard assessment. In: Landner L (ed) Chemicals in the aquatic environment: advanced hazard assessment. Springer, Berlin Heidelberg New York, pp 6–73Google Scholar
  40. Mackay D (1989) Modeling the long-term behavior of an organic contaminant in a large lake: application to PCBs in Lake Ontario. J Great Lakes Res 15: 283–297CrossRefGoogle Scholar
  41. Mackay D (1991). Multimedia environmental models: the fugacity approach. Lewis, Chelsea, MI, 257 ppGoogle Scholar
  42. Mackay D, Joy M, Paterson S (1983) A quantitative water, air, sediment interaction ( QWASI) fugacity model for describing the fate of chemicals in lakes. Chemosphere 12: 981–997Google Scholar
  43. Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, vol I: monoaromatic hydrocarbons, chlorobenzenes, and PCBs. Lewis, Chelsea, MI, 697 ppGoogle Scholar
  44. Mackay D, Sang S, Vlahos P, Diamond M, Gobas F, and Dolan D. (1994) A rate constant model of chemical dynamics in a lake ecosystem: PCBs in Lake Ontario. J Great Lakes Res 20: 625–642Google Scholar
  45. Näf C, Broman D, Pettersen H, Rolff C, Zebühr Y (1992) Flux estimates and pattern recognition of particulate polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and dibenzofurans in the waters outside various emission sources on the Swedish Baltic coast. Environ Sci Technol 26: 1444–1457CrossRefGoogle Scholar
  46. Olsson M, Karlsson B, Ahnland E (1994) Diseases and environmental contaminants in seals from the Baltic and the Swedish west coast. Sci Total Environ 154: 217–227PubMedCrossRefGoogle Scholar
  47. Ostfeldt P, Gustayson K, Jansson B, Jonsson P, Miettinen V, Ringstad O, Wesén C (1994) Halogenated organic compounds in the marine environment 1989–1990. Nordic Council of Ministers, Temallord, p 591Google Scholar
  48. Schulz-Bull DE, Petrick G, Kannan N, Duinker JC (1995) Distribution of individual chlorobiphenyls ( PCB) in solution and suspension in the Baltic Sea. Mar Chem 48: 245–270Google Scholar
  49. Shiu WY, Wania F, Hung H, Mackay D (1997) Temperature dependence of aqueous solubility of selected chlorobenzenes, polychlorinated biphenyls and dibenzofuran. J Chem Eng Data 42: 293–297CrossRefGoogle Scholar
  50. Taylor WD, Carey JH, Lean DRS, McQueen DJ (1991) Organochlorine concentrations in the plankton of lakes in southern Ontario and their relationship to plankton biomass. Can J Fish Aquat Sci 48: 1960–1966CrossRefGoogle Scholar
  51. Thompson S (1992) Estimating the loadings of priority pollutants to Lake Ontario. A report for Environmental Protection - Ontario Region, Conservation and Protection, Environment Canada, 103 ppGoogle Scholar
  52. Valiela I (1984) Marine ecological processes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  53. Wania F, Shiu WY, Mackay D (1994) Measurement of the vapor pressure of several low volatility organochlorine chemicals at low temperatures with a gas saturation method. J Chem Eng Data 39: 572–577CrossRefGoogle Scholar
  54. Wetzel RG (1983) Limnology, 2nd edn. Sanders College Publ, Orlando, 767 ppGoogle Scholar
  55. Wulff F, Rahm L, Jonsson P, Brydsten L, Ahl T, Granmo Å (1993) A mass balance model of chlorinated organic matter for the Baltic Sea–a challenge for ecotoxicology. Ambio 22: 27–31Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • F. Wania
  • D. Broman
  • J. Axelman
  • C. Näf
  • C. Agrell

There are no affiliations available

Personalised recommendations