Specific Immunotherapy of Multiple Sclerosis by Altered Peptide Ligands — Risk or Benefit?

  • B. Bielekova
  • R. Martin
Conference paper
Part of the Ernst Schering Research Foundation Workshop Supplement book series (SCHERING FOUND, volume 7)


Multiple sclerosis (MS) is a chronic inflammatory/demyelinating disease of the central nervous system (CNS) with various degrees of axonal loss [1, 2] in which autoreactive CD4+ T cells are considered to play a crucial role [3–5]. In different forms of experimental autoimmune encephalomyelitis (EAE), which serves as an animal model of MS, a number of myelin, glial components, and even heat-shock antigens can serve as targets for the encephalitogenic process [6–8]. In order to identify similar target antigens in humans, human myelin-specific T cells have been studied in great detail during the last decade. Many parallels have been found that are shared by encephalitogenic cells in EAE and T cells isolated from MS patients, i.e., they are CD4+ T-helper cells that frequently express a T-helper 1 (Th1)-proinflammatory phenotype with high secretion of interferon (IFN)-γ and tumor necrosis factor (TNF)-α/β [9–11]. Furthermore, they often recognize epitopes similar to those identified as encephalitogenic in animals and frequently are restricted by MS-associated HLA-DR molecules such as HLA-DRB 1*1501 or -DRB5*0101 [12–15]. However, such autoreactive T cells have also been isolated from healthy donors [12, 16–19], which seemed to contradict their pathophysiological relevance in MS.


Multiple Sclerosis Myelin Basic Protein Altered Peptide Ligand Trimolecular Complex Myelin Basic Protein Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raine CS (1994) Multiple sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 53:328–337PubMedCrossRefGoogle Scholar
  2. 2.
    Trapp BD, Peterson J, Ransohoff RM, Rudick RM, Moerk S, Boe L (1998) Axonal transection in the lesions of multiple sclerosis. New Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  3. 3.
    McFarlin DE, McFarland HF (1982) Multiple Sclerosis. (Part 1). New Engl J Med 307:1183–1188PubMedCrossRefGoogle Scholar
  4. 4.
    McFarlin DE, McFarland HF (1982) Multiple Sclerosis. (Part 2). New Engl J Med 307:1246–1251PubMedCrossRefGoogle Scholar
  5. 5.
    Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–187PubMedCrossRefGoogle Scholar
  6. 6.
    Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32:121–182PubMedCrossRefGoogle Scholar
  7. 7.
    Holz A, Bielekova B, Martin R, Oldstone MB (2000) Myelin-associated oligodendrocytic basic protein: identification of an encephalitogenic epitope and association with multiple sclerosis. J Immunol 164:1103–1109PubMedGoogle Scholar
  8. 8.
    Thoua NM, van Noort JM, Baker D, et al (2000) Encephalitogenic and immunogenic potential of the stress protein alphaB-crystallin in Biozzi ABH [H-2 A(g7)] mice. J Neuroimmunol 104:47–57PubMedCrossRefGoogle Scholar
  9. 9.
    Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalito-genic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124:132–143PubMedCrossRefGoogle Scholar
  10. 10.
    Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621PubMedCrossRefGoogle Scholar
  11. 11.
    Voskuhl RR, Martin R, Bergman C, Dalai M, Ruddle NH, McFarland HF (1993) T helper 1 (Thl) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15:137–143PubMedCrossRefGoogle Scholar
  12. 12.
    Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187PubMedCrossRefGoogle Scholar
  13. 13.
    Valli A, Sette A, Kappos L, et al (1993) Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin In¬vest 91:616–628CrossRefGoogle Scholar
  14. 14.
    Martin R, Howell MD, Jaraquemada D, et al (1991) A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173(1): 19–24PubMedCrossRefGoogle Scholar
  15. 15.
    Pette M, Fujita K, Wilkinson D, et al (1990) Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sei USA. 87:7968–7972CrossRefGoogle Scholar
  16. 16.
    Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 81:435–440PubMedCrossRefGoogle Scholar
  17. 17.
    Chou YK, Vainiene M, Whitham R, et al (1989) Response of human T lymphocyte lines to myelin basic protein: association of dominant epitopes with HLA-class II restriction molecules. J Neurol Sei 23:207–216Google Scholar
  18. 18.
    Martin R, Jaraquemada D, Flerlage M, et al (1990) Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 145:540–548PubMedGoogle Scholar
  19. 19.
    Pette M, Fujita K, Kitze B, et al (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology. 40:1770–1776PubMedCrossRefGoogle Scholar
  20. 20.
    Olsson T, Sun J, Hillert J, et al (1992) Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis. Eur J Immunol 22:1083–1087PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179:973–984PubMedCrossRefGoogle Scholar
  22. 22.
    Allegretta M, Nicklas JA, Sriram S, Albertini RJ (1990) T Cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 247:718–721PubMedCrossRefGoogle Scholar
  23. 23.
    Calabresi PA, Tranquill LR, Dambrosia JM, et al (1998) Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon beta-lb. Ann Neurol 41:669–674CrossRefGoogle Scholar
  24. 24.
    Racke MK, Martin R, McFarland HF, Fritz RB (1992) Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. J Neuroimmunol 37:75–84PubMedCrossRefGoogle Scholar
  25. 25.
    Rudick RA, Ransohoff RM, Peppier R, VanderBrug Medendorp S, Lehmann P, Alam J (1996) Interferon beta induces interleukin-10 expres¬sion: relevance to multiple sclerosis. Ann Neurol 40:618–627PubMedCrossRefGoogle Scholar
  26. 26.
    Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA (2000) Glatira-mer acetate (Copaxone(R)) induces degenerate, Th2-polarized immune re¬sponses in patients with multiple sclerosis. J Clin Invest 105:967–976PubMedCrossRefGoogle Scholar
  27. 27.
    Hohlfeld R (1997) Biotechnological agents of the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain. 120:865–916PubMedCrossRefGoogle Scholar
  28. 28.
    Hohlfeld R (1989) Neurological autoimmune disease and the trimolecular complex of T lymphocytes. Ann Neurol 25:531–538PubMedCrossRefGoogle Scholar
  29. 29.
    Germain RN, Stefanova I (1999) The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 17:467–522PubMedCrossRefGoogle Scholar
  30. 30.
    Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell. 76:287–299PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang J, Medaer R, Stinissen P, Hafler DA, Raus J (1993) MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science. 261:1451–1454PubMedCrossRefGoogle Scholar
  32. 32.
    Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM (1994) Partial T cell signaling: Altered phospho-Ç and lack of zap70 recruitment in APL-in-duced T cell anergy. Cell. 79:913–922PubMedCrossRefGoogle Scholar
  33. 33.
    Sloan-Lancaster J, Allen PM (1995) Significance of T-cell stimulation by altered peptide ligands in T cell biology. Curr Opin Immunol 7:103–109PubMedCrossRefGoogle Scholar
  34. 34.
    Nicholson LB, Greer JM, Sobel RA, Lees MB, Kuchroo VK (1995) An al¬tered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3:397–405PubMedCrossRefGoogle Scholar
  35. 35.
    Karin N, Mitchell DJ, Brocke S, Ling N, Steinman L (1994) Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon y and tumor necrosis factor a production. J Exp Med 180:2227–2237PubMedCrossRefGoogle Scholar
  36. 36.
    Brocke S, Gijbels K, Allegretta M, et al (1996) Dynamics of autoimmune T cell infiltration: reversal of paralysis and disappearance of inflammation following treatment of experimental encephalomyelitis with a myelin basic protein peptide analog. Nature 379:343–346PubMedCrossRefGoogle Scholar
  37. 37.
    Weiner HL (1997) Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today. 18:335–343PubMedCrossRefGoogle Scholar
  38. 38.
    Vanderlugt CL, Neville KL, Nikcevich KM, Eagar TN, Bluestone JA, Miller SD (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalo¬myelitis. J Immunol 164:670–678PubMedGoogle Scholar
  39. 39.
    Brenner T, Steinberger I, Soffer D, Beraud E, Ben-Nun A, Lorberboum-Galski H (1999) A novel antigen-toxin chimeric protein: myelin basic protein-pseudomonas exotoxin (MBP-PE 40) for treatment of experimental autoimmune encephalomyelitis. Immunol Lett 68:403–410PubMedCrossRefGoogle Scholar
  40. 40.
    Barnett ML, Kremer JM, St (1998) Clair EW, et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 41:290–297PubMedCrossRefGoogle Scholar
  41. 41.
    Faria AM, Weiner HL (1999) Oral tolerance: mechanisms and therapeutic applications. Adv Immunol 73:153–264PubMedCrossRefGoogle Scholar
  42. 42.
    Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404PubMedCrossRefGoogle Scholar
  43. 43.
    Hemmer B, Fleckenstein B, Vergelli M, et al (1997) Identification of high potency microbial and self ligands for a human autoreactive class Il-re-stricted T cell clone. J Exp Med 185:1651–1659PubMedCrossRefGoogle Scholar
  44. 44.
    De Magistris MT, Alexander J, Coggeshall M, et al (1992) Antigen Analog-Major Histocompatibility Complexes Act As Antagonists of the T Cell Receptor. Cell 68:625–634PubMedCrossRefGoogle Scholar
  45. 45.
    Hemmer B, Stefanova I, Vergelli M, Germain RN, Martin R (1998) Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. J Im¬munol 160:5807–5814Google Scholar
  46. 46.
    Hemmer B, Vergelli M, Tranquill L, et al (1997) Human T-cell response to myelin basic protein peptide (83–99): Extensive heterogeneity in antigen recognition, function, and phenotype. Neurology 49:1116–1126PubMedCrossRefGoogle Scholar
  47. 47.
    Hemmer B, Vergelli M, Gran B, et al (1998) Predictable T cell receptor antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. J Immunol 160:3631–3636PubMedGoogle Scholar
  48. 48.
    Kersh GJ, Allen PM (1996) Essential flexibility in the T cell recognition of antigen. Nature 380:495–498PubMedCrossRefGoogle Scholar
  49. 49.
    Kersh GJ, Allen PM (1996) Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J Exp Med 184:1259–1268PubMedCrossRefGoogle Scholar
  50. 50.
    Vergelli M, Hemmer B, Kalbus M, et al (1997) Modifications of peptide li-gands enhancing T cell responsiveness imply large numbers of stimulatory ligands for autoreactive T cells. J Immunol 158:3746–3752PubMedGoogle Scholar
  51. 51.
    Madrenas J, Wange RL, Wang JL, Isakov N, Samelson L, Germain RN (1995) ζ phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 167:515–518Google Scholar
  52. 52.
    Evavold BD, Sloan-Lancaster J, Allen PM (1993) Tickling the TCR: Selective T-Cell Functions Stimulated by Altered Peptide Ligands. Immunol Today 14:602–609PubMedCrossRefGoogle Scholar
  53. 53.
    Evavold BD, Sloan-Lancaster J, Hsu BL, Allen PM (1993) Separation of T Helper 1 Clone Cytolysis from Proliferation and Lymphokine Production Using Analog Peptides. J Immunol 150:3131–3140PubMedGoogle Scholar
  54. 54.
    Sloan-Lancaster J, Evavold BD, Allen PM (1994) Th2 cell clonal anergy as a consequence of partial activation. J Exp Med 180:1195–1205PubMedCrossRefGoogle Scholar
  55. 55.
    Lucas B, Stefanova I, Yasutomo K, Dautigny N, Germain RN (1999) Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10:367–376PubMedCrossRefGoogle Scholar
  56. 56.
    Hogquist KA, Jameson S, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76:17–27PubMedCrossRefGoogle Scholar
  57. 57.
    Bertoletti A, Sette A, Chisari FV, et al (1994) Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 369:407–410PubMedCrossRefGoogle Scholar
  58. 58.
    Klenerman P, Rowland-Jones S, McAdam S, et al (1994) Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 gag variants. Nature 369:403–407PubMedCrossRefGoogle Scholar
  59. 59.
    Plebanski M, Lee EA, Hannan CM, et al (1999) Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nat Med 5:565–571PubMedCrossRefGoogle Scholar
  60. 60.
    Gaur A, Boehme SA, Chalmers D, et al (1997) Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J Neuroimmunol 74:149–158PubMedCrossRefGoogle Scholar
  61. 61.
    Wraith DC, Smilek DE, Mitchell DJ, Steinman L, McDevitt HO (1989) Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59:247–255PubMedCrossRefGoogle Scholar
  62. 62.
    Samson MF, Smilek DE (1995) Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived pep-tide-MHC complexes. J Immunol 155:2737–2746PubMedGoogle Scholar
  63. 63.
    Nicholson LB, Mwtaza A, Hafler BP, Sette A, Kuchroo VK (1997) A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent experimental autoimmune encephalomyelitis induced by multiple myelin antigens. Proc Natl Acad Sci USA 94:9279–9284PubMedCrossRefGoogle Scholar
  64. 64.
    McRae BL, Vanderlugt CL, Dal Canto M, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85PubMedCrossRefGoogle Scholar
  65. 65.
    Young DA, Lowe LD, Booth SS, et al (2000) IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J Immunol 164:3563–3572PubMedGoogle Scholar
  66. 66.
    Santambrogio L, Lees MB, Sobel RA (1998) Altered peptide ligand modulation of experimental allergic encephaloymyelitis: immune responses within the CNS. J Neuroimmunol 81:1–13PubMedCrossRefGoogle Scholar
  67. 67.
    Richert J, Robinson ED, Deibler GE, Martenson RE, Dragovic LJ, Kies MW (1989) Evidence for multiple human T cell recognition sites on myelin basic protein. J Neuroimmunol 23:55–66PubMedCrossRefGoogle Scholar
  68. 68.
    Salvetti M, Ristori G, D’Amato M, et al (1993) Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur J Immuol 23:1232–1239CrossRefGoogle Scholar
  69. 69.
    Warren KG, Catz I, Johnson E, Mielke B (1994) Anti-myelin basic protein and anti-proteolipid protein specific forms of multiple sclerosis. Ann Neurol 35:280–289PubMedCrossRefGoogle Scholar
  70. 70.
    Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2 restricted T cell clones from multiple sclerosis patients: identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100:1114–1122PubMedCrossRefGoogle Scholar
  71. 71.
    Krogsgaard M, Wucherpfennig KW, Cannella B, et al (2000) Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85–99 complex. J Exp Med 191:1395–1412PubMedCrossRefGoogle Scholar
  72. 72.
    Vogt AB, Kropshofer H, Kaibacher H, et al (1994) Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol 153:1665–1673PubMedGoogle Scholar
  73. 73.
    Wucherpfennig KW, Sette A, Southwood S, et al (1994) Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 179:279–290PubMedCrossRefGoogle Scholar
  74. 74.
    Vergelli M, Kalbus M, Rojo SC, et al (1997) T cell response to myelin basic protein in the context of the multiple sclerosis associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells. J Neuroimmunol 77:195–203PubMedCrossRefGoogle Scholar
  75. 75.
    Ausubel LJ, Kwan CK, Sette A, Kuchroo V, Hafler DA (1996) Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc Natl Acad Sci USA 93:15317–15322PubMedCrossRefGoogle Scholar
  76. 76.
    Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW (1998) Crystal structure of HLA-DR2 (DRA*0101, DRB*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188:1511–1520PubMedCrossRefGoogle Scholar
  77. 77.
    Vergelli M, Hemmer B, Utz U, et al (1996) Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99). Eur J Immunol 26:2624–2634PubMedCrossRefGoogle Scholar
  78. 78.
    Hemmer B, Vergelli M, Tranquill L, et al (1997) The human T cell response to myelin basic protein peptide (83–99) — basis for the specific immunotherapies in mutliple sclerosis. Neurology. 49:1116–1126PubMedCrossRefGoogle Scholar
  79. 79.
    Kozovska M, Zang YC, Aebischer I, et al (1998) T cell recognition motifs of an immunodominant peptide of myelin basic protein in patients with multiple sclerosis: structural requirements and clinical implications. Eur J Immunol 28:1894–1901PubMedCrossRefGoogle Scholar
  80. 80.
    Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Bielekova
  • R. Martin

There are no affiliations available

Personalised recommendations