Skip to main content

Genetic Search on Highly Symmetric Solution Spaces: Preliminary Results

  • Chapter
Theoretical Aspects of Evolutionary Computing

Part of the book series: Natural Computing Series ((NCS))

  • 410 Accesses

Abstract

Several optimisation problems have a highly symmetric solution space. In this case, there exist multiple equivalent solutions with respect to their structure and cost. Genetic algorithms do not generally perform well in this domain due to the lack of an effective search. In fact, the algorithm is very likely to explore a relatively small part of the space without being able to detect that a solution has been previously evaluated. As a consequence, the algorithm either converges to poor solutions or does not converge at all. This paper introduces two ad hoc genetic operators to deal directly with highly symmetric solution spaces. Both operators replace the standard crossover procedure of genetic algorithms. We present results of an investigation on combinatorial optimisation problems and in particular the graph colouring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Armstrong. Groups and Symmetry. Springer-Verlag, Berlin Heidelberg New York, 1980.

    Google Scholar 

  2. S. Bhattacharyya. Direct marketing performance modelling using genetic algorithms. Informs Journal on Computing, 11(3):248–257, 1999.

    Article  MATH  Google Scholar 

  3. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251–2566, 1979.

    Article  MATH  Google Scholar 

  4. A. Cayley. On the 4-colouring problem (original title not known). Proc. London Math. Society, 9:148, 1878.

    Google Scholar 

  5. J. Culberson and F. Luo. Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, chapter: Exploring the k-Colorable Landscape with Iterated Greedy, pages 245–284. American Mathematical Society, 1996.

    Google Scholar 

  6. L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

    Google Scholar 

  7. A. E. Eiben. Handbook of Evolutionary Computation. IOP Press and Oxford University Press, New York, 1997.

    Google Scholar 

  8. A. E. Eiben and J. K. van der Hauw. Graph colouring with adaptive genetic algorithms. Technical report, Dept. of Comp. Science, University of Leiden, 1996.

    Google Scholar 

  9. A. E. Eiben and J. K. van der Hauw. Adaptive penalties for evolutionary graphcoloring. In Artificial Evolution’97, pages 95–106. Springer-Verlag, Berlin Heidelberg New York, 1997.

    Google Scholar 

  10. A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert. Graph coloring with adaptive evolutionary algorithms. Journal of Heuristics, 4:25–46, 1998.

    Article  MATH  Google Scholar 

  11. J. A. Ellis and P. M. Lepolesa. A Las Vegas graph coloring algorithm. The Computer Journal, 32(5):474–476, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Falkanauer. A new representation and operators for genetic algorithms applied to grouping problems. Evolutionary Computation, 2(2):123–144, 1994.

    Article  Google Scholar 

  13. D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise and the sizing of populations. Complex Systems, 6:333–362, 1992.

    MATH  Google Scholar 

  14. G. R. Grimmett and C. J. H. McDiarmid. On colouring random graphs. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 77, pages 313–324, 1975.

    Google Scholar 

  15. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing. 39(4):345–351, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Operational Research, 39(3):378–406, 1991.

    Article  MATH  Google Scholar 

  17. A. Johri and D. W. Matula. Probabilistic bounds and heuristic algorithms for coloring large random graphs. Technical Report TR 82-CSE-06, Dept. Computer Science, Southern Methodist University, Dallas, TX, June 1982.

    Google Scholar 

  18. L. Kucera. Graphs with small chromatic numbers are easy to color. Information Processing Letters, 30(5):233–236, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Manvel. Extremely greedy coloring algorithms. In F. Harary and J. S. Maybee, editors, Graphs and Applications, pages 257–270, 1985.

    Google Scholar 

  20. A. Marino, A. Prügel-Bennett, and C. A. Glass. Evolutionary graph colouring: a new perspective. IEEE Trans. on Evolutionary Computation, 1999. To be submitted for publication.

    Google Scholar 

  21. C. McDiarmid. Colouring random graphs badly. In Graph Theory and Combinatorics, volume 34, 1979.

    Google Scholar 

  22. A. C. Nearchou. A genetic navigation algorithm for autonomous mobile robots. Cybernetics and systems, 30(7):629–661, 1999.

    Article  MATH  Google Scholar 

  23. C. A. Penareyes and M. Sipper. A fuzzy-genetic approach to breast cancer diagnosis. Artificial Intelligence in Medicine, 17(2):131–155, 1999.

    Article  Google Scholar 

  24. A. Schrijver. Theory of linear and integer programming. John Wiley, New York, 1998.

    MATH  Google Scholar 

  25. J. P. Spinrad and G. Vijayan. Worst case analysis of a graph coloring algorithm. Discrete Applied Mathematics, 12(1):89–92, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. S. Turner. Almost all k-colourable graphs are easy to color. Journal of Algorithms, 9:63–82, 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marino, A. (2001). Genetic Search on Highly Symmetric Solution Spaces: Preliminary Results. In: Kallel, L., Naudts, B., Rogers, A. (eds) Theoretical Aspects of Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04448-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04448-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08676-2

  • Online ISBN: 978-3-662-04448-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics