Skip to main content

The Beavers and Joseph Condition for Velocity Slip at the Surface of a Porous Medium

  • Chapter
Continuum Mechanics and Applications in Geophysics and the Environment

Abstract

The flow of fluid through porous materials occurs in a wide-ranging number of industrial and geophysical applications. Convection and other fluid motions are important elements in models for waste disposal, reactor engineering, energy storage and building insulation. Similar dynamics can arise in dry snow, geothermal reservoirs, diagenetic processes and on the wall of magma chambers. The common occurrence of porous structures has led to a great deal of research into mathematical models for fluid flow in porous matrices. Equations describing motion of a “clear” fluid are well established, perhaps most notably the Navier-Stokes equations. However, new models for porous media are necessary because of the inherently different momentum transfer and thermal properties within porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beavers, G. S. and Joseph, D. D. 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207.

    Article  ADS  Google Scholar 

  2. Beavers, G. S., Sparrow, E. M. and Magnuson, R. A. 1970. Experiments on coupled parallel flows in a channel and a bounding medium. ASME J. Basic Engng. 92, 843–848.

    Article  Google Scholar 

  3. Beavers, G. S., Sparrow, E. M. and Masha, B. A. 1974. Boundary conditions at a porous surface which bounds a fluid flow. A. I. Ch. E. J. 20, 596–597.

    Article  Google Scholar 

  4. Bergen, J. D. 1980. A slip-velocity hypothesis applied to hydraulically smooth wind flow over a snow cover. J. Glaciol. 26, 447–452.

    ADS  Google Scholar 

  5. Chen, F. and Chen, C. F. 1988. Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transfer 110, 403–409.

    Article  Google Scholar 

  6. Chen, F. and Chen, C. F. 1989. Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below. J. Fluid Mech. 207, 311–321.

    Article  ADS  Google Scholar 

  7. Chen, F. 1990. Throughflow effects on convective instability in superposed fluid and porous layers. J. Fluid Mech. 231, 113–133.

    Article  ADS  Google Scholar 

  8. Chen, F., Chen, C. F. and Pearlstein, A. J. 1991. Convective instability in superposed fluid and anisotropic porous layers. Phys. Fluids A 3, 556–565.

    Article  ADS  MATH  Google Scholar 

  9. Chen, F., Lu, J. W. and Yang, T. L. 1994. Convective instability in directional solidification of ammonium chloride solutions cooling from below. J. Fluid Mech. 276, 163–187.

    Article  ADS  Google Scholar 

  10. Cusano, C. 1979. An analytical study of starved porous bearings. ASME J. Lubrication Tech. 101, 38–47.

    Article  Google Scholar 

  11. Darcy, H. 1856. Les fontaines publiques de la ville de Dijon. Dalmont Paris.

    Google Scholar 

  12. George, J. H., Gunn, R. D. and Straughan, B. 1989. Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135–158.

    Article  ADS  MATH  Google Scholar 

  13. Goldstein, M. E. and Braun, W. H. 1971. Effect of velocity slip at a porous boundary on the performance of an incompressible porous bearing. NASA Technical Note TN D-6181.

    Google Scholar 

  14. Han, K., Jiang, S., Zhang, C. and Wang, B. 2000. Flow modeling and simulation of SCRIMP for composites manufacturing. Composites: Part A 31, 79–86.

    Article  Google Scholar 

  15. Han, K., Lee, L. J. and Liou, M. J. 1993. Fiber mat deformation in liquid composite molding. II. Modeling. Polymer Composites 14, 151–160.

    Article  Google Scholar 

  16. Jäger, W. and Mikelic, A. 2000. On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, I. P. 1973. Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil Soc. 73, 231–238.

    Article  ADS  MATH  Google Scholar 

  18. Joseph, D. D. and Tao, L. N. 1966. Lubrication of a porous Bearing-Stokes’ solution. J. Appl. Mech. Trans. ASME 33, 753–760.

    Article  ADS  Google Scholar 

  19. Kaneko, S., Ohkawa, Y. and Hashimoto, Y. 1994. A study on the mechanism of lubrication in porous journal bearings: Effects of dimensionless oil-feed pressure on static characteristics under hydrodynamic lubrication conditions. ASME J. Trib. 116, 606–611.

    Article  Google Scholar 

  20. Kaneko, S., Hashimoto, Y. and Hiroki, I. 1997. Analysis of oil-film pressure distribution in porous journal bearings under hydrodynamic lubrication conditions using an improved boundary condition. ASME J. Trib. 119, 171–178.

    Article  Google Scholar 

  21. Krantz, W. B., Gleason, K. J. and Caine, N. 1998. Patterned ground. Scientific American 259, 68–76.

    Article  Google Scholar 

  22. Lu, J. W. and Chen, F. 1997. Rotation effects on the convection of binary alloys unidirectionally solidified from below. Int. J. Heat Mass Transfer 40, 237–246.

    Article  MATH  Google Scholar 

  23. McKay, G. and Straughan, B. 1993. Patterned ground formation under water. Continuum Mech. Thermodyn. 5, 145–162.

    MathSciNet  MATH  Google Scholar 

  24. McKay, G. 1998. Onset of buoyancy-driven convection in superposed reacting fluid and porous layers. J. Engng. Math. 33, 31–46.

    Article  MathSciNet  MATH  Google Scholar 

  25. Neale, G. and Nadar, W. 1974. Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng. 52, 475–478.

    Article  ADS  Google Scholar 

  26. Neogi, P. and Miller, C. A. 1983. Spreading kinetics of a drop on a rough solid surface. J. Colloid and Interface Sci. 92, 338–349.

    Article  Google Scholar 

  27. Nield, D. A. and Bejan, A. 1992. Convection in Porous Media. Springer, Berlin etc.

    Google Scholar 

  28. Nield, D. A. 1977. Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81, 513–522.

    Article  ADS  MATH  Google Scholar 

  29. Nield, D. A. 1983. The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Pillatsis, G., Taslim, M. E. and Narusawa, U. 1987. Thermal instability of a fluid saturated porous medium bounded by thin fluid layers. J. Heat Transfer 109, 677–682.

    Article  Google Scholar 

  31. Quan, Y.-X. and Wang, P.-M. 1985. Theoretical analysis and experimental investigation of a porous metal bearing. Trib. Int. 18, 67–73.

    Article  Google Scholar 

  32. Ray, R. J., Krantz, W. B., Caine, T. N. and Gunn, R. D. 1983. A model for sorted patterned-ground regularity. J. Glaciol. 29, 317–337.

    ADS  Google Scholar 

  33. Richardson, S. 1971. A model for the boundary condition of a porous material, Part 2. J. Fluid Mech. 49, 327–336.

    Article  ADS  MATH  Google Scholar 

  34. Saffman, P. 1971. On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101.

    MATH  Google Scholar 

  35. Taylor, G. I. 1971. A model for the boundary condition of a porous material, Part 1. J. Fluid Mech. 49, 319–326.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McKay, G. (2001). The Beavers and Joseph Condition for Velocity Slip at the Surface of a Porous Medium. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics