Skip to main content

Abstract

Let ΩR 3 be a sufficiently smooth bounded fixed domain ensuring the validity of divergence-like theorems and let us consider the initial boundary value problem (i.b.v.p.)

$$ {u_t} = \Delta F(u)\quad (x,t) \in \Omega \times {R^ + } $$
((1))

,

$${u_t} = \left( {x,0} \right) = {u_0}\left( x \right),\quad x \in \Omega$$
((2))

,

$${u_t} = \left( {x,t} \right) = {u_1}\left( x \right),\quad x \in \partial \Omega \times {R^ + }$$
((3))

, where FC 2(R) and \({u_0} \in C\left( {\overline \Omega } \right)\), u 1C(∂Ω) are assigned functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Di Benedetto, E. 1993. Degenerate Parabolic Equations. Springer Verlag, Berlin.

    Book  Google Scholar 

  2. Benilan, P. and Grandall, M. G. 1981. The continuous dependence of solutions of u t Δ(φ(u)) =0. Indiana Un. Mat. 30(2), 161–177.

    Article  MATH  Google Scholar 

  3. Benilan, P., Grandall, M. G. and Pierre, M. 1984. Solutions of the porous medium equation in Rnoptimal conditions on initial data. Indiana Un. Mat 33(1), 51–87.

    Article  MATH  Google Scholar 

  4. Berryman, J. G. 1977. Evolution of a stable profile for a class of nonlinear diffusion equations with fixed boundaries. J.Math.Phys. 18(11), 2108–2115.

    Article  ADS  MATH  Google Scholar 

  5. Berryman, J. G. and Holland, C. J. 1978. Evolution of a stable profile for a class of nonlinear diffusion equations. II J.Math.Phys. 19(12), 2476–2480.

    Article  ADS  MATH  Google Scholar 

  6. Berryman, J. G. 1982. Asymptotic behaviour of the nonlinear diffusion equations (math). J.Math.Phys. 23(6), 983–987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Carlslaw, H. S. and Jaeger, S. C. 1959. Conduction of Heat in Solids. 2nd ed. Clarendon, Oxford.

    Google Scholar 

  8. Capone, F., Rionero, S. and Torcicollo, I. 1996. On the stability of solutions of the remarkable equation u t — ΔF(x, u) — g(x, u). The proceedings of the VIII Int. Conf. on Waves and Stability in Continuous Media, Palermo, Oct. 9–14, 1995. Rend. Circ. Mat. Palermo. Supplemento, 45, 83–90.

    MathSciNet  Google Scholar 

  9. Flavin, J. N. and Rionero, S. 1995. Qualitative Estimates for Partial Differential Equations. An Introduction. CRC Press, Boca Raton, Florida.

    Google Scholar 

  10. Flavin, J. N. and Rionero, S. 1997. On the temperature distribution in cold ice. Rend. Mat. Acad. Lincei. 99(8), 299–312.

    MathSciNet  Google Scholar 

  11. Flavin, J. N. and Rionero, S. 1998. Asymptotic and other properties of a nonlinear diffusion model. J. Math. Anal. Appl. 228, 119–140.

    Article  MathSciNet  MATH  Google Scholar 

  12. Flavin, J. N. and Rionero, S. 2000. Lyapunov functionals for the asymptotic properties of a nonlinear diffusion equation. Submitted.

    Google Scholar 

  13. Gilbarg, D. and Trudinger, N. S. 1983. Elliptic Partial Differential Equations of Second Order. 2nd ed. Springer Verlag, Berlin, New York.

    Book  MATH  Google Scholar 

  14. Gurtin, M. E. and Mac Camy, R. C. 1977. On the diffusion of biological populations. Math. Bioci. 33(1–2), 35–49.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kawanago, T. 1990. The behaviour of solutions of quasilinear heat equations. Osaka J. Math. 27, 769–796.

    MathSciNet  MATH  Google Scholar 

  16. Kawanago, T. 1992. Asymptotic behaviour as t→ ∞ of solutions of quasilinear heat equations, evolution equations and nonlinear problems. Surikais. Koyuroku. 785, 152–165.

    MathSciNet  Google Scholar 

  17. Lonngren, K. E. and Hirose, A. 1976. Expansion of an electron cloud. Phys. Lett. 59A(285), 285–286.

    ADS  Google Scholar 

  18. Maiellaro, M. and Rionero, S. 1995. On the stability of Couette-Poiseuille flows in the anisotropic MHD via the Lyapunov Direct Method. Rend. Acc. Sci. Fis. Mat. Napoli. 62(4), 315–332.

    MathSciNet  MATH  Google Scholar 

  19. Murray, J. D. 1989. Mathematical Biology. Biomathematics Text, vol.19. Springer Verlag, Berlin.

    MATH  Google Scholar 

  20. Rosen, G. 1979. Nonlinear heat conduction in solid H 2. Phys. Review B 19(4), 2398–2399.

    Article  ADS  Google Scholar 

  21. Rosen, G. 1981. Relaxation times for nonlinear heat conduction in solid H 2 . Phys. Review B 23(6), 3093–3094.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rionero, S. (2001). Asymptotic and Other Properties of Some Nonlinear Diffusion Models. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics