Skip to main content

Abstract

Liquid crystals and anisotropic granular materials share some common properties: Their constituents are non-spherical, both systems react fluid-like under certain conditions (temperature or stress load) and the local, orientational order influences the material properties. We shall see that a general continuum theory with internal degrees of freedom can be used to model such systems and that some predictions about streaming anisotropy can be made regardless of the scale of the system. Finally, the predictions obtained will be compared to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baalss, D. and Hess, S. 1988. The viscosity coefficients of oriented nematic and nematic discotic liquid crystals; affine transformation model. Z. Naturforsch. 43a, 662–670.

    Google Scholar 

  2. Blenk, S. 1992. A continuum theory for liquid crystals describing different degrees of orientational order. Dissertation, Institut für Theoretische Physik, Technische Universität Berlin.

    Google Scholar 

  3. Blenk, S., Ehrentraut, H. and Muschik, W. 1991. Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation. Physica A 174, 119–138.

    Article  MathSciNet  ADS  Google Scholar 

  4. Blenk, S., Ehrentraut, H. and Muschik, W. 1992. Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution. Int. J. Engng. Sci. 30(9), 1127–1143.

    Article  MathSciNet  MATH  Google Scholar 

  5. Blenk, S., Ehrentraut, H. and Muschik, W. 1993. A continuum theory for liquid crystals describing different degrees of orientational order. Liquid Crystals 14(4), 1221–1226.

    Article  Google Scholar 

  6. Blenk, S. and Muschik, W. 1991. Orientational balances for nematic liquid crystals. J. Non-Equilib. Thermodyn. 16, 67–87.

    Article  ADS  MATH  Google Scholar 

  7. Chmielewski, A. G. 1986. Viscosity coefficients of some nematic liquid crystals. Mol. Cryst. Liq. Cryst. 132, 339–352.

    Article  Google Scholar 

  8. Coleman, B. D. and Noll, W. 1963. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rat. Mech. Anal. 13, 167–168.

    Article  MathSciNet  MATH  Google Scholar 

  9. de Gennes, P. G. 1974. The Physics of Liquid Crystals. Clarendon Press, Oxford.

    Google Scholar 

  10. Ehrentraut, H. 1996. A Unified Mesoscopic Continuum Theory of Uniaxial and Biaxial Liquid Crystals. Wissenschaft- und Technik Verlag, Berlin.

    Google Scholar 

  11. Ehrentraut, H. and Hess, S. 1995. Viscosity coefficients of partially aligned nematic and nematic discotic liquid crystals. Phys. Rev. E 51(3), 2203–2212.

    Article  ADS  Google Scholar 

  12. Ehrentraut, H. and Muschik, W. 1998. On symmetric irreducible tensors in d-dimensions. ARI 51, 149–159.

    Article  Google Scholar 

  13. Hess, S. 1975a. Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. Z. Naturforsch. 30a, 728–733.

    ADS  Google Scholar 

  14. Hess, S. 1975b. Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals ii. Z. Naturforsch. 30a, 1224–1232.

    ADS  Google Scholar 

  15. Hess, S. 1976a. Fokker-Planck-equation approach to flow alignment in liquid crystals. Z. Naturforsch. 31a, 1034–1037.

    ADS  Google Scholar 

  16. Hess, S. 1976b. Pre- and post-transitional behaviour of the flow alignment and flow-induced phase transition in liquid crystals. Z. Naturforsch. 31a, 1507–1513.

    ADS  Google Scholar 

  17. Hess, S. and Köhler, W. 1980. Formeln zur Tensor-Rechnung. Palm &; Enke, Erlangen.

    Google Scholar 

  18. Hess, S. and Waldmann, L. 1966. Kinetic théorie for a dilute gas of particles with spin. Z. Naturforsch. 21a, 1529–1546.

    ADS  Google Scholar 

  19. Guo, W. and Fung, B. M. 1991. Determination of the order parameters of liquid crystals from carbon-13 chemical shifts. J. Chem. Phys., 95, 3917–3923.

    Article  ADS  Google Scholar 

  20. Leslie, F. M. 1968. Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 28, 265–283.

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, I.-Shih 1972. Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal. 46, 131–148.

    MATH  Google Scholar 

  22. Maier, W. and Saupe, A. 1959. Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil 1. Z. Naturforsch. 14a, 882–889.

    ADS  Google Scholar 

  23. Maier, W. and Saupe, A. 1960. Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil 2. Z. Naturforsch. 15a, 287–292.

    ADS  Google Scholar 

  24. Miesowicz, M. 1935. Influence of a magnetic field on the viscosity of para-azoxyanisol. Nature 136, 261–261.

    ADS  Google Scholar 

  25. Müller, W. H. and Muschik, W. 1983. Bilanzgleichungen offener mehrkompon-entiger Systeme I. Massen- und Impulsbilanzen. J. Non-Equilib. Thermodyn. 8, 29–46.

    Article  ADS  Google Scholar 

  26. Muschik, W., Ehrentraut, H., Papenfuss, C. and Blenk, S. 1995. Mesoscopic theory of liquid crystals. In J.J. Brey, J. Marro, J.M. Rubi, M. San Miguel (Eds.): 25 Years of Non-Equilibrium Statistical Mechanics, Proceedings of the XIII Sitges Conference, 13–17 June 1994, Sitges, vol. 445 of Lecture Notes in Physics, pp. 303–311. Springer, Berlin, Heidelberg etc.

    Chapter  Google Scholar 

  27. Muschik, W., Ehrentraut, H., Papenfuss, C. and Blenk, S. 1996. Mesoscopic theory of liquid crystals. In J. S. Shiner, editor, Entropy and Entropy Generation, pp. 101–109. Kluwer, Dordrecht.

    Google Scholar 

  28. Muschik, W. and Müller, W. H. 1983. Bilanzgleichungen offener mehrkompon-entiger Systeme II. Energie- und Entropiebilanz. J. Non-Equilib. Thermodyn. 8, 47–66.

    ADS  Google Scholar 

  29. Tai, Y.-C. 2000. Dynamics of Granular Avalanches and their Simulations with Shock-Capturing and Front-Tracking Numerical Schemes. Dissertation, Department of Mechanics, Darmstadt University of Technology, Shaker Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrentraut, H. (2001). Anisotropic Fluids: From Liquid Crystals to Granular Materials. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics