Skip to main content

Abstract

The different approaches explored by the authors to model the visco-plastic anisotropic behaviour of polar ice associated with the formation and evolution of fabrics, are reviewed. In order to achieve ice rheological models which can significantly improve the simulations of the evolution of ice sheets under varying climatic conditions, these models aim at taking into account the physical mechanisms likely to be active under the conditions prevailing in an ice sheet. Since the destination of a constitutive model for polar ice is its implementation into a large scale ice-sheet model, which is to be run extensively to simulate various climatic scenarios, some compromises must be made to limit its complexity. A possible solution is to use a hierarchy of models of increasing complexity. In this respect the results from the different models are compared and discussed from the viewpoint of ice-sheet flow modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, S. and Whitworth, R. W. 1988. Dislocation motion in ice: A study by synchrotron X-ray topography. Phil Mag., 57, 749–766.

    Article  Google Scholar 

  2. Alley, R. B., Perepezko, J. H. and Bentley, C. R. 1986. Grain growth in polar ice: II. Application. J. Glaciol., 32, 425–433.

    ADS  Google Scholar 

  3. Alley, R. B. 1992. Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38, 245–256.

    ADS  Google Scholar 

  4. Alley, R. B. and Woods, G. A. 1996. Impurity influence on normal grain growth in the GISP2 ice core, Greenland. J. Glaciol., 42, 255–260.

    ADS  Google Scholar 

  5. Azuma, N. and Higashi, A. 1985. Formation processes of ice fabric pattern in ice sheets. Ann. Glaciol., 6, 130–134.

    ADS  Google Scholar 

  6. Azuma, N. 1994. A flow law for anisotropic ice and its application to ice sheets. Earth Planet Sci. Lett, 128(3–4), 601–614.

    Article  ADS  Google Scholar 

  7. Boehler, J. P. 1975. Contributions théoriques et expérimentales à l’étude des milieux plastiques anisotropes. Thèse de Doctorat d’Etat es Sciences, Université Scientifique et Médicale de Grenoble, 133 pp.

    Google Scholar 

  8. Bouchez, J. L. and Duval, P. 1982. The fabric of polycrystalline ice deformed in simple shear: experiments in torsion, natural deformation and geometrical interpretation. Text. Microstruc, 5, 171–190.

    Article  Google Scholar 

  9. Castelnau, O. 1996. Modélisation du comportement mécanique de la glace poly-cristalline par une approche auto-cohérente: application au développement de textures dans les glaces des calottes polaires. Thèse de Doctorat de l’Université Joseph Fourier-Grenoble I, 198 pp.

    Google Scholar 

  10. Castelnau, O., Duval, P., Lebensohn, R. A. and Canova, G. R. 1996a. Viscoplastic modeling of texture development in polyeryst alline ice with a self-consistent approach : Comparison with bound estimates. J. Geophys. Res., 101(6), 13851–13868.

    Article  ADS  Google Scholar 

  11. Castelnau, O., Thorsteinsson, Th., Kipfstuhl, J., Duval, P. and Canova, G.R. 1996b. Modelling fabric development along the GRIP ice core (central Greenland), Ann. Glaciol, 23, 194–201.

    ADS  Google Scholar 

  12. Castelnau, O., Canova, G. R., Lebensohn, R. A. and Duval, P. 1997. Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-consistent approach. Acta Mater., 45(11), 4823–4834.

    Article  Google Scholar 

  13. Castelnau, O., Shoji, H., Mangeney, A., Milsch, H., Duval, P., Miyamoto, A., Kawada, K. and Watanabe, O. 1998. Anisotropic behavior of GRIP ices and flow in Central Greenland. Earth and Plan. Sc. Letters, 154, 307–322.

    Article  ADS  Google Scholar 

  14. Dahl-Jensen, D. and Gundestrup, N. S. 1987. Constitutive properties of ice at Dye 3, Greenland. In International Association of Hydrological Sciences, Publication 170. 31–43, (Symposium on The Physical Basis of Ice Sheet Modelling, 9–22 August 1987, Vancouver).

    Google Scholar 

  15. Dahl-Jensen, D., Johnsen, S. J., Hammer, C. U., Clausen, H. B. and Jouzel, J. 1993, Past accumulation rates derived from observed annual layers in the GRIP ice core from Summit, central Greenland. NATO ASI Ser., Ser. I, 12, 517–531.

    Google Scholar 

  16. De La Chapelle, S., Castelnau, O., Lipenkov, V. and Duval P. 1998. Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antatctica and Greenland. J. Geoph. Res., 103 (B3), 5091–5105.

    Article  ADS  Google Scholar 

  17. Doake, C. S. M. and Wolff, E. W. 1985. Flow law for ice in polar ice sheets. Nature, 314, 255–257.

    Article  ADS  Google Scholar 

  18. Duval, P., Ashby, M. F. and Andermann, I. 1983. Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., bf 87(21), 4066–4074.

    Article  Google Scholar 

  19. Duval, P. and Castelnau, O. 1995. Dynamic recrystallization of ice in polar ice sheets. J. Phys. C3, 5, 197–205.

    Google Scholar 

  20. Eshelby, J. D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. A, 241, 376–396.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Fujita, S., Nakawo, M. and Mae, S. 1987. Orientation of the 700-m Mizuho core and its strain history. Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 1, 122–131 (9th NIPR Symposium, 1986).

    Google Scholar 

  22. Gagliardini, O. 1999, Simulation numérique d’un écoulement bidimensionnel de glace polaire présentant une anisotropic induite évolutive. Thèse de Doctorat de l’Université Joseph Fourier-Grenoble I, 184 pp.

    Google Scholar 

  23. Gagliardini, O. and Meyssonnier, J. 1999a. Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. J. Geophys. Res., 104(B8), 17,797–17,809.

    Article  ADS  Google Scholar 

  24. Gagliardini, O. and Meyssonnier, J. 1999b. Plane flow of an ice-sheet exhibiting strain-induced anisotropy. In K. Hutter, Y. Wang, and H. Beer eds., Advances in Cold-Region Thermal Engineering and Sciences, Technological, Environmental and Climatological Impact Berlin, etc., Springer-Verlag, (Lecture Notes in Physics 533), 171–182.

    Chapter  Google Scholar 

  25. Gagliardini, O. and Meyssonnier, J. 2000. Simulation of anisotropic ice flow and fabric evolution along the GRIP-GISP2 flow line (Central Greenland). Ann. Glaciol., 30, in press.

    Google Scholar 

  26. Gilormini, P. and Vernusse, P. 1992. Eshelby tensor and inclusion problem in the incompressible transversely isotropic case. C. R. Acad. Sci. (Paris), Ser.II., 314(3), 257–261.

    MATH  Google Scholar 

  27. Gödert, G. and Hutter, K. 1998. Induced anisotropy in large ice shields: Theory and its homogenization. Continuum Mech. Thermodyn., 10, 293–318.

    Article  ADS  MATH  Google Scholar 

  28. Goldsby, D. L. and Kohlstedt, D. L. 1997. Grain boundary sliding in fine-grained ice I. Scripta Materialia, 37(9), 1399–1406.

    Article  Google Scholar 

  29. Goldsby, D. L. and Kohlstedt, D. L. 1998. Are glaciers and ice sheets superplastic? AGU Fall Meeting, San Francisco, F, 310–311.

    Google Scholar 

  30. Gow, A. J. and Williamson, T. C. 1976. Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. Geol.Soc.Am.Bull., 87(12), 1665–1677.

    Article  Google Scholar 

  31. Gundestrup, N. S. and Hansen, B. L. 1984. Bore hole survey at Dye3, South Greenland. J. Glaciol., 30(106), 282–288.

    ADS  Google Scholar 

  32. Hansen, B. L. and Gundestrup, N. S. 1988. Resurvey of bore hole at Dye3, South Greenland. J. Glaciol., 34(117), 178–182.

    ADS  Google Scholar 

  33. Herron, S. L. and Langway Jr., C. C. 1982. A comparison of ice fabrics and textures at Camp Century, Greenland and Byrd Station, Antarctica. Ann. Glaciol., 3, 118–124.

    ADS  Google Scholar 

  34. Higashi, A., Fukuda, A., Hondoh, T., Goto, K. and Amakai, S. 1985. Dynamical dislocation processes in ice crystal. Proc. Yamada Conference IX , edited by T. Susuki, K. Ninomiya, K. Sumino and S. Takeuchi, Univ. of Tokyo Press, Tokyo, 511–515.

    Google Scholar 

  35. Hondoh, T., Iwamatsu, H. and S. Mae, S. 1990. Dislocation mobility for nonbasal glide in ice measured by in situ X-ray topography. Phil. Mag., 62, 89–102.

    Google Scholar 

  36. Hutter, K. 1983. Theoretical Glaciology, D. Reidel, Dordrecht, The Netherlands.

    Book  Google Scholar 

  37. Jacka, T. H. 1984. The time and strain required for development of minimum strain rates in ice, Cold Reg. Sci. Technol., 8, 261–268.

    Article  Google Scholar 

  38. Jacka, T. H. and Maccagnan, M. 1984. Ice crystallographic and strain rate changes with strain in compression and extension. Cold Reg.Sci.Technol, 8(3), 269–286.

    Article  Google Scholar 

  39. Johnson, A. F. 1982. Creep characterization of eutectic composites. Mechanical behaviour of anisotropic solids, Proceedings of the Euromech Colloquium 115, J.P. Boehler Ed., Martinus Nijhoff Publishers and Editions du CNRS, 1982, 927 pp.

    Google Scholar 

  40. Kamb, W. B. 1961. The glide direction in ice. J. Glaciol, 3 (30), 1097–1106.

    Google Scholar 

  41. Kocks, U. F., Tomé, C. N. and Wenk, H. R. 1998. Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Materials Properties. Cambridge University Press, 1998, 676 pp.

    Google Scholar 

  42. Lebensohn, R. A. and Tome, C. N. 1993. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. ,41, 2611–2624.

    Article  Google Scholar 

  43. Lipenkov, V. Y., Barkov, N. I., Duval, P. and Pimienta, P. 1989. Crystalline texture of the 2083m ice core at Vostok station, Antarctica. J. Glaciol, 35(121), 392–398.

    ADS  Google Scholar 

  44. Lipenkov, V. Ya., Salamatin, A. and Duval, P. 1997. Bubbly ice densification in ice sheets: Applications. J Glaciol., 43, 145, 397–407.

    Google Scholar 

  45. Lliboutry, L. 1969. The dynamics of temperate glaciers from the detailed viewpoint. J Glaciol, 8(53), 185–205.

    Google Scholar 

  46. Lliboutry, L. 1993. Anisotropic, transversely isotropic non linear viscosity of rock ice and rheological parameters inferred by homogenization. Int. J. Plast., 9, 619–632.

    Article  MATH  Google Scholar 

  47. Mangeney, A., Califano, F. and Hutter, K. 1997. A numerical study of anisotropic, low Reynolds number, free surface flow of ice-sheet modeling. J. Geophys. Res., 102(B10), 22749–22764.

    Article  ADS  Google Scholar 

  48. Mansuy, P., Meyssonnier, J. and Philip, A. 1999. Modelling the ice single-crystal viscoplastic behaviour. In K. Hutter, Y. Wang, and H. Beer eds., Advances in Cold-Region Thermal Engineering and Sciences, Technological, Environmental and Cli-matological Impact. Berlin, etc., Springer-Verlag, (Lecture Notes in Physics 533), 215–224.

    Chapter  Google Scholar 

  49. Mellor, M. and Testa, R. 1969. Creep of ice under low stress. J. Glaciol.., 8(52), 147–152.

    ADS  Google Scholar 

  50. Meyssonnier, J. and Philip, A. 1996. A model for the tangent viscous behaviour of anisotropic polar ice. Ann. Glaciol., 23, 253–261.

    ADS  Google Scholar 

  51. Meyssonnier, J. and Philip, A. 1999. Remarks on self-consistent modelling of poly-crystalline ice. In K. Hutter, Y. Wang, and H. Beer eds.,Advances in Cold-Region Thermal Engineering and Sciences, Technological, Environmental and Climatolo-gical Impact. Berlin, etc., Springer-Verlag, (Lecture Notes in Physics 533), 225–236.

    Chapter  Google Scholar 

  52. Meyssonnier, J. and Philip, A. 2000. Comparison of Finite-Element and homogenization methods for modelling the viscoplastic behaviour of a S2-columnar ice polycrystal. Ann. Glaciol., 30, in press.

    Google Scholar 

  53. Montagnat, M. and Duval, P. 2000. Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization. Earth Planet. Sci. Lett., in press.

    Google Scholar 

  54. Morland, L. W. and Staroszczyk, R. 1998. Viscous response of polar ice with evolving fabric. Continuum Mech. Thermodyn., 10(3), 135–152.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Philip, A. and Meyssonnier, J. 1999. Anisotropic isothermal ice-cap flow with the shallow ice approximation. In K. Hutter, Y. Wang, and H. Beer eds., Advances in Cold-Region Thermal Engineering and Sciences, Technological, Environmental and Climatological Impact. Berlin, etc., Springer-Verlag, (Lecture Notes in Physics 533), 237–248.

    Chapter  Google Scholar 

  56. Pimienta, P., Duval, P. and Lipenkov, V. Y. 1987. Mechanical behavior of anisotropic polar ice. In International Association of Hydrological Sciences, Publication 170.57–66 (Symposium on The Physical Basis of Ice Sheet Modelling, 9–22 August 1987, Vancouver).

    Google Scholar 

  57. Pimienta, P. and Duval, P. 1989. Rheology of polar glacier ice. Ann. Glaciol, 12, 206.

    ADS  Google Scholar 

  58. Russell-Head, D. S. and Budd, W. F. 1979. Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-core studies. J. Glaciol., 24(90), 117–130.

    ADS  Google Scholar 

  59. Shoji, H. and Langway Jr., C. C. 1984. Flow behavior of basal ice as related to modeling considerations. Ann. Glaciol., 5, 141–148.

    ADS  Google Scholar 

  60. Staroszczyk, R. and Morland, L. W. 2000. Orthotropic viscous response of polar ice. J. Eng. Mathematics, 37, 191–209.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Thorsteinsson, Th., Kipfstuhl, J., Eicken, H., Johnsen, S. J. and Fuhrer, K. 1995. Crystal size variations in Eemian-age ice from the GRIP ice core, Central Greenland. Earth Planet. Sci. Lett, 131, 381–394.

    Article  ADS  Google Scholar 

  62. Thorsteinsson, Th., Kipfstuhl, J. and Miller, H. 1997. Texture and fabrics in the GRIP ice core. J. Geophys. Res., 102(C12), 26,583–26,599.

    Article  ADS  Google Scholar 

  63. Van der Veen, C. J. and Whillans, I. M. 1994. Development of fabric in ice. Cold Reg. Sci. Technol., 22(2), 171–195.

    Article  Google Scholar 

  64. Wilson, C. J. L. 1982. Fabrics in polycrystalline ice deformed experimentally at-10°C. Cold Reg. Sci. Technol., 6(2), 149–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyssonnier, J., Duval, P., Gagliardini, O., Philip, A. (2001). Constitutive Modelling and Flow Simulation of Anisotropic Polar Ice. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics