Skip to main content

Abstract

Kolumban Hutter burst in to the field of (land ice) glaciology in 1978 when he presented a paper at a conference in Ottawa [the proceedings appeared as J. Glaciol. 24 (90)]. This early work concerned scaling effects and perturbation methods in glacier flow. Hutter (1981) introduces a version of what is now known as the ‘shallow ice approximation’, though his application is to nearly-parallel ice slabs and the corrective effect of longitudinal stress on the shear stress, rather than to the general motion of glaciers [Hutter et al. (1981) deal with a similar problem, but without the use of stretched coordinates]. The latter subject was the focus of Fowler and Larson’s (1978) model. The other mathematician who became involved with the development of mathematical models was Leslie Morland, whose early papers on the subject (Morland and Johnson, 1980, 1982) were concerned more with ice sheets than with glaciers. All of these early papers developed dimensionless models and used the language and methods of perturbation theory, and this introduced novelty to the glaciological literature, but there were differences of style and detail in approach, and these emerged more clearly in later work on thermomechanical models (discussed below).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatter, H. and Hutter, K. 1991. Poly thermal conditions in Arctic glaciers. J. Glaciol. 37, 261–269.

    Google Scholar 

  2. Clarke, G. K. C., Nitsan, U. and Paterson, W. S. B. 1977. Strain heating and creep instability in glaciers and ice sheets. Revs. Geophys. Space Phys. 15, 235–247.

    Article  ADS  Google Scholar 

  3. Duval, P. 1977. The role of the water content on the creep rate of polycrystalline ice. IASH 118, 29–33.

    Google Scholar 

  4. Echelmeyer, K. and Wang, Z. 1987. Direct observation of basal sliding and deformation of basal drift at subfreezing temperatures. J. Glaciol. 33, 83–98.

    Google Scholar 

  5. Finsterwalder, S., 1907. Die Theorie der Gletscherschwankungen. Z. Gletscherkunde 2, 81–103.

    Google Scholar 

  6. Fowler, A. C. 1986. Sub-temperate basal sliding. J. Glaciol. 32, 3–5.

    ADS  Google Scholar 

  7. Fowler, A. C., 1987. A theory of glacier surges. J. Geophys. Res. 92(9), 111–120.

    Article  Google Scholar 

  8. Fowler, A. C. 1990. A compaction model for melt transport in the Earth’s as-thenosphere. Part I: the basic model. In: Magma transport and storage, ed. Ryan, M. P., John Wiley, New York, 3–14.

    Google Scholar 

  9. Fowler, A. C. 1992. Modelling ice sheet dynamics. Geophys. Astrophys. Fluid Dynam. 63, 29–65.

    Article  MathSciNet  ADS  Google Scholar 

  10. Fowler, A. C. 1997. Mathematical models in the applied sciences. C.U.P., Cambridge.

    Google Scholar 

  11. Fowler, A. C. and Larson, D. A. 1978. On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond. A 363, 217–242.

    Article  MathSciNet  ADS  Google Scholar 

  12. Fowler, A. C. and Larson, D. A. 1980a. On the flow of polythermal glaciers. II. Surface wave analysis. Proc. R. Soc. Lond. A 370, 155–171.

    Article  MathSciNet  ADS  Google Scholar 

  13. Fowler, A. C. and Larson, D. A. 1980b. The uniqueness of steady state flows of glaciers and ice sheets. Geophys. J. R. Astr. Soc. 63, 333–345.

    Article  MATH  Google Scholar 

  14. Fowler, A. C. and Larson, D. A. 1980c. Thermal stability properties of a model of glacier flow. Geophys. J. R. Astr. Soc. 63, 347–359.

    Article  MATH  Google Scholar 

  15. Greve, R. and Hutter, K. 1995. Polythermal three-dimensional modelling of the Greenland ice sheet with varied geothermal heat flux. Ann. Glaciol. 21, 8–12.

    ADS  Google Scholar 

  16. Haberman, R. 1977. Mathematical models: mechanical vibrations, population dynamics, and traffic flow. Prentice-Hall, Englewood Cliffs.

    MATH  Google Scholar 

  17. Hutter, K. 1980. Time dependent surface elevation of an ice slope. J. Glaciol. 25, 247–266.

    ADS  Google Scholar 

  18. Hutter, K. 1981. The effect of longitudinal strain on the shear stress of an ice sheet. In defense of using stretched coordinates. J. Glaciol. 25, 39–56.

    Google Scholar 

  19. Hutter, K. 1982a. Glacier flow. Amer. Sci. 70, 26–34.

    ADS  Google Scholar 

  20. Hutter, K. 1982b. Dynamics of glaciers and large ice masses. Ann. Rev. Fluid Mech. 14, 87–130.

    Article  ADS  Google Scholar 

  21. Hutter, K. 1982c A mathematical model of polythermal glaciers and ice sheets. Geophys. Astrophys. Fluid Dynam. 21, 201–224.

    Article  ADS  MATH  Google Scholar 

  22. Hutter, K. 1983. Theoretical Glaciology. Reidel, Dordrecht.

    Book  Google Scholar 

  23. Hutter, K. 1993. Thermo-mechanically coupled ice-sheet response — cold, poly-thermal, temperate. J. Glaciol. 39, 65–86.

    ADS  Google Scholar 

  24. Hutter, K. and Olunloyo, V. O. S. 1980. On the distribution of stress and velocity in an ice strip, which is partly sliding over and partly adhering to its bed using a Newtonian viscous approximation. Proc. R. Soc. Lond. A 373, 385–403.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Hutter, K. and Olunloyo, V. O. S. 1981. Basal stress concentrations due to abrupt changes in boundary conditions. A cause for high till concentration at the bottom of a glacier. Ann. Glaciol. 2, 29–33.

    Article  ADS  Google Scholar 

  26. Hutter, K., Legerer, F. and Spring, U. 1981. First order stresses and deformations in glaciers and ice sheets. J. Glaciol. 27, 227–270.

    ADS  Google Scholar 

  27. Hutter, K., Yakowitz, S. and Szidarovsky, F. 1986. A numerical study of plane ice-sheet flow. J. Glaciol. 32, 139–160.

    ADS  Google Scholar 

  28. Hutter, K., Blatter, H. and Funk, M. 1988. A model computation of moisture content in polythermal glaciers. J. Geophys. Res. 93, 12,205–12,214.

    Article  ADS  Google Scholar 

  29. Huybrechts, P. 1992. The Antarctic ice sheet and environmental change: a three-dimensional modelling study. Berichte zur Polarforschung, No. 92, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven.

    Google Scholar 

  30. Huybrechts, P., Payne, T. and the EISMINT intercomparison group. 1996. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol. 23, 1–12.

    ADS  Google Scholar 

  31. Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M. and Pfeffer, T. 1985. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science 227, 469–479.

    Article  ADS  Google Scholar 

  32. Kleman, J. and Hattesrand, C. 1999. Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature 402, 63–66.

    Article  ADS  Google Scholar 

  33. Lighthill, M. J. and Whitham, G. B. 1955. On kinematic waves: I. Flood movement in long rivers; II. Theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A 229, 281–345.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Lliboutry, L. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7, 21–58.

    ADS  Google Scholar 

  35. Lliboutry, L. 1971. Permeability, brine content and temperature of temperate ice. J. Glaciol. 10, 15–29.

    ADS  Google Scholar 

  36. Lliboutry, L. 1976. Physical processes in temperate glaciers. J. Glaciol. 16, 151–158.

    ADS  Google Scholar 

  37. MacAyeal, D. R., Rommelaere, V., Huybrechts, P., Hulbe, C. L., Determann, J. and Ritz, C. 1996. An ice-shelf model test based on the Ross ice shelf. Ann. Glaciol. 23, 46–51.

    ADS  Google Scholar 

  38. Morland, L. W. 1984. Thermo-mechanical balances of ice-sheet flow. Geophys. Astrophys. Fluid Dynam. 29, 237–266.

    Article  ADS  MATH  Google Scholar 

  39. Morland, L. W. and Johnson, I. R. 1980. Steady motion of ice sheets. J. Glaciol. 25, 229–246.

    ADS  Google Scholar 

  40. Morland, L. W. and Johnson, I. R. 1982. Effects of bed inclination and topography on steady isothermal ice sheets. J. Glaciol 28, 71–90.

    ADS  Google Scholar 

  41. Nye, J. F. 1960. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. Lond. A 256, 559–584.

    Article  MathSciNet  ADS  Google Scholar 

  42. Nye, J. F. 1963a. On the theory of the advance and retreat of glaciers. Geophys. J. R. Astr. Soc. 7, 431–456.

    Article  MATH  Google Scholar 

  43. Nye, J. F. 1963b. The response of a glacier to changes in the rate of nourishment and wastage. Proc. R. Soc. Lond. A 275, 87–112.

    Article  ADS  MATH  Google Scholar 

  44. Nye, J. F. 1969. A calculation of the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. Lond. A 315, 381–403.

    ADS  Google Scholar 

  45. Nye, J. R. 1976. Water flow in glaciers; jökulhlaups, tunnels and veins. J. Glaciol. 17, 181–207.

    ADS  Google Scholar 

  46. Paterson, W. S. B. 1994. The physics of glaciers. 3rd ed. Elsevier, Oxford.

    Google Scholar 

  47. Payne, A. J. 1995. Limit cycles in the basal thermal regime of ice sheets. J. Geophys. Res. 100, 4,249–4,263.

    Article  ADS  Google Scholar 

  48. Payne, A. J. 1999. A thermomechanical model of ice flow in West Antarctica. Clim. Dynam. 15, 115–125.

    Article  ADS  Google Scholar 

  49. Payne, A. J. and Dongelmans, P. W. 1997. Self-organisation in the thermomechanical flow of ice sheets. J. Geophys. Res. 102, 12,219–12,233.

    Article  ADS  Google Scholar 

  50. Raymond, C. F. and Harrison, W. D. 1975. Some observations on the behavior of the liquid and gas phases in temperate glacier ice. J. Glaciol. 14, 213–233.

    ADS  Google Scholar 

  51. Robin, G. de Q. 1976. Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol. 16, 183–196.

    ADS  MATH  Google Scholar 

  52. Shreve, R. L. 1984. Glacier sliding at sub-freezing temperatures. J. Glaciol. 30, 341–347.

    ADS  Google Scholar 

  53. Weertman, J. 1958. Traveling waves on glaciers. IASH 47, 162–168.

    Google Scholar 

  54. Whitham, G. B. 1974. Linear and nonlinear waves. John Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fowler, A.C. (2001). Modelling the Flow of Glaciers and Ice Sheets. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics