Skip to main content

Abstract

In recent decades computer modelling of iceberg drift has passed through two cycles of interest. Navigation in ice-infested waters and the security of off-shore structures motivated such studies in the 1970s whereas in the 1990s the focus shifted to paleoclimate and ocean dynamics. Although the underlying physics remains the same, the requirements of the two types of models differ. We characterize these separate questions as the “Titanic problem” and the “Heinrich problem.” In the Titanic problem the objective is to predict the trajectory of individual icebergs with the aim of evaluating the risk of collision with maritime traffic or fixed offshore structures. In the Heinrich problem the objective is to predict the temporally-evolving spatial pattern of iceberg meltwater and the associated pattern and provenance of ice-rafted marine sedimentation.

And out there in the starlight, with no trace

Upon it of its deed but the last wave

Prom the Titanic fretting at its base,

Silent, composed, ringed by its icy broods,

The grey shape with the palaeolithic face,

Was still the master of the longitudes.

(E. J. Pratt, from The Titanic)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armacost, R. L. 1995. Analysis of the IIP iceberg deterioration model. Cost and operational effectiveness analysis for selected International Ice Patrol mission alternatives. Annex G. Report CG-D-26–95, U.S. Coast Guard Development Research Center, Groton, Connecticut.

    Google Scholar 

  2. Bond, G. C. and Lotti, R. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010.

    Article  ADS  Google Scholar 

  3. Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G. and Ivy, S. 1992. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249.

    Article  ADS  Google Scholar 

  4. Budd, W. F., Jacka, T. H. and Morgan, V. I. 1980. Antarctic iceberg melt rates derived from size distributions and movement rates. Ann. Glaciol., 1, 103–112.

    ADS  Google Scholar 

  5. Clarke, G. K. C., Marshall, S. J., Hillaire-Marcel, C., Bilodeau, G. and Veiga-Pires, C. 1999. A glaciological perspective on Heinrich events. In Mechanisms of global change at millennial time scales (ed. P. U. Clark, R. S. Webb and L. D. Keigwin), pp. 243–262. Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  6. Dowdeswell, J. A. and Dowdeswell, E. K. 1989. Debris in icebergs and rates of glaci-marine sedimentation: observations from Spitsbergen and a simple model. J. Geol., 97, 221–231.

    Article  ADS  Google Scholar 

  7. Dowdeswell, J. A., Maslin, M. A., Andrews, J. T. and McCave, I. N. 1995. Iceberg production, debris rafting, and the extent and thickness of Heinrich layers (H-l, H-2) in North Atlantic sediments. Geology. 23, 301–304.

    Article  ADS  Google Scholar 

  8. Gill, A. E. 1982. Atmosphere-ocean dynamics. Academic.

    Google Scholar 

  9. Fanning, A. F. and Weaver, A. J. 1996. An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model. J. Geophys. Res., 101, 15,111–15,128.

    Article  ADS  Google Scholar 

  10. Hamley, T. C. and Budd, W. F. 1986. Antarctic iceberg distribution and dissolution. J. Glaciol., 32, 242–251.

    ADS  Google Scholar 

  11. Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29, 142–152.

    Article  Google Scholar 

  12. Huppert, H. E. and Josberger, E. G. 1980. The melting of ice in cold stratified water. J. Phys. Oceanogr., 10, 953–960.

    Article  ADS  Google Scholar 

  13. Hutter, K. 1983. Theoretical glaciology. Reidel.

    Book  Google Scholar 

  14. Josberger, E. G. and Neshyba, S. 1980. Iceberg melt-driven convection inferred from field measurements of temperature. Ann. Glaciol., 1, 113–117.

    ADS  Google Scholar 

  15. MacAyeal, D. R. 1993a. A low-order model of the Heinrich event cycle, Paleocean-ography 8, 767–773.

    Article  ADS  Google Scholar 

  16. MacAyeal, D. R. 1993b. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8, 775–784.

    Article  ADS  Google Scholar 

  17. Manabe, S. and Stouffer, R. J. 1995. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–167.

    Article  ADS  Google Scholar 

  18. Marshall, S. J. and Clarke, G. K. C. 1997a. A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet 1. Theory. J. Geophys. Res. 102, 20,599–20,614.

    ADS  Google Scholar 

  19. Marshall, S. J. and Clarke, G. K. C. 1997b. A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet 2. Application to the Hudson Strait Ice Stream. J. Geophys. Res. 102, 20,615–20,637.

    ADS  Google Scholar 

  20. Matsumoto, K. 1996. An iceberg drift and decay model to compute the ice-rafted debris and iceberg meltwater flux: Application to the interglacial North Atlantic. Paleoceanography 11, 729–742.

    Article  ADS  Google Scholar 

  21. Matsumoto, K. 1997. Modeled glacial North Atlantic ice-rafted debris pattern and its sensitivity to various boundary conditions. Paleoceanography 12, 271–280.

    Article  ADS  Google Scholar 

  22. Mountain, D. G. 1980. On predicting iceberg drift. Cold Reg. Sci. Technol. 1, 273–282.

    Article  Google Scholar 

  23. Mountain, D. G. and Mooney, K. A. 1979. A technique for the calculation of time dependent wind driven current. Ocean Engng. 6, 541–547.

    Article  Google Scholar 

  24. Napoléoni, J.-G. P. 1979. The dynamics of iceberg drift. MASc thesis, University of British Columbia, Vancouver, Canada.

    Google Scholar 

  25. Pedlosky, J. 1979. Geophysical fluid dynamics. Springer.

    Book  MATH  Google Scholar 

  26. Pond, S. and Pickard, G. L. 1983. Introductory dynamical oceanography. 2nd edition. Pergamon.

    Google Scholar 

  27. Rahmstorf, S. 1995. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149.

    Article  ADS  Google Scholar 

  28. Robe, R. Q. 1980. Iceberg drift and deterioration. In Dynamics of snow and ice masses (ed. S. C. Colbeck), pp. 211–259. Academic.

    Chapter  Google Scholar 

  29. Rossiter, J. R. and Gustajtis, K. A. 1978. On melting icebergs. Nature, 271, 46–50.

    Article  ADS  Google Scholar 

  30. Russell-Head, D. S. 1980. The melting of free-drifting icebergs. Ann. Glaciol., 1, 119–122.

    ADS  Google Scholar 

  31. Schlichting, H. 1979. Boundary layer theory. 1th edition. McGraw-Hill.

    Google Scholar 

  32. Sodhi, D. S. and El-Tahan, M. 1980. Prediction of an iceberg drift trajectory during a storm. Ann. Glaciol. 1, 77–82.

    ADS  Google Scholar 

  33. Venegas, S. A. and Mysak, L. A. 2000. Is there a dominant timescale of natural climate variability in the Arctic? J. Climate 13, in press.

    Google Scholar 

  34. Weaver, A. J. 1999. Millennial timescale variability in ocean/climate models. In Mechanisms of global change at millennial time scales (ed. P. U. Clark, R. S. Webb and L. D. Keigwin), pp. 285–300. Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  35. Weaver, A. J. and Hughes, T. M. C. 1994. Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 367, 447–450.

    Article  ADS  Google Scholar 

  36. Weaver, A. J., Eby, M., Fanning, A. F. and Wiebe, E. C. 1998. Simulated influence of CO2, orbital forcing and ice sheets on climate of the last glacial maximum. Nature 394, 847–853.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clarke, G.K.C., La Prairie, D.I. (2001). Modelling Iceberg Drift and Ice-Rafted Sedimentation. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics