Geometry VI pp 298-307 | Cite as

Space Forms

  • M. M. Postnikov
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 91)

Abstract

We can obtain other spaces of constant curvature from the space M K . It is clear that if one of the spaces \(\bar \chi \,or\,\chi \) in a Riemannian covering \((\bar \chi ,\,\pi ,\,\chi )\) is a Riemannian space of constant curvature K, then the other space is also a space of constant curvature K. In particular, for any group Г of isometries of the space M K with a discrete action, the quotient space M K is a space of constant curvature K.

Keywords

Manifold Dition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. M. Postnikov
    • 1
  1. 1.MIRANMoscowRussia

Personalised recommendations