Advertisement

Polymeric Solutions

  • David Jou
  • José Casas-Vázquez
  • Manuel Criado-Sancho

Abstract

In this last chapter of microscopic analyses, we consider some aspects of polymer solutions with special interest in justifying the non-equilibrium generalizations of the free energy and the entropy and their relation to the equation of evolution for the viscous pressure tensor. The expressions obtained in this chapter will be used in the following ones, where we will pay special attention to flow-induced effects in polymer solutions. The main reason for this interest is that the relaxation times in polymers are much longer than in ideal gases or in fluids of small molecules. Thus, the non-equilibrium modifications of the equations of state are easier to observe and have more practical interest than in the above mentioned systems.

Keywords

Helmholtz Free Energy Dilute Polymer Solution Viscous Pressure Rouse Model Kinetie Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.Google Scholar
  2. 4.2.
    M. Doi, Introduction to Polymer Physics, Oxford Science Publications, Clarendon Press, Oxford, 1996.Google Scholar
  3. 4.3.
    G. Marrucci, Trans. Soc. Rheol. 16 (1972) 321.CrossRefGoogle Scholar
  4. 4.4.
    H. Janeschitz-Kriegl, Adv. Polym. Sci. 6 (1969) 170.CrossRefGoogle Scholar
  5. 45.
    Z-S. Sun and M. M. Denn, AIChE J. 18 (1972) 1010.CrossRefGoogle Scholar
  6. 4.6.
    G. C. Sarti and G. Marrucci, Chem. Eng. Sci. 28 (1973) 1053.Google Scholar
  7. 4.7.
    H. C. Booij, J. Chem. Phys. 80 (1984) 4571.ADSCrossRefGoogle Scholar
  8. 4.8.
    J. Camacho and D. Jou, J. Chem. Phys. 92 (1990) 1339.Google Scholar
  9. 4.9.
    C. Perez-Garcia, J. Casas-Vazquez and G. Lebon, J. Polym. Sci. B: Polym. Phys. 27 (1989) 1807.ADSCrossRefGoogle Scholar
  10. 4.10.
    G. Lebon, C. Pérez-Garcia and J. Casas-Vazquez, J. Chem. Phys. 88 (1988) 5068.MathSciNetADSCrossRefGoogle Scholar
  11. 4.11.
    N. W. Tshoegl, J. Chem. Phys. 39 (1963) 149.ADSCrossRefGoogle Scholar
  12. 4.12.
    L. A. Holmes, K. Ninomiya and J. D. Ferry, J. Phys. Chem. 70 (1966) 2714.Google Scholar
  13. 4.13.
    L. A. Holmes and J. D. Ferry, J. Polym Sci. C, 23 (1968) 291.CrossRefGoogle Scholar
  14. 4.14.
    M. Criado-Sancho, J. Casas-Vazquez and D. Jou, Polymer 36 (1995) 4107.CrossRefGoogle Scholar
  15. 4.15.
    D. Jou, J. Casas-Vazquez and M. Criado-Sancho, Physica A 262 (1999) 69.CrossRefGoogle Scholar
  16. 4.16.
    P. G. de Gennes, J. Chem. Phys. 55 (1971) 572.ADSCrossRefGoogle Scholar
  17. 4.17.
    M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. II 74 (1978) 918, 1789, 1802, 1818.Google Scholar
  18. 4.18.
    G. Marrucci and N. Grizzutti, J. Rheol. 27 (1983) 433.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • David Jou
    • 1
  • José Casas-Vázquez
    • 1
  • Manuel Criado-Sancho
    • 2
  1. 1.Departament de Física Grup de Física EstadísticaUniversitat Autònoma de BarcelonaBellaterra, CataloniaSpain
  2. 2.Departamento de Ciencias y Técnicas FísicoquímicasUNEDMadridSpain

Personalised recommendations