Advertisement

Non-equilibrium Thermodynamics and Rheology

  • David Jou
  • José Casas-Vázquez
  • Manuel Criado-Sancho

Abstract

Local-equilibrium thermodynamics assumes that the equations of state retain the same form out of equilibrium as in equilibrium, but with a local meaning [1.1–3]. According to this point of view, there is not strictly any thermodynamics under flow, since the flow does not change the equations of state, though it may modify the transport equations. This approach is insufficient to deal with systems with internal degrees of freedom, so that on some occasions [1.4–7] one includes in the set of thermodynamic variables some internal variables describing some details of the microstructure of the system, such as, for instance, the polymeric configuration. In this case, the flow may influence the thermodynamic equations of state through its action on such internal variables.

Keywords

Entropy Production Internal Variable Diffusion Flux Gibbs Equation Viscous Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1.
    S. R. De Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.Google Scholar
  2. 1.2.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Interscience, New York, 1961.MATHGoogle Scholar
  3. 1.3.
    I. Gyarmati, Non-equilibrium Thermodynamics, Springer, Berlin, 1970.CrossRefGoogle Scholar
  4. 1.4.
    J. Meixner, Z. Naturforschung a 4 (1954) 594; 9 (1954) 654.Google Scholar
  5. 1.5.
    J. Verhas, Thermodynamics and Rheology, Kluwer, Dordrecht, 1997.MATHGoogle Scholar
  6. 1.6.
    D. Lhuillier and A. Ouibrahim, J. Méc. 19 (1980) 1;MathSciNetGoogle Scholar
  7. G. A. Maugin and R. Drouot, Int. J. Eng. Sci. 21 (1983) 705.MathSciNetMATHCrossRefGoogle Scholar
  8. 1.
    G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviors. An introduction,World Scientific, Singapore, 1999Google Scholar
  9. G. A. Maugin and W. Muschik, J. Non-Equilib. Thermodyn. 19 (1994) 217, 250.Google Scholar
  10. 1.8.
    C. Truesdell, Rational Thermodynamics, McGraw-Hill, New York, 1971; 2nd enlarged edition 1984Google Scholar
  11. 1.9.
    D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, 2nd ed, Springer, Berlin, 1996.MATHCrossRefGoogle Scholar
  12. 1.10.
    I. Müller and T. Ruggeri, Rational Extended Thermodynamics, Springer, Berlin, 1998.MATHCrossRefGoogle Scholar
  13. 1.11.
    S. Sieniutycz and P. Salamon (eds.) Extended Thermodynamic Systems (Advances in Thermodynamics, vol 7 ), Taylor and Francis, New York, 1992.Google Scholar
  14. 1.12.
    B. C. Eu, Kinetic Theory and Irreversible Thermodynamics, Wiley, New York, 1992.Google Scholar
  15. 1.13.
    K. Wilmanski, Thermomechanics of Continua, Springer, Berlin, 1998.MATHCrossRefGoogle Scholar
  16. 1.14.
    R. E. Nettleton and S. L. Sobolev, J. Non-Equilib. Thennodyn. 20 (1995) 205, 297; 21 (1996) 1.Google Scholar
  17. 1.15.
    D. Jou, J. Casas-Vazquez and G. Lebon, Rep. Prog. Phys. 51 (1988) 1105; 62 (1999) 1035;Google Scholar
  18. D. Jou, J. Casas-Vazquez and G. Lebon, J. Non-Equilib. Thermodyn. 17 (1992) 383; 21 (1996) 103, 23 (1998) 277.Google Scholar
  19. 1.16.
    R. Luzzi, A. R. Vasconcellos, J. Casas-Vazquez, and D. Jou, Physica A 234 (1997) 699.ADSCrossRefGoogle Scholar
  20. 1.17.
    R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics. Wiley, New York, 1977.Google Scholar
  21. 1.18.
    J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1971.Google Scholar
  22. 1.19.
    B. D. Coleman, H. Markovitz and W. Noll, Viscometric Flows of Non-Newtonian Fluids, Springer, New York, 1966.CrossRefGoogle Scholar
  23. 1.20.
    R. I. Tanner, Engineering Rheology, Clarendon Press, Oxford, 1988.MATHGoogle Scholar
  24. 1.21.
    G. Lebon, C. Pérez-García and J. Casas-Vazquez, Physica A 137 (1986) 531;ADSCrossRefGoogle Scholar
  25. G. Lebon, C. Pérez-García and J. Casas-Vazquez, J. Chem. Phys. 88 (1988) 5068.MathSciNetADSCrossRefGoogle Scholar
  26. 1.22.
    D. Jou, J. Camacho and M. Grmela, Macromolecules 24 (1991) 3597.ADSCrossRefGoogle Scholar
  27. 1.23.
    P. Goldstein and L. S. García-Colín, J. Chem. Phys. 99 (1993) 3913;ADSCrossRefGoogle Scholar
  28. P. Goldstein and L. S. García-Colín, J. NonEquilib. Thermodyn. 19 (1994) 170;MATHGoogle Scholar
  29. A. N. Pérez-Guerrero and L. S. García-Colín, J. Non-Equilib. Thermodyn. 16 (1991) 201;ADSMATHCrossRefGoogle Scholar
  30. A. N. Pérez-Guerrero, J. Non-Equilib. Thennodyn. 22 (1997) 20.ADSMATHGoogle Scholar
  31. 1.24.
    R. E. Nettleton, J. Phys. A: Math. Gen. 21 (1988) 1079;ADSMATHCrossRefGoogle Scholar
  32. R. E. Nettleton, J. Chem. Phys. 99 (1993) 3059.MathSciNetADSCrossRefGoogle Scholar
  33. 1.25.
    M. Silhavy, The Mechanics and Thermodynamics of Continuous Media, Springer, Berlin, 1997.MATHGoogle Scholar
  34. 1.26.
    V. Ciancio and J. Verhas, J. Non-Equilib. Thennodyn. 16 (1991) 57;ADSMATHCrossRefGoogle Scholar
  35. V. Ciancio, L. Restuccia and G. A. Kluitenberg, J. Non-Equilib. Thermodyn. 15 (1990) 157.ADSGoogle Scholar
  36. 1.27.
    J. Kestin, J. Non-Equilib. Thermodyn. 15 (1990) 193; 18 (1993) 360;Google Scholar
  37. W. Muschik, J. Non-Equilib. Thermodyn. 15 (1990) 127; 18 (1993) 380.Google Scholar
  38. 1.28.
    R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory, Wiley, New York, 1977.Google Scholar
  39. 1.29.
    M. Gnnela and H. C. Öttinger, Phys. Rev. E 56 (1997) 6620;MathSciNetADSCrossRefGoogle Scholar
  40. H. C. Öttinger and M. Grmela, Phys. Rev. E 56 (1997) 6633.MathSciNetADSCrossRefGoogle Scholar
  41. 1.30.
    M. Dressler, B. J. Edwards and H. C. Öttinger, Rheol. Acta 38 (1999) 117.CrossRefGoogle Scholar
  42. 1.31.
    A. N. Beris and S. J. Edwards,Thermodynamics of Flowing Fluids with Internal Microstructure, Oxford University Press, New York, 1994.Google Scholar
  43. 1.32.
    R. J. J. Jongschaap, Rep. Prog. Phys. 53 (1990) 1;Google Scholar
  44. R. J. J. Jongschaap, K. H. Haas and C. A. J. Damen, J. Rheol. 38 (1994) 769.MathSciNetADSCrossRefGoogle Scholar
  45. 1.33.
    B. J. Edwards, H. C. Öttinger and R. J. J. Jongschaap, J. Non-Equilib. Thermodyn. 22 (1997) 356.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • David Jou
    • 1
  • José Casas-Vázquez
    • 1
  • Manuel Criado-Sancho
    • 2
  1. 1.Departament de Física Grup de Física EstadísticaUniversitat Autònoma de BarcelonaBellaterra, CataloniaSpain
  2. 2.Departamento de Ciencias y Técnicas FísicoquímicasUNEDMadridSpain

Personalised recommendations