Host Plant Resistance: Cultivar- or Parasite-Specific Resistance

  • Hermann H. Prell
  • Peter Day
Chapter

Abstract

Within a population of susceptible and genetically uniform plants growing in the field and exbibiting basic compatibility with a given pathogen, there may occasionally be found plants that are able to defend themselves against the attacking homologous pathogen. However, a prerequisite for resistance to infection, or incompatibility with a homologous pathogen, is the presence of mutation(s) to resistance in the host plant. The mutation(s) probably arose spontaneously in an ancestral plant but its phenotype became apparent only when the plant was challenged with the appropriate pathogen. In contrast to the broad spectrum of pathogens that are successfully rejected by non-host plants, i.e., by the presence of basic resistance, host resistance is a highly specialized kind of pathogen defense which is directed to only one particular pathogen, or formna specialis, or even only to certain races. Except for this one homologous, but now incompatible pathogen, the plant still exhibits full compatibility with other homologous pathogens.

Keywords

Maize Lipase Chitosan Resis Oligosaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reviews

  1. Bailey J.A. (1983): Biological perspectives of host-pathogen interactions. In: Bailey J.A., Deverall B.J. (eds.): The Dynamics of Host Defence. Academic Press Australia, Sidney, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Tokyo, Toronto. 1–32Google Scholar
  2. Dixon R.A., Harrison M.J. (1990): Activation, structure, and organization of genes involved in microbial defense in plants. Adv.Genetics 28: 165–234CrossRefGoogle Scholar
  3. Dixon R.A., Lamb C.J. (1990): Molecular communication in interactions between plants and microbial pathogens. Annu.Rev.Plant Physiol. 41: 339–367CrossRefGoogle Scholar
  4. Ellingboe A.H. (1976): Genetics of host-parasite interactions. In: Heitefuss R., Williams P.H. (eds.): Encyclopedia of Plant Physiology, (NS), Physiological Plant Pathology. Springer Verlag, Heidelberg. 761–778Google Scholar
  5. Ellingboe A.H. (1981): Changing concepts in host-pathogen genetics. Annu.Rev.Phytopathol. 19: 125–143CrossRefGoogle Scholar
  6. Gabriel D.W. Rolfe B.G.(1990): Working models of specific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  7. Heath M.G. (1991): Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol. 119: 331–343CrossRefGoogle Scholar
  8. Johnson R. (1992): Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63: 3–22CrossRefGoogle Scholar
  9. Keen N.T. (1990): Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics 24: 447–463PubMedCrossRefGoogle Scholar
  10. Keen N.T. (1992): The molecular biology of disease resistance. Plant.Mol.Biol. 19:109–122PubMedCrossRefGoogle Scholar
  11. Keen N.T. (1993): An overview of active disease defense in plants. In: Fritig B., Legrand M. (eds.): Mechanisms of Plant Defense Responses. Kluwer Academic Publishers, The Netherlands. 3–11CrossRefGoogle Scholar
  12. Parlevliet J.E., Zadoks J.C. (1977): The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. Euphytica 26: 5–21CrossRefGoogle Scholar
  13. Vanderplank J.E. (1963): Plant Diseases: Epidemics and Control. Academic Press, New York, LondonGoogle Scholar
  14. Vanderplank J.E. (1968): Disease Resistance in Plants. Academic Press, New York, LondonGoogle Scholar

Relevant papers

  1. Heath M.C. (1974): Light and electron microscope studies of the interactions of host and non-host plants with cowpea rust — Ulromyces phaseoli varvignae. Physiol.Plant Pathol. 4: 403–414CrossRefGoogle Scholar
  2. Heath M.C. (1981): Resistance of plants to rust infection. Phytopathology 71: 971–974CrossRefGoogle Scholar

Reviews

  1. Bailey J.A. (1983): Biological perspectives of host-pathogen interactions. In: Bailey J.A., Deverall B.J. (eds.): The Dynamics of Host Defence. Academic Press Australia, Sidney, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Tokyo, Toronto. 1 – 32Google Scholar
  2. Burnett J.H. (1975): Chapter 13: General aspects of fungal pathogenicity. In: Burnett J.H. (ed.): Mycogenetics. John Wiley & Sons, London, New York, Sidney, Toronto. 259–287Google Scholar
  3. Crute I.R (1985): The genetic bases of relationships between microbial parasites and their hosts. In: Fraser R.S.S. (ed.): Mechanisms of Resistance to Plant Diseases. Martinus Nijhoff/Dr.W.Junk, Dordrecht, Boston, Lancaster. 81–142Google Scholar
  4. Dixon R.A., Lamb C.J. (1990): Molecular communication in interactions between plants and microbial pathogens. Annu.Rev.Plant Physiol. 41: 339–367CrossRefGoogle Scholar
  5. Ellingboe A.H. (1976): Genetics of host-parasite interactions. In: Heitefuss R., Williams P.H. (eds.): Encyclopedia of Plant Physiology, (NS), Physiological Plant Pathology. Springer Verlag, Heidelberg. 761–778Google Scholar
  6. Flor H.H. (1971): Current status of the gene-for-gene concept. Annu.Rev.Phytopathol. 9: 275–296CrossRefGoogle Scholar
  7. Gabriel D.W., Rolfe B.G. (1990): Working models of specific recogmition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  8. Heath M.C. (1991): Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol. 119:331–343CrossRefGoogle Scholar
  9. Keen N.T. (1990): Gene-for-gene complementarity yin plant-pathogen interactions. Annual Review of Genetics 24: 447–463PubMedCrossRefGoogle Scholar
  10. Keen N.T. (1992): The molecular biology of disease resistance. Plant Mol.Biol. 19: 109–122PubMedCrossRefGoogle Scholar
  11. Keen N.T. (1993): An overview of active disease defense in plants. In: Fritig B., Legrand M. (eds.): Mechanisms of Plant Defense Responses. Kluwer Academic Publishers, The Netherlands. 3 – 11Google Scholar
  12. Person C. (1959): Gene-for-gene relationships in host: parasite systems. Can.J.Bot. 37: 1101–1130CrossRefGoogle Scholar
  13. Pryor T. (1987): The origin and structure of fungal disease resistance genes in plants. Trends Genet. 3: 157–161CrossRefGoogle Scholar

Relevant papers

  1. Daly J.M., Seevers P.M., Ludden P. (1970): Studies on wheat stem rust resistance controlled at the Sr6 locus. III. Ethylene and disease reaction. Phytopathology 60: 1648–1652Google Scholar

Reviews

  1. Brettell R.I.S., Pryor A.J. (1986): Molecular approaches to plant and pathogen genes. In: Blonstein A.D., King P.J. (eds.): Plant Gene Research: A Genetic Approach to Plant Biochemistry. Springer-Verlag, Vienna, New York. 233–246CrossRefGoogle Scholar
  2. Burnett J.H. (1975): Chapter 13: General aspects of fungal pathogenicity. In: Burnett J.H. (ed.): Mycogenetics. John Wiley & Sons, London, New York, Sidney, Toronto. 259–287Google Scholar
  3. Crute L.R. (1985): The genetic bases of relationships between microbial parasites and their hosts. In: Fraser R.S.S. (ed.): Mechanisms of Resistance to Plant Diseases. Martinus Nijhoff/Dr.W.Junk, Dordrecht, Boston, Lancaster. 81–142Google Scholar
  4. Crute I.R., de Wit P.J.G.M., Wade M. (1985): Mechanisms by which genetically controlled resistance and virulence influence host colonization by fungal and bacterial parasites. In: Fraser R.S.S. (ed.): Mechanisms of Resistance to Plant Diseases. Martinus Nijhoff/ Dr.W.Junk, Dordrecht, Boston, Lancaster. 197–309CrossRefGoogle Scholar
  5. Day P.R. (1972): The genetics of rust fungi. In: Bingham R.T., Hoff R.J., McDonald G.I. (eds.): Biology of rust resistance in forest trees. U.S. Department of Agriculture, Forest Service, Washington, D.C.3–17Google Scholar
  6. Dinoor A., Eshed N., Nof E. (1988): Puccinia coronata, crown rust of oat and grasses. Advances in Plant Pathology 6: 333–344Google Scholar
  7. Dixon R.A., Lamb C.J. (1990): Molecular communication in interactions between plants and microbial pathogens. Annu.Rev.Plant Physiol. 41: 339–367CrossRefGoogle Scholar
  8. Ellingboe A.H.(1976): Genetics of host-parasite interactions. In: Heitefuss R., Williams P.H. (eds.): Encyclopedia of Plant Physiology, (NS), Physiological Plant Pathology. Springer Verlag, Heidelberg. 761 – 778Google Scholar
  9. Elor H.H. (1954): Identification of races of flax rust by lines of single rust-conditioning genes. U.S.D.A. Techn. Bull. 1087: 1–25Google Scholar
  10. Flor H.H. (1956): The complementary genic systems in flax and flax rust. Adv.Genetics 8: 29–54CrossRefGoogle Scholar
  11. Flor H.H. (1971): Current status of the gene-for-gene concept. Annu.Rev.Phytopathol. 9: 275–296CrossRefGoogle Scholar
  12. Gabriel D.W., Rolfe B.G. (1990): Working models of specific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  13. Heath M.C. (1991): Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol. 119:331–343CrossRefGoogle Scholar
  14. Johnson R. (1992): Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63: 3–22CrossRefGoogle Scholar
  15. Johnson R. (1992): Reflections of a plant pathologist on breeding for disease resistance, with emphasis on yellow rust and eyespot of wheat. Plant Pathology 41: 238–254Google Scholar
  16. Johnson R., Knott D.R. (1992): Specificity in gene-for-gene interactions between plants and pathogens. Plant Pathology 41: 1–4CrossRefGoogle Scholar
  17. Keen N.T. (1982): Mechanisms conferring specific recognition in gene-for-gene plant parasite systems. In: Wood R.K.S. (ed.): Active Defence Mechanisms in Plants. Plenum Press, New York, London. 67–84CrossRefGoogle Scholar
  18. Keen N.T. (1982): Speciflc recognition in gene-for-gene host-parasite systems. Advances in Plant Pathology 1: 35–81Google Scholar
  19. Keen N.T. (1990): Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics 24: 447–463PubMedCrossRefGoogle Scholar
  20. Keen N.T. (1992): The molecular biology of disease resistance. Plant Mol.Biol. 19: 109–122PubMedCrossRefGoogle Scholar
  21. Keen N.T. (1993): An overview of active disease defense in plants. In: Fritig B., Legrand M. (eds.): Mechanisms of Plant Defense Responses. Kluwer Academic Publishers, The Netherlands. 3–11CrossRefGoogle Scholar
  22. Knogge W., Hahn M., Lehnackers H., Rüpping E., Wevelsiep L. (1991): Fungal signals involved in the specificity of the interaction between barley and Rhynchosporium secalis. In: Hennecke H., Verma D.P.S. (eds.): Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht, Kluwer Academic Publishers, Netherlands. 250 – 253Google Scholar
  23. Lawrence G.J. (1988): Melampsora lini, rust of flax and linseed. Advances in Plant Pathology 6: 313–331Google Scholar
  24. Littlefield L.J., Heath M.C. (1979): Ultrastructure of Rust Fungi. Academic Press, New York, San Francisco, LondonGoogle Scholar
  25. Mansfield J., Bennett M., Bestwick C., Woods-Tör A. (1997): Phenotypic expression of gene-for-gene interaction involving fungal and bacterial pathogens: Variation from recognition to response. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 265–291Google Scholar
  26. Person C. (1959): Gene-for-gene relationships in host: parasite systems. Can.J.Bot. 37: 1101–1130CrossRefGoogle Scholar
  27. Pryor T. (1987): The origin and structure of fungal disease resistance genes in plants. Trends Genet. 3:157–161CrossRefGoogle Scholar
  28. Shaner G., Stromberg E.L., Lacy G.H., Barker K.R., Pirone T.P. (1992): Nomenclature and concepts of pathogenicity and virulence. Annu.Rev.Phytopathol. 30: 47–66PubMedCrossRefGoogle Scholar
  29. Scholtens-Thoma I.M.J., Joosten M.H.A.J., de Wit P.J.G.M. (1991): Appearance of pathogen-related proteins in plant hosts — Relationships between compatible and incompatible interactions. In: Cole G.T., Hoch H.C. (eds.): The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Press, New York, London. 247–265Google Scholar
  30. Thompson J.N., Burdon J.J. (1992): Gene-for-gene coevolution between plants and parasites. Nature 360: 121–125CrossRefGoogle Scholar

Relevant papers

  1. Flor H.H. (1942): Inheritance of Pathogenicity in Melampsora lini. Phytopathology 32: 653–669Google Scholar
  2. Flor H.H. (1946): Genetics of pathogenicity in Melampsora lini. Jour.Agr.Res.73:335–366Google Scholar
  3. Flor H.H. (1955): Host-parasite interaction in flax rust — its genetics and other implications. Phytopathogogy 45: 680–685Google Scholar
  4. Heath M.C. (1991): The role of gene-for-gene interactions in the determination of host species specificity. Phytopathology 81: 127–130Google Scholar
  5. Kerber E.R., Dyck P.L. (1973): Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcumn) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can-J.Genet.Cytol. 15: 397–409Google Scholar

Reviews

  1. Ellingboe A.H. (1976): Genetics of host-parasite interactions. In: Heitefuss R., Williams P.H. (eds.): Encyclopedia of Plant Physiology, (NS), Physiological Plant Pathology. Springer Verlag, Heidelberg. 761–778Google Scholar
  2. Ellingboe A.H. (1981): Changing concepts in host-pathogen genetics. Annu.Rev.Phytopathol. 19: 125–143CrossRefGoogle Scholar
  3. Ellingboe A.H. (1982): Genetical aspects of active defence. In: Wood R.S.K. (ed.): Active Defence Mechanisms in Plants. Plenum Press, New York. 179–192CrossRefGoogle Scholar
  4. Gabtiel D.W., Rolfe B.G.(1990):Workingmodels of secific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391Google Scholar

Relevant papers

  1. Bushnell W.R., Rowell J.B. (1981): Suppressors of defense reactions: A model for roles in specificity. Phytopathology 71: 1012–1014Google Scholar

Reviews

  1. Aist J.R., Bushnell W.R. (1991): Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In: Cole G.T., Hoch H.C. (eds.): The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Press, New York, London. 321–345Google Scholar
  2. Atkinson M.M. (1993): Molecular mechanisms of pathogen recognition by plants. Advances in Plant Pathology 10: 35–64Google Scholar
  3. Bailey J.A. (1983): Biological perspectives of host-pathogen interactions. In: Bailey J.A., Deverall B.J. (eds.): The Dynamics of Host Defence. Academic Press Australia, Sidney, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Tokyo, Toronto. 1 – 32Google Scholar
  4. Boller T. (1995): Chemoreception of microbial signals in plant cells. Annu.Rev.Plant Physiol.Plant Mol.Biol. 46: 189–214CrossRefGoogle Scholar
  5. Collmer A., Keen N.T. (1986): The role of pectic enzymes in plant pathogenesis. Annu. Rev.Phytopathol. 24: 383–409CrossRefGoogle Scholar
  6. Darvill A.G., Albersheim P. (1984): Phytoalexins and their elicitors — a defense against microbial infection in plants. Annu.Rev.Plant Physiol. 35: 243–275CrossRefGoogle Scholar
  7. De Wit P.J.G.M., Joosten M.A.H.J., Honée G., Wubben J.P., van den Ackerveken G.F.J.M., van den Broek H.W.J. (1994): Molecular communication between host plant and the fungal tomato pathogen Cladosporium fulvum. Antonie van Leeuvenhoek 65: 257–262CrossRefGoogle Scholar
  8. De Wit P.J.G.M. (1992): Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu.Rev.Phytopathol. 30: 391–418PubMedCrossRefGoogle Scholar
  9. De Wit P.J.G.M., Van den Ackervekcn, Vossen P.M.J., Joosten M.H.A.J., Cozijnsen T.N., Honée G., Wubben J.P., Danhash N., Van Kan J.A.L., Marmeisse R., Van den Broek H.W.J. (1993): Avirulence genes of the tomato pathogen Cladosporium fulvum and their exploitation in molecular breeding for disease resistant plants. In: Fritig B., Legrand M. (eds.): Mechanisms of Plant Resistance Responses. Kluwer Academic Publishers, The Netherlands. 24–32CrossRefGoogle Scholar
  10. De Wit P.J.G.M., Van Kan J.A.L., Van den Ackerveken A.F.J.M., Joosten M.H.A.J. (1991): Specificity of plant-fungus interactions: Molecular aspects of avirulence genes. In: Hennecke H., Verma D.P.S. (eds.): Advances in Molecular Genetics of Plant-Microbe Interactions. Kluwer Academic Publishers, Dordrecht, The Netherlands. 233–241Google Scholar
  11. Dixon R.A., Lamb C.J. (1990): Molecular communication in interactions between plants and microbial pathogens. Annu.Rev.Plant Physiol. 41: 339–367CrossRefGoogle Scholar
  12. Ebel J., Cosio E.G. (1994): Elicitors of plant defense responses. Int.Rev.Cytology 148:1–36CrossRefGoogle Scholar
  13. Ebel J., Grisebach H. (1988): Defense strategies of soybean against the fungus Phytophthora megasperma f.sp. glycinea: a molecular analysis. Trends Biochem.Sci. 13: 23–27PubMedCrossRefGoogle Scholar
  14. Gabriel D.W. (1989): Genetics of plant parasite populations and host-parasite specificity. In: Kosugue T., Nester E.W. (eds.): Plant-Microbe Interactions: Molecular and Genetic Perspectives. Macmillan, New York. 343–379Google Scholar
  15. Gabriel D.W., Rolfe B.G. (1990): Working models of specific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  16. Goodman R.N., Novacky A.J. (1994): The Hypersensitive Reaction in Plants to Pathogens, A Resistance Phenomenon. APS Press, St.Paul, MinnesotaGoogle Scholar
  17. Heath M.C. (1991): Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol. 119: 331–343CrossRefGoogle Scholar
  18. Keen N.T. (1982): Specific recognition in gene-for-gene host-parasite systems. Advances in Plant Pathology 1: 35–81Google Scholar
  19. Keen N.T. (1990): Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics 24: 447–463PubMedCrossRefGoogle Scholar
  20. Keen N.T. (1992): The molecular biology of disease resistance. Plant Mol.Biol. 19: 109–122PubMedCrossRefGoogle Scholar
  21. Keen N.T. (1993): An overview of active disease defense in plants. In: Fritig B., Legrand M. (eds.): Mechanisms of Plant Defense Responses. Kluwer Academic Publishers, The Netherlands. 3 – 11Google Scholar
  22. Knogge W., Marie C. (1997): Molecular characterization of fungal avirulence. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Inter actions. CAB International, Oxon UK, New York NY. 329–346Google Scholar
  23. Moerscbbacher B.M., Reisener H.-J. (1997): The hypersensitive resistance reaction. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, L.Åbeck, Ulm. 126–158Google Scholar
  24. Ryan C.A., Farmer E.E. (1991): Oligosaccharide signals in plants: a current assessment. Annu.Rev.Plant Physiol. 42: 651–674CrossRefGoogle Scholar
  25. Scheel D., Parker J.E. (1990): Elicitor recognition and signal transduction in plant defense gene activation. Z.Naturforsch. 45c: 569–575Google Scholar
  26. Thompson J.N., Burdon J.J. (1992): Gene-for-gene coevolution between plants and parasites. Nature 360: 121–125CrossRefGoogle Scholar
  27. Tosa Y. (1996): Gene-for-gene relationships in forma specialis-genus specificity of cereal powdery mildews. In: Mills D., Kunoh H., Keen N.T., Mayama S. (eds.): Molecular Aspects of Pathogenicity and Resistance: Requirement for Signal Transduction. The American Phytopathological Society, St. Paul, Minnesota. 49–55Google Scholar
  28. Van den Ackerveken G.F.J.M., De Wit P.J.G.M. (1995): The Cladosporiumn fulvum-tomato interaction, a model system for fungus-plant specificity. In: Kohmoto K., Singh U.S., Singh R.P. (eds.): Pathogenesis and Host Specificity an Plant Diseases — Histopathological, Biochemical, Genetic and Molecular Bases. Elsevier Science, Oxford, New York, Tokyo. 145–160Google Scholar
  29. Van Kan J.A.L., Joosten M.H.A.J., van den Ackerveken G.F.J.M., de Wit P.J.G.M. (1994): Molecular characterization of avirulence determinants of the tomato pathogen Cladosporium fulvum.In: Kohomoto K., Yoder O.C. (eds.): Host Specific Toxin: Biosynthesis, Receptor and Molecular Biology. Faculty of Agriculture, Tottori University, Sogo Printing and Publishing Co., Ltd., Tottori, Japan. 251–261Google Scholar

Relevant papers

  1. Davis K.R., Darvill A.G., Albersheim P. (1986): Host-pathogen interactions. XXX. Charac terization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonic acid lyase. Z.Naturforsch.C 41c: 39–48Google Scholar
  2. Davis R.D., Lyon G.D., Darvill A.D., Albersheim P. (1984): Host-pathogen interactions XXV. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments. Plant Physiol. 74: 52–60PubMedCrossRefGoogle Scholar
  3. De Wit P.J.G.M., Bunrlage M.B., Hammond K.E. (1986): The occurence of host-, pathogenand interaction-specific proteins in the apopast of Cladosporium fulvum (syn.Fulvia fulva) infected tomato leaves. Physiol.Mol.Plant Path. 29: 159–172CrossRefGoogle Scholar
  4. De Wit P.J.G.M., van den Ackerveken G.F.J.M., Joosten M.H.A.J., van Kan J.A.L. (1989): Apoplastic proteins involved in comnmunication between tomato and the fungal patho- gen Cladosporium fulvum. In: B.J.J. Lugtenberg (ed.): Signal Molecules in Plant and Plant-Microbe Interactions. Springer- Verlag, Berlin, Heidelberg. 273–280Google Scholar
  5. Fritzemeier K.-H., Cretin C., Kombrink E., Rohwer F., Taylor J., Scheel D., Hahlbrock K. (1987): Transient induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNA in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiol. 85: 34–41PubMedCrossRefGoogle Scholar
  6. Hahn M., Jüngling S., Knogge W. (1993): Cultivar-specific elicitation of barley defense re actions byphytotoxic peptide NIPI from Rhynchosporium secalis. Molec.Plant-Microbe Interact. 6: 745–754CrossRefGoogle Scholar
  7. Heath M.C. (1991): The role of gene-for-gene interactions in the determination of host species specificity. Phytopathology 81: 127–130Google Scholar
  8. Jin D.F., West A.W. (1984): Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol. 74: 989–992PubMedCrossRefGoogle Scholar
  9. Joosten M.A.H.J., Cozijnsen T.J., De Wit P.J.G.M. (1994): Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367:384–386PubMedCrossRefGoogle Scholar
  10. Joosten M.A.H.J., Vogelsang R., Cozijnsen T.J., Verberne M.C., De Wit P.J.G.M. (1997): The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors. Plant Cell 9: 367–379PubMedGoogle Scholar
  11. Knogge W., Hahn M., Lehnackers H., Råpping E. Wevelsiep L. (1991): Fungal signals involved in the specificity of the interaction between barley and Rhynchosporium secalis. In: Hennecke H., Verma D.P.S. (eds.): Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht, Kluwer Academic Publishers, Netherlands. 250–253Google Scholar
  12. Kooman-Gersmann M., Honée G., Bonnema G., De Wit P.J.G.M. (1996): A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant J. 8: 929–938Google Scholar
  13. Kooman-Gersmann M., Vogelsang R., Hoogendijk E.C.M., De Wit P.J.G.M. (1997): Assignment of amino acid residues of the AVR9 peptide of Vladosporium fulvum that determinate elicitor activity. Molec. Plant-Microbe Interactions 10: 821–829CrossRefGoogle Scholar
  14. Marmeisse R., Van den Ackerveken G.F.J.M., Goosen T., de Wit P.J.G.M., Van den Broek H.W.J. (1993): Disruption of the avirulence gene avr9 in two races of the tomato pathogen Cladosporium fulvum causes virulence on tomato genotypes with the complementary resistance gene Cf9. Molec.Plant-Microbe Interact. 6: 412–417CrossRefGoogle Scholar
  15. Rohe M., Gierlich A., Hermann H., Hahn M., Schmidt B., Rosahl S., Knogge W. (1995): The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporiumn secalis, determines avirulence on host plants of the Rrsl resistance genotype. EMBO J. 14:4168–41777PubMedGoogle Scholar
  16. Rohwer F., Fritzemeier K.-H., Scheel D., Hahlbrock K. (1987): Biochemical reactions of different tissues of potato (Solarnum tuberosum) to zoospores or elicitors from Phytophthora infestans. Accumulation of sesquiterpenoid phytoalexins. Planta 170: 556–561Google Scholar
  17. Van den Ackerveken G.F.J.M., Dunn R.M., Cozijnsen A.J., Vossen J.P.M.J., Van den Broek H.W.J., De Wit P.J.G.M. (1994): Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol.Gen.Genet 243:277–285PubMedCrossRefGoogle Scholar
  18. Van den Ackerveken G.F.J.M., Van Kan J.A.L., De Wit P.J.G.M. (1992): Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvunn fully supports the gene-for-gene hypothesis. Plant J. 2: 359–366PubMedCrossRefGoogle Scholar
  19. Van den Ackerveken G.F.J.M., Vossen P., De Wit J.G.M. (1993): The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol. 103: 91–96CrossRefGoogle Scholar
  20. Van Kan J.A.L., Van den Ackerveken G.F.J.M., De Wit P.J.G.M. (1991): Cloning and characterization of cDNA of avirulence gene avr9 and the fungal pathogen Cladosporium fulvumn, causal agent of tomato leaf mold. Molec.Plant-Microbe Interact 4: 52–59CrossRefGoogle Scholar

Reviews

  1. Atkinson M.M. (1993): Molecular mechanisms of pathogen recognition by plants. Advances in Plant Pathology 10: 35–64Google Scholar
  2. Dangl J.L., Dietrich R.A., Richberg M.H. (1996): Death Don’t Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell 8: 1793–1804PubMedGoogle Scholar
  3. Dixon R.A., Lamb C.J. (1990): Molecular communication in interactions between plants and microbial pathogens. Annu.Rev.Plant Physiol. 41:339–367CrossRefGoogle Scholar
  4. Ebel J., Grisebach H. (1988): Defense strategies of soybean againstthe fungus Phytophthora megasperma f.sp. glycinea: a molecular analysis. Trends Biochem.Sci. 13: 23–27PubMedCrossRefGoogle Scholar
  5. Gabriel D.W., Loschke D.C., Rolfe B.G. (1988): Gene-for-Gene recognition: The ion channel defense model. In: Verma D.P., Palacios R. (eds.): Molecular Plant-Microbe Interactions. American Phytopathological Society Press, St. Paul. 3–14Google Scholar
  6. Gabriel D.W., Rolfe B.G. (1990): Working models of specific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  7. Hammond-Kosack K.E., Jones J.D.G. (1996): Resistance Gene-Dependent Plant Defense Responses. Plant Cell 8: 1773–1791PubMedGoogle Scholar
  8. Knogge W. (1997): Elicitors and suppressors of the resistance response. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm. 159–182Google Scholar
  9. Knogge W. (1998): Fungal pathogenicity. Curr. Opinion Plant Biol. 1: 324–328CrossRefGoogle Scholar
  10. Kombrink E., Somssich I.E. (1995): Defense response of plants to pathogens. Adv.Bot.Res. 21: 1–34CrossRefGoogle Scholar
  11. Kronstad J.W. (1997): Virulence and cAMP in smuts, blasts and blights. Trends Plant Science 1: 193–199CrossRefGoogle Scholar
  12. Lee H.I., Leon J., Raskin I. (1995): Biosynthesis and metabolism of salicylic acid. Proc. Natl.Acad.Sci. USA 92: 4076–4079PubMedCrossRefGoogle Scholar
  13. Novacky A. (1991): The plant membrane and its response to disease. In: Cole G.T., Hoch H.C. (eds.): The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Press, New York, London. 363–378Google Scholar
  14. Ryan C.A., Farmer F.E. (1991): Oligosaccharide signals in plants: a current assessment. Annu.Rev.Plant Physiol. 42: 651–674CrossRefGoogle Scholar
  15. Scheel D., Colling C., Hedrich R., Kawalleck P. Parker J.E., Sacks W.R., Somssich I.E., Hahlbrock K. (1991): Signals in plant defense gene activation. In: Hennecke H., Verma D.P.S. (eds.): Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht, Kluwer Academic Publishers, Netherlands. 373–380Google Scholar
  16. Scheel D., Parker J.E. (1990): Elicitor recognition and signal transduction in plant defense gene activation. Z.Naturforsch. 45c: 569–575Google Scholar
  17. Tenhaken R., Levine A., Brisson L.F., Dixon R.A., Lamb C. (1995): Function of the oxidative burst in hypersensitive disease resistance. Proc.Natl.Acad.Sci.USA 92: 4158–4163PubMedCrossRefGoogle Scholar
  18. Wubben J.P., Boller T., Honée G., De Wit P.J.G.M. (1997): Phytoalexins. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Ltbeck, Ulm. 202–237Google Scholar

Relevant papers

  1. Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gutrella M., Kessmnaun H., Ward E., Ryals J. (1994): A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250PubMedCrossRefGoogle Scholar
  2. Dewey R.E., Levings III C.S., Timothy D.H. (1986): Novel recombinations in the maize mitochondrial genome produce an unique transcriptional unit in the texas male-sterile cytoplasm. Cell 44: 439–449PubMedCrossRefGoogle Scholar
  3. Mayama S., Tani T., Uneo T., Midland S.L., Simsl.J., Keen N.T. (1986): The purification of victorin and its phytoalexin elicitor activity in oat leaves. Physiol.Mol.Plant Path. 29: 1–19CrossRefGoogle Scholar
  4. Rines H., Luke H.H. (1985): Selection and regeneration of toxin-insensitive plants from tissue cultures of oats Avena sativa susceptible to Helminthosporium victoriae. Theor. Appl.Genet. 71: 16–21CrossRefGoogle Scholar
  5. Vera-Estrella R., Barkla B.J., Higgins V.J., Blumwald E. (1994): Plant Defense Response to Fungal Pathogens — Activation of Host-Plasma Membrane H+-ATPese by Elicitor-Induced Enzyme Dephosphorylation. Plant Physiol. 104: 209–215PubMedGoogle Scholar
  6. Viard M.P., Martin F., Pugin A., Ricci P., Blein J.P. (1994): Protein Phosphorylation Is Induced in Tobacco Cells by the Elicitor Cryptogein. Plant Physiol. 104: 1245–1249PubMedGoogle Scholar

Reviews

  1. Bailey J.A. (1983): Biological perspectives of host-pathogen interactions. In: Bailey J.A., Deverall B.J. (eds.): The Dynamics of Host Defence. Academic Press Australia, Sidney, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Tokyo, Toronto. 1–32Google Scholar
  2. Heath M.C. (1982): The absence of active defence mechanisms in compatible host-pathogen interactions. In: Wood R.K.S. (ed.): Active Defence Mechanisms in Plants. Plenum Press, New York, London. 143–156Google Scholar
  3. Keen N.T. (1993): An overview of active disease defense in plants. In: Fritig B., Legrand M. (eds.): Mechanisms of Plant Defense Responses. Kluwer Academic Publishers, The Netherlands. 3 – 11Google Scholar

Relevant papers

  1. Bushnell W.R., Rowell J.B. (1981): Suppressors of defense reactions: A model for roles in specificity. Phytopathology 71: 1012–1014CrossRefGoogle Scholar

Reviews

  1. Atkinson M.M. (1993): Molecular mechanisms of pathogen recognition by plants. Advances in Plant Pathology 10: 35–64Google Scholar
  2. Bennetzen J.L., Hulbert S.H. (1992): Extramarital sex amongst the beets — Organization, instability and evolution of plant disease resistance genes. Plant Mol.Biol. 20: 575–580PubMedCrossRefGoogle Scholar
  3. Bent A.F. (1996): Plant disease resistance genes: Function meets structure. Plant Cell 8: 1757–1771PubMedGoogle Scholar
  4. Beynon J.L. (1997): Molecular genetics of disease resistance: an end to the “gene-for-gene” concept? In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 359–377Google Scholar
  5. Boller T(1995): Chemoreception of microbial signals in plant cells. Annu.Rev.Plant Physiol.Plant Mol.Biol. 46: 189–214CrossRefGoogle Scholar
  6. Boyes D.C., McDowell J.M., Dangl J.L. (1996): Many roads lead to resistance. Curr.Biol. 6: 634–637PubMedCrossRefGoogle Scholar
  7. Brettell R.I.S., Pryor A.J. (1986): Molecular approaches to plant and pathogen genes. In: Blonstein A.D., King P.J. (eds.): Plant Gene Research: A Genetic Approach to Plant Biochemistry. Springer-Verlag, Vienna, New York. 233–246CrossRefGoogle Scholar
  8. Dangl J.L. (1992): The major histocompatibility complex à la carte: are there analogies to plant disease resistance genes on the menu? Plant J. 2: 3–11CrossRefGoogle Scholar
  9. Dangl J.L. (1993): The emergence of Arabidopsis thaliana as a model for plant-pathogen interactions. Advances in Plant Pathology 10: 127–156Google Scholar
  10. Dangl J.L. (1995): Pièce de Résistance: Novel class of plant disease resistance genes. Cell 80: 363–366PubMedCrossRefGoogle Scholar
  11. Dangl J.L., Dietrich R.A., Richberg M.H. (1996): Death Don’t Have No Mercy Cell Death Programs in Plant-Microbe Interactions. Plant Cell 8: 1793–1804PubMedGoogle Scholar
  12. De Wit P.J.G.M. (1995): Fungal avirulence genes and plant resistance genes: Unravelling the molecular basis of gene-for-gene interaction. Adv.Bot.Res. 21: 147–185CrossRefGoogle Scholar
  13. Ebel J., Grisebach H. (1988): Defense strategies of soybean against the fungus Phytophthora megasperma Lsp. glycinea: a molecular analysis. Trends Biochem.Sci. 13: 23–27PubMedCrossRefGoogle Scholar
  14. Ellingboe A.H. (1976): Genetics of host-parasite interactions. In: Heitefuss R., Williams P.H. (eds.): Encyclopedia of Plant Physiology, (NS), Physiological Plant Pathology. Springer Verlag, Heidelberg. 761–778Google Scholar
  15. Ellis J., Jones D. (1998): Structure and function of proteins controlling strain-specific pathogen resistance. Curr. Opinion Plant Biol. 1: 288–293CrossRefGoogle Scholar
  16. Ellis J.G., Lawrence G.J., Peacock W.J., Pryor A.J. (1988): Approaches to cloning plant genes conferring resistance to fungal pathogens. Annu.Rev.Phytopathol. 26: 245–263CrossRefGoogle Scholar
  17. Godiard L., Grant M.R., Dietrich R.A., Kiedrowski S., Dangl J.L. (1994): Perception and response in plant disease resistance. Curr.Opinion Genet.Dev. 4: 662–671CrossRefGoogle Scholar
  18. Hahlbrock K., Scheel D., Logemann E., Nürnberger T., Parniske M., Reinold S., Sacks W.R., Schmelzer E. (1995): Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc.Natl.Acad.Sci.USA 92: 4150–4157PubMedCrossRefGoogle Scholar
  19. Hammond-Kosack K.E., Jones J.D.G. (1996): Resistance Gene-Dependent Plant Defense Responses. Plant Cell 8: 1773–1791PubMedGoogle Scholar
  20. Hammond-Kosack K.E., Jones J.D.G. (1997): Plant resistance genes. Annu. Rev. Plant Physiol. Mol. Biol. 48: 575–607CrossRefGoogle Scholar
  21. Holub E.B. (1997): Organization of resistance genes in Arabidopsis. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 5–26Google Scholar
  22. Hulbert S., Pryor T., Hu G., Richter T., Drake J. (1997): Genetic fine structure of resistance loci. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY.27–44Google Scholar
  23. Hunt M.D., Neuenschwander U.H., Delaney T.P., Weyrnann K.B., Friedrich L.B., Lawton K.A., Steiner H.-J., Ryals J.A. (1996): Recent advances in systemic resistance research — a review. Gene 179: 89–95PubMedCrossRefGoogle Scholar
  24. Innes R.W. (1998): Genetic dissection of R gene signal transduction pathways. Curr. Opinion Plant Biol. 1: 299 – 304CrossRefGoogle Scholar
  25. Johnson R. (1992): Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63: 3–22CrossRefGoogle Scholar
  26. Karin M., Smeal T. (1992): Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem.Sci. 17: 418–422PubMedCrossRefGoogle Scholar
  27. Keen N.T. (1997): Elicitor generation and receipt — the mail gets through, but how? In: Crute L.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 379–388Google Scholar
  28. Knogge W. (1991): Plant resistance genes for fungal pathogens — physiological models and identification in cereal crops. Z.Naturforsch. 46c: 969–981Google Scholar
  29. Kobe B., Deisenhofer J. (1994): The leucine-rich repeat: a versatile binding motif. Trends Biochem.Sci. 19: 415–421Google Scholar
  30. Kombrink E., Somssich I.E. (1995): Defense response of plants to pathogens. Adv.Bot.Res. 21:1–34Google Scholar
  31. Lamb C.J. (1994): Plant disease resistance genes in signal perception and transduction. Cell 76: 419–422Google Scholar
  32. Lawrence G.J., Shepherd K.W., Mayo G.M.E., Islam M.R. (1994): Plant resistance to rusts and mildews: genetic control and possible machanisms. Trends Microbiol.2:263–270Google Scholar
  33. Lee H.I., Leon J., Raskin I. (1995): Biosynthesis and metabolism of salicylic acid. Proc. Natl.Acad.Sci.USA 92: 4076–4079Google Scholar
  34. Martin G., Frederick R., Tilmony R., Zhou J. (1996): Signal transduction events involved in bacterial speck disease resistance. In: Mills D., Kunoh H., Keen N.T., Mayama S. (eds.): Molecular Aspects of Pathogenicity and Resistance: Requirement for Signal Transduction. The American Phytopathological Society, St. Paul, Minnesota. 163–176Google Scholar
  35. Moerschbacher B.M., Reisener H.-I. (1997): The hypersensitive resistance reaction. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Uln. 126–158Google Scholar
  36. Newton A.C. (1997): Cultivar mixtures in intensive agriculture. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 65–80Google Scholar
  37. Pryor T. (1987): The origin and structure of fungal disease resistance genes in plants. Trends Genet. 3: 157–161CrossRefGoogle Scholar
  38. Pryor T., Ellis J. (1993): The genetic complexity of fungal resistance genes in plants. Advances in Plant Pathology 10: 281–305Google Scholar
  39. Richter T.E., Ronald P.C. (2000): The evolution of disease resistance genes. Plant Mol.Biol. 42: 195–204PubMedCrossRefGoogle Scholar
  40. Ronald P.C. (1998): Resistance gene evolution. Curr. Opinion Plant Biol. 1: 294–298CrossRefGoogle Scholar
  41. Ryan C.A., Farmer E.E. (1991): Oligosaccharide signals in plants: a current assessment. Annu.Rev.Plant Physiol. 42: 651–674CrossRefGoogle Scholar
  42. Scheel D. (1998): Resistance response physiology and signal transduction. Curr. Opinion Plant Biol. 1: 305–310CrossRefGoogle Scholar
  43. Schulze-Lefert P., Peterhaensel C., Freialdenhoven A. (1997): Mutation analysis for the dissection of resistance. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-forGene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY.45–64Google Scholar
  44. Shepherd K.W., Mayo G.M.E. (1972): Genes conferring specific plant disease resistance. Science 175: 375–380PubMedCrossRefGoogle Scholar
  45. Tenhaken R., Levine A., Brisson L.F., Dixon R.A., Lamb C. (1995): Function of the oxidative burst in hypersensitive disease resistance. Proc.Natl.Acad.Sci.USA 92: 4158–4163PubMedCrossRefGoogle Scholar

Relevant papers

  1. Apostol I., Heinstein P.F., Low P.S. (1989): Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol. 90: 109–116PubMedCrossRefGoogle Scholar
  2. Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J., Staskawicz B.J. (1994): RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265: 1856–1860PubMedCrossRefGoogle Scholar
  3. Bowling S.A., Clarke J.D., Liu Y., Klessig D.F., Dong X. (1997): The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPRI-independent resistance. Plant Cell 9: 1573–1584PubMedGoogle Scholar
  4. Chandra S., Low P.S. (1995): Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proc.Natl.Acad.Sci.USA 92: 4120–4123PubMedCrossRefGoogle Scholar
  5. Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Cutrella M., Kessmann H., Ward E., Ryals J. (1994): A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250PubMedCrossRefGoogle Scholar
  6. de Nettancourt D. (1977): Incompatibility in Angiosperms. Springer-Verlag, Berlin, New YorkGoogle Scholar
  7. Dickinson M.J., Jones D.A., Jones JDG (1993): Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Molec.Plant-Microbe Interact. 6: 341 – 347CrossRefGoogle Scholar
  8. Dietrich R.A., Delaney T.P., Uknes S.J., Ward E., Ryals J.A., Dengl J.L. (1994): Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577PubMedCrossRefGoogle Scholar
  9. Dixon M.S., Jones D.A., Keddie J.S., Thomas CM, Harrison K., Jones J.D.G. (1996): The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459PubMedCrossRefGoogle Scholar
  10. Dong X., Mindrinos M., Davis K.R., Ausubel F.M. (1991): Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3: 61–72PubMedGoogle Scholar
  11. Fisher R.A. (1961): A model for the generation of self sterility alleles. J.Theoret.Biol. 1: 411 – 414Google Scholar
  12. Freialdenhoven A., Scherag B., Hollricher K., Collinge D.B., Thordal-Christensen H., Schulze-Lefert P. (1994): Nar-1 and Nar-2, two loci required for Mla(12)-specified race-specific resistance to powdery mildew in barley. Plant Cell 6: 983–994PubMedGoogle Scholar
  13. Greenberg J.T., Ausubel F.M. (1993): Arabidopsis Mutants Compromised for the Control of Cellular Damage During Pathogenesis and Aging. Plant 1. 4: 327–341CrossRefGoogle Scholar
  14. Greenberg J.T., Guo A., Klessig D.F., Ausubel F.M. (1994): Programmed death in plants: A pathogen triggered response activated coordinately with multiple defense functions. Cell 77: 551–563PubMedCrossRefGoogle Scholar
  15. Hammond-Kosack K.E., Jones D.A., Jones J.D.G. (1994): Identification of two genes required in tomato for full Cf-9-dependent resistance to Cladosporium fulvum. Plant Cell 6: 361–371PubMedGoogle Scholar
  16. He S.Y., Huang H.-C., Collmer A. (1993): Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255–1266PubMedCrossRefGoogle Scholar
  17. Hockenbery D.M., Oltvai Z.N., Yin X.-M., Milliman C.L., Korsmeyer S.J. (1993): Bcl-2 functions in the antioxidant pathway to prevent apoptosis. Cell 75: 381–388CrossRefGoogle Scholar
  18. Horvitz H.R., Ellis H.M., Sternberg P.W. (1982): Programmed cell death in nematode development. Neurosci. Comment. 1: 867–869Google Scholar
  19. Jabs T., Dietrich R.A., Dangl J.L. (1996): Initiation ofrunaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856PubMedCrossRefGoogle Scholar
  20. Jörgensen J.H. (1988): Genetic analysis of barley mutants with modifications of powdery meldew resistance gene Ml-a12. Genome 30: 129–132CrossRefGoogle Scholar
  21. Jörgensen J.H. (1992): Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63: 141–152CrossRefGoogle Scholar
  22. Jones D.A., Dickinson M.J., Balint-Kurti P.J., Dixion M.S., Jones J.D.G. (1993): Two complex loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Molec.Plant-Microbe Interact. 6: 348–357CrossRefGoogle Scholar
  23. Jones D.A., Thomas C.M., Hammond-Kosak K.E., Balint-Kurti P.J., Jones J.D.G. (1994): Isolation of tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793PubMedCrossRefGoogle Scholar
  24. Mieth H., Speth V., Ebel J. (1986): Phytoalexin production by isolated soybean protoplasts. Z.Naturforsch.C 41c: 193–201Google Scholar
  25. Mindrinos M., Katagiri F., Yu G.-L., Ausubel F.M. (1994): The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089–1099PubMedCrossRefGoogle Scholar
  26. Nasrallah J.B., Stein J.C., Kandasarny M.K., Nasrallah M.E (1994): Signaling in the arrest of pollen tube development in self-incompatible plants. Science 266: 1505–1508PubMedCrossRefGoogle Scholar
  27. Ntrnberger T., Nennstiel D., Hahlbrock K., Scheel D. (1995): Covalent cross-linking of the Phytophthora megaspermna oligopeptide elicitor to its receptor in parsley membranes. Proc.Natl.Acad.Sci.USA 92: 2338–2342CrossRefGoogle Scholar
  28. Nürnberger T., Nennstiel D., Jabs T., Sacks W.R., Hahlbrock K., Scheel D. (1994): High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460PubMedCrossRefGoogle Scholar
  29. Oppenheim R.W., Prevette D., Tytell M., Homma S. (1990): Naturally occuring and induced neuronal death in chick embryo in vivo requires protein and RNA synthesis: evidence for the role of cell death genes. Dev. Biol. 138: 104–113PubMedCrossRefGoogle Scholar
  30. Parker J.E., Hahlbrock K., Scheel D. (1988): Different cell-wall components from Phytophthora megasperma f.sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176: 75–82CrossRefGoogle Scholar
  31. Parker J.E., Schulte W., Hahlbrock K., Scheel D. (1991): An extracellular glycoprotein from Phytophthora megasperma f.sp. glycinea elicts phytoalexin synthesis in cultured parsley cells and protoplasts. Molec.Plant-Microbe Interact. 4: 19–27CrossRefGoogle Scholar
  32. Raff M.C. (1992): Social controls on cell survival and cell death. Nature 356: 397–400PubMedCrossRefGoogle Scholar
  33. Raff M.C., Barres B.A., Burne J.F., Coles H.S., Ishizaki Y., Jacobson M.D. (1993): Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 262: 695–700PubMedCrossRefGoogle Scholar
  34. Rohwer F., Fritzemeier K.-H., Scheel D., Hahlbrock K. (1987): Biochemical reactions of different tissues of potato (Solanum tuberosum) to zoospores or elicitors from Phytophthora infestans. Accumulation of sesquiterpenoid phytoalexins. Planta 170: 556–561CrossRefGoogle Scholar
  35. Rommens C.M.T., Rudenko G.N., Djikwel P.P., van Haaren M.J.J., Ouwerkerk P.B.F., Block K.M., Nijkamp H.J.f., Hille J. (1992): Characterization of the Ac/DS behaviour in transgenic tomato plants, using plasmid rescue. Plant Mol.Biol. 20: 61–70PubMedCrossRefGoogle Scholar
  36. Salmeron J.M., Barker S.J., Carland F.M., Mehta A.Y., Staskawicz B.J. (1994): Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6: 511–520PubMedGoogle Scholar
  37. Scheel D., Colling C., Hedrich R., Kawalleck P., Parker J.E., Sacks W.R., Somssich I.E., Hahlbrock K. (1991): Signals in plant defense gene activation. In: Hennecke H., Verma D.P.S. (eds.): Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht, Kluwer Academic Publishers, Netherland.s. 373–380Google Scholar
  38. Sharp J.K., Valent B., Albersheim P. (1984): Purification and partial characterization of aβ-glucan fragment that elicits phytoalexin accumulation in soybean. J.Biol.Chem. 259: 11312–11320PubMedGoogle Scholar
  39. Sutherland M.W. (1991): The generation of oxygen radicals during host responses to infection. Physiol.Mol.Plant Path. 39: 79–94CrossRefGoogle Scholar
  40. Torp J., Jörgensen J.U.J. (1986): Modification of barley powdery mildew resistance gene Ml-a12 by induced mutation. Can.J.Genet.Cytol. 28: 725–731Google Scholar
  41. Van den Beek J.G., Verkerk R., Zabel P., Lindhout P. (1992): Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: resistance to Cladosporium fulvum on chromosome I. Theor.Appl.Genet. 84: 106–112Google Scholar
  42. Veis D.J., Sorensen C.M., Shuter J.R., Korsmeyer S.J. (1993): Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229–240PubMedCrossRefGoogle Scholar
  43. Xing T., Higgins V.J., Blumwald E. (1997): Race-specific elicitors of Cladosporium fulvum promote translocation of cytostolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell 9: 249–259PubMedGoogle Scholar
  44. Yu I.C., Parker J., Bent A.W. (1998): Gene-for-Gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc.Natl.Acad.Sci.USA 95: 7819–7824PubMedCrossRefGoogle Scholar
  45. Yu I.-C., Fengler K.A., Clough S.J., Bent A.W. (2000): Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. Molec.Plant-Microbe Interact. 13: 277 – 286CrossRefGoogle Scholar

Reviews

  1. Bayles R.A., Clarkson J.D.S., Slater S.E. (1997): The UK cereal pathogen virulence survey. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 103–117Google Scholar
  2. Brown J.K.M., Foster E.M., O’Hara R.B. (1997): Adaption of powdery mildew populations to cereal varieties in relation to durable and non-durable resistance. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions- CAB International, Oxon UK, New York NY. 119–138Google Scholar
  3. Browning J-A-, Frey K.J. (1969): Multlline cultivars as a means of disease control. Annu. Rev.Phytopathol. 7: 355–382CrossRefGoogle Scholar
  4. Fischbeck G. (1997): Gene management. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm. 349–377Google Scholar
  5. Frank S.A. (1992): Models of plant-pathogen coevolution. Trends Genet. 8: 213–219PubMedGoogle Scholar
  6. Hartleb H., Heitefuss R. (1997): Abiotic and biotic influences on resistance of crop plants against fumgal pathogens. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm. 298–326Google Scholar
  7. Heath M.C. (1991): Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol.119:331–343CrossRefGoogle Scholar
  8. Hovmoller M.S., Ostergard H., Munk L. (1997): Modellingvirulence dynamics of airborne plant pathogens in relation to selection by host resistance in agricultural crops. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in PlantParasitic Interactions. CAB International, Oxon UK, New York NY. 173 – 190Google Scholar
  9. Johnson T. (1961): Man-guided evolution in plant rusts. Science 133: 357–362PubMedCrossRefGoogle Scholar
  10. Kolmer J.A. (1997): Virulence dynamics and genetics of cereal rust populations in North America. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 139–156Google Scholar
  11. Limnpert B., Bartos B. (1997): Analysis of pathogen virulence as decision support for breeding and cultivar choice. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm. 401–424Google Scholar
  12. Newton A.C. (1997): Cultivar mixtures in intensive agriculture. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 65–80Google Scholar
  13. Parlevliet J.E. (1997): Durable resistance. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm. 238–253Google Scholar
  14. Thompson J.N., Burdon J.J. (1992): Gene-for-gene coevolution between plants and parasites. Nature 360: 121–125CrossRefGoogle Scholar
  15. Welz H.G., Kranz J. (1997): How resistance affects disease epidemics in crops. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm. 327–348Google Scholar
  16. Wolfe M.v.S., Finckh M.R. (1997): Diversity of host resistance within the crop: effects on host, pathogen and disease. In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lülbeck, Ulm. 378–400Google Scholar

Reviews

  1. Atkinson M.M. (1993): Molecular mechanisms of pathogen recognition by plants. Advances in Plant Pathology 10: 35–64Google Scholar
  2. Browning J.A., Frey K.J. (1969): Multiline cultivars as a means of disease control. Annu. Rev.Phytopathol. 7: 355–382CrossRefGoogle Scholar
  3. Crute I.R. (1985): The genetic bases of relationships between microbial parasites and their hosts. In: Fraser R.S.S. (ed.): Mechanisms of Resistance to Plant Diseases. Martinus Nijhoff/Dr.W.Junk, Dordrecht, Boston, Lancaster. 81–142Google Scholar
  4. De Wit P.J.G.M. (1992): Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control ofplant pathogens. Annu.Rev.Phytopathol. 30: 391–418PubMedCrossRefGoogle Scholar
  5. Frank S.A. (1992): Models of plant-pathogen coevolution. Trends Genet. 8: 213–219PubMedGoogle Scholar
  6. Gabriel D.W. (1989): Genetics of plant parasite populations and host-parasite specificity. In: Kosugue T., Nester E.W. (eds.): Plant-Microbe Interactions: Molecular and Genetic Perspectives. Macmillan, New York. 343–379Google Scholar
  7. Gabriel D.W., Rolfe B.G. (1990): Working models of specific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  8. Stone M.J., Williams D.H. (1992): On the evolution of functional secondary metabolites (natural products). Mol.Microbiol. 6: 29–34PubMedCrossRefGoogle Scholar
  9. Vanderplank J.E. (1963): Plant Diseases: Epidemics and Control. Academic Press, New York, LondonGoogle Scholar
  10. Vanderplank J.E. (1968): Disease Resistance in Plants. Academic Press, New York, LondonGoogle Scholar
  11. Watson I.A. (1970): Changes in virulence and population shifts in plant pathogenesis. Annu.Rev.Phytopathol. 8: 209–230CrossRefGoogle Scholar
  12. Watson I.A., Luig N.H. (1968): The ecology and genetics of host pathogen relationships in wheat rusts in Australia. In: Finlay K.W., Shepherd K.W. (eds.): Pro. Int. Wheat Genet. Symp., 3rd,. Aust. Acad. Sci., Canberra. 479 pp.Google Scholar

Relevant papers

  1. Bronson C.R., Ellingboe A.H. (1986): The influence of four unnecessary genes for virulence on the fitness of Erysiphe graminis f. sp. tritici. Phytopathology 76: 154–158CrossRefGoogle Scholar
  2. Day P.R. (1968): Plant disease resistance. Sci. Progr., Oxf. 65: 357–370Google Scholar
  3. Kearney B., Ronald P.C., Dahlbeck D., Saskawicz B.J. (1988): Molecular basis for evasion ot plant host defence in bacterial spot disease of pepper. Nature 332: 541–543CrossRefGoogle Scholar
  4. Rohe M., Gierlich A., Hermann H., Hahn M., Schmidt B., Rosahl S., Knogge W. (1995): The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrsl resistance genotype. EMBO J. 14:4168–4177PubMedGoogle Scholar

Reviews

  1. Burdon J.J. (1993): The structure of pathogen populations in natural plant communities. Annu.Rev.Phytopathol. 31: 305–323CrossRefGoogle Scholar
  2. Burdon J.J (1997): The evolution of gene-for-gene interactions in natural pathosystems. In: Crute I.R., Holub F..B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 245–262Google Scholar
  3. Clarke D.D. (1997): The genetic structure of natural pathosystems. In: Crute I.R., Holub E.B., Burdon J.J. (eds.): The Gene-for-Gene Relationship in Plant-Parasitic Interactions. CAB International, Oxon UK, New York NY. 231–243Google Scholar
  4. Frank S.A. (1992): Models of plant-pathogen coevolution. Trends Genet. 8: 213–219PubMedGoogle Scholar
  5. Frank S.A. (1993): Coevolutionary genetics of plants and pathogens. Evolutionary Ecology 7: 45–75CrossRefGoogle Scholar
  6. Heath M.C. (1987): Evolution ofplantresistance and susceptibility to fungal invadors. Can. J. Plant Pathol. 9:389–397CrossRefGoogle Scholar
  7. Heath M.C. (1991): Evolution of resistance to fungal parasitism in natural ecosystems. New Phvtol. 119: 331–343CrossRefGoogle Scholar
  8. Thompson J.N., Burdon J.J. (1992): Gene-for-gene coevolution between plants and parasites. Nature 360: 121–125CrossRefGoogle Scholar

Relevant papers

  1. Burdon J.J., Wennström A., Elmqvist T., Kirby G.C. (1996): The role of race specific resistance in natural populations. Oikos 76:411–416CrossRefGoogle Scholar
  2. Weste G., Kennedy J. (1997): Regeneration of susceptible native species following a decline of Phytophthora cinnamomi over a period of20 years on defined plots in the Gampians, Western Victoria. Austral.J.Bot. 45: 167–190CrossRefGoogle Scholar

Reviews

  1. Christ B.J., Person C.O., Pope D.D. (1987): The genetic determination of variation in pathogenicity. In: Wolfe M.S., Caten C.E. (eds.): Populations of Plant Pathogens: Their Dynamics and Genetics. Blackwell Scientific Publications, Oxford. 7–19Google Scholar
  2. Crute I.R. (1985): The genetic bases of relationships between microbial parasites and their hosts. In: Fraser R.S.S. (ed.): Mechanisms of Resistance to Plant Diseases. Martinus Nijhoff/Dr.W.Junk, Dordrecht, Boston, Lancaster. 81–142Google Scholar
  3. Durbin R.D. (1983): The biochemistry of fungal and bacterial toxins and their modes of action. In: Callow J.A. (ed.): Biochemical Plant Pathology. John Wiley & Sons, Chichester. 137–162Google Scholar
  4. Ellingboe A.H. (1976): Genetics of host-parasite interactions. In: Heitefuss R., Williams P.H. (eds.): Encyclopedia of Plant Physiology, (NS), Physiological Plant Pathology. Springer Verlag, Heidelberg. 761–778Google Scholar
  5. Ellingboe A.H. (1996): Gene interaction in hosts and pathogens. In: Mills D., Kunoh H., Keen N.T., Mayama S. (eds.): Molecular Aspects of Pathogenicity and Resistance: Requirement for Signal Transduction. The American Phytopathological Society, St. Paul, Minnesota. 33–46Google Scholar
  6. Gabriel D.W., Rolfe B.G. (1990): Working models of specific recognition in plant-microbe interactions. Annu.Rev.Phytopathol. 28: 365–391CrossRefGoogle Scholar
  7. Pryor T., Ellis J. (1993): The genetic complexity of fungal resistance genes in plants. Advances in Plant Pathology 10: 281–305Google Scholar

Relevant papers

  1. Ebba T., Person C. (1975): Genetic control of virulence in Ustilago hordei. IV. duplicate genes for virulence and genetic and environmental modification of a gene-for-gene relationship. Can.J.Genet.Cytol. 17: 631–636Google Scholar
  2. Ellingboe A.H. (1992): Segregation of avirulence/virulence on three rice cultivars in 16 crosses of Magnaporthe grisea. Phytopathology 82: 597–601CrossRefGoogle Scholar
  3. Green G.J., McKenzie R.I.H. (1967): Mendelian and extrachromosomal inheritance of virulence in Puccinia graminis f.sp. avenae. Can.J.Genet.Cytol. 9: 785–793Google Scholar
  4. Haggag M.E.A., Samborski D.J., Dyck P.L.(1973): Genetics of pathogenicity in three races of leaf rust on four wheat varieties. Can.J.Genet.Cytol. 15: 73–82Google Scholar
  5. Jones D.A. (1988): Genetic properties of inhibitor genes in flax rust that alter avirulence to virulence on flax. Phytopathology 78: 342–344CrossRefGoogle Scholar
  6. Kao K.N., Knott D.R. (1969): The inheritance of pathogenicity in races 111 and 29 of wheat stem rust. Can.J.Genet.Cytol. 11: 266–274Google Scholar
  7. Lau G.W., Chao C.T., Ellingboe A.H. (1993): Interaction of genes controlling avirulence/ virulence of Magnaporthe grisea on rice cultivar Katy. Phytopathology 83: 375–382CrossRefGoogle Scholar
  8. Lau G.W., Ellingboe A.H.(1993): Genetic analysis of mutations to increased virulence to Magnaporthe grisea. Phytopathology 83: 1093–1096CrossRefGoogle Scholar
  9. Lawrence G.J., Mayo G.M.E., Shepherd K.W. (1981a): Interactions between genes controlling pathogenicity in the flax rust fungus. Phytopathology 71: 12–19CrossRefGoogle Scholar
  10. Lawrence G.J., Shepherd K.W., Mayo G.M.E. (1981b): Fine structure of genes controlling pathogenicity in flax rust Melampsora lini. Heredity 46: 297–313CrossRefGoogle Scholar
  11. McIntosh R.A. (1977): Nature of induced mutations affecting disease reaction in wheat. In: Mike A. (ed.): Induced Mutations against Diseases. IAEA-SM-214/46, Vienna. 551–565Google Scholar
  12. Rines H. Luke H.H. (1985): Selection and regeneration of toxin-insensitive plants from tissue cultures of oats Avena sativa susceptible to Helminthosporium victoriae. Theor. Appl.Genet. 71:16–21CrossRefGoogle Scholar
  13. Samborski D.J., Dyck P.L. (1968): Inheritance of virulence in wheat leaf rust on the standard differential wheat varieties. Can.J.Genet.Cytol. 10: 24–32Google Scholar

Reviews

  1. Boyle C., Schönbeck F. (1997): Durable resismnce.In: Hartleb H., Heitefuss R., Hoppe H.-H. (eds.): Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, Stuttgart, Lübeck Ulm.254–271Google Scholar
  2. Burdon J.J. (1987): Iiseases and Plant Population Biology. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, SidneyGoogle Scholar
  3. Crute I.R. (1985): The genetic bases of relationships between microbial parasites and their hosts. In: Fraser R.S.S. (ed.): Mechanisms of Resistance to Plant Diseases. Martinus Niihoff/Dr.W.lunk, Dordrecht, Boston, Lancaster. 81–142Google Scholar
  4. Ellingboe A.H- (1981): Changing concepts in host-pathogen genetics. Annu.Rev.Phytopathol. 19: 125–143CrossRefGoogle Scholar
  5. Johnson R.(1984): A critical analysis of durable resistance. Annu.Rev.Phytopathol. 22: 309–330CrossRefGoogle Scholar
  6. Johnson R. (1992): Reflections of a plant pathologist on breeding for disease resistance, with emphasis on yellow rust and eyespot of wheat. Plant Pathology 41: 238–254Google Scholar
  7. Parlevliet J.E., Zadoks J.C. (1977): The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. Euphytica 26: 5–21CrossRefGoogle Scholar
  8. Robinson R.A. (1971): Vertical resistance. Review of Plant Pathology 50: 233–239Google Scholar
  9. Robinson R.A. (1973): Horizontal resistance. Review of Plant Pathology 52: 483–501Google Scholar
  10. Simmonds N.W. (1991): Genetics of horizontal resistance to diseases of crops. Biol.Rev. 66: 189–241CrossRefGoogle Scholar
  11. Vanderplank J.E. (1963): Plant Diseases: Epidemics and Control. Academic Press, New York, LondonGoogle Scholar
  12. Vanderplank J.E. (1968): Disease Resistance in Plants. Academic Press, New York, LondonGoogle Scholar
  13. Vanderplank J.E. (1984): Disease Resistance in Plants. Second Edition. Academic Press, Orlando, San Diego, San Francisco, New York, London, Toronto, Montreal, Sidney, Tokyo, Sao PauloGoogle Scholar
  14. Watson I.A. (1970): Changes in virulence and population shifts in plant pathogenesis. Annu.Rev.Phytopathol. 8: 209–230CrossRefGoogle Scholar
  15. Zadoks J.C. (1972): Modern concepts of disease resistance in cereals. In: Lupton F.G.H., Jenkins G., Johnson R. (eds.): The Way ahead of Plant Breeding. Proc.6th Congr. Eucarpia, Cambridge. 89 – 98Google Scholar
  16. Zadoks J.C. (1972): Reflections on disease resistance in annual crops. In: Bingham R.T., Hoff R.J., McDonald G.I. (eds.): Biology of Rust Resistance in Forest Trees. U.S. Department of Agriculture, Forest Service, Washington, D.C. 43–63Google Scholar

Relevant papers

  1. Johnson R. (1981): Durable resistance: Definition of, genetic control, and attainment in plant breeding. Phytopathology 71: 567–568CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hermann H. Prell
    • 1
  • Peter Day
    • 2
  1. 1.Institut für Pflanzenpathologie und PflanzenschutzUniversität GöttingenGöttingenGermany
  2. 2.Biotechnology Center for Agriculture and the Environment, Foran Hall, Cook CollegeRutgers, The State University of New JerseyNew BrunswickUSA

Personalised recommendations