Skip to main content

The Putative Role of Presenilins in the Transmembrane Domain Cleavage of Amyloid Precursor Protein and Other Integral Membrane Proteins

  • Conference paper
  • 140 Accesses

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Abstract

Missense mutations in the presenilin (PS)-1 and -2 genes are major causes of familial Alzheimer’s disease (AD), acting apparently in a dominant fashion (Levy-Lahad et al. 1995; Rogaev et al. 1995; Sherrington et al. 1995). Although the exact pathogenic mechanism underlying the disease process remains to be further elucidated, it is fairly established that almost all PS missense mutations affect the processing of the amyloid precursor protein (APP). The result is an increased secretion of the longer form of the amyloid peptide (Borchelt et al. 1996; Duff et al. 1996; Lemere et al. 1996; Tomita et al. 1997; Xia et al. 1997). This peptide constitutes the major component of the amyloid plaques in patients. Interestingly several of the PS mutations appear also to enhance the sensitivity of cells, and in particular neurons, to apoptotic stimuli (Deng et al. 1996; Guo et al. 1997; Janicki and Monteiro 1997; Vito et al. 1997; Wolozin et al. 1996). In principle both mechanisms could contribute to the pathogenesis of AD (Zhang et al. 1998). Insight into the biological functions of the PS in the cell is probably not only important for understanding the pathogenesis of the familial form of AD, but also of the sporadic form of AD. Interestingly, recent findings suggest that PS is involved in the proteolysis of the transmembrane domains of APP, Notch, APLP-1, and possibly Ire-1, and could therefore function as a molecular switch linking proteolysis to intracullular signaling (Annaert and De Strooper 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annaert W, De Strooper B (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 22: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Annaert WG, Levesque L, Craessaerts K, Dierinck I, Snellings G, Westaway D, George-Hyslop PS, Cordell B, Fraser P, De Strooper B (1999) Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J Cell Biol 147: 277–294

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RI (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776

    Article  PubMed  CAS  Google Scholar 

  • Baumeister R, Leimer U, Zweckbronner I, Jakubek C, Grunberg J, Haass C (1997) Human presenilin-1, but not familial Alzheimer’s disease ( FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Funct 1: 149–159

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abetal-42/1–40 ratio in vitro and in vivo. Neuron 17: 1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Brockhaus M, Grunberg J, Rohrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H, Haass C (1998) Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9: 1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Capell A, Saffrich R, Olivo JC, Meyn L, Walter J, Grunberg J, Mathews P, Nixon R, Dotti C, Haass C (1997) Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. J Neurochem 69: 2432–2440

    Article  PubMed  CAS  Google Scholar 

  • Capell A, Grunberg J, Pesold B, Diehlmann A, Citron M, Nixon R, Beyreuther K, Selkoe DJ, Haass C (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J Biol Chem 273: 3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Chan YM, Jan YN (1999) Presenilins, processing of beta-amyloid precursor protein, and notch signaling. Neuron 23: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rom-mens J, Kim S, Schenk D, Fraser P, St George-Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med 3: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Conlon RA, Reaume AG, Rossant J (1995) Notchl is required for the coordinate segmentation of somites. Development 121: 1533–1545

    PubMed  CAS  Google Scholar 

  • Culvenor JG, Maher F, Evin G, Malchiodi-Albedi F, Cappai R, Underwood JR, Davis JB, Karran EH, Roberts GW, Beyreuther K, Master C (1997) Alzheimer’s disease-associated presenilin 1 in neuronal cells: evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. J Neurosci Res 49: 719–731

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Beullens M, Contreras B, Levesque L, Craessaerts K, Cordell B, Moechars D, Bollen M, Fraser P, George-Hyslop PS, van Leuven F (1997) Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598

    Article  PubMed  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390

    Article  PubMed  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) A presenilin-l-dependent gamma-secretase-like protease mediates release of Notch intracullular domain. Nature 398: 518–522

    Article  PubMed  Google Scholar 

  • DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ (1999) Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99: 702–712

    Article  Google Scholar 

  • Deng G, Pike CJ, Cotman CW (1996) Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells. FEBS Lett 397: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Doan A, Thinakaran G, Borchelt DR, Slunt HH, Ratovitsky T, Podlisny M, Selkoe DJ, Seeger M, Gandy SE, Price DL, Sisodia SS (1996) Protein topology of presenilin 1. Neuron 17: 1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Donoviel DB, Hadjantonakis AK, Ikeda M, Zheng H, Hyslop PS, Bernstein A (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 13: 2801–2810

    Article  PubMed  CAS  Google Scholar 

  • Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos A, Marambaud P, Efthimiopoulos S, Shioi J, Cui W, Li HC, Schutte M, Gordon R, Holstein GR, Martinelli G, Mehta P, Friedrich VL Jr, Robakis NK (1999) Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synapotic contacts. Mol Cell 4: 893–902

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 17: 4212–4222.

    PubMed  CAS  Google Scholar 

  • Haass C, De Strooper B (1999) The presenilins in Alzheimer’s disease-proteolysis hold the key. Science 286: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75: 1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Hartmann D, De Strooper BD, Saftig P (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr Biol 9: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 96: 11872–11877

    Article  PubMed  CAS  Google Scholar 

  • Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smiths TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14: 419–427

    Article  PubMed  CAS  Google Scholar 

  • Janicki S, Monteiro MJ (1997) Increased apoptosis arising from increased expression of the Alzheimer’s disease-associated presenilin-2 mutation (N141I). J Cell Biol 139: 485–495

    Article  PubMed  CAS  Google Scholar 

  • Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama 0, Takashima A, St George-Hyslop P, Takeda M, Tohyama M, Imaizumi K (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat use Cell Biol 1: 479–485

    Article  CAS  Google Scholar 

  • Kovacs DM, Fausett HJ, Page KJ, Kim TW, Moir RD, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, Hyman BT, Tanzi RE, Wasco W(1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Med 2: 224–229

    Google Scholar 

  • Lah JJ, Heilman CJ, Nash NR, Rees HD, Yi H, Counts SE, Levey AI (1997) Light and electron microscopic localization of presenilin-1 in primate brain. J Neurosci 17: 1971–1980

    PubMed  CAS  Google Scholar 

  • Lehmann S, Chiesa R, Harris DA (1997) Evidence for a six-transmembrane domain structure of presenilin 1. J Biol Chem 272: 12047–12051

    Article  PubMed  CAS  Google Scholar 

  • Leimer U, Lun K, Romig H, Walter J, Grunberg J, Brand M, Haass C (1999) Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 38: 13602–13609

    Article  PubMed  CAS  Google Scholar 

  • Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L, Hincapie L, Arango JC, Anthony DC, Koo EH, Goate AM, Selkoe DJ, Arango JC (1996) The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nature Med 2: 1146–1150

    Article  PubMed  CAS  Google Scholar 

  • Levesque G, Yu G, Nishimura M, Zhang DM, Levesque L, Yu H, Xu D, Liang Y, Rogaeva E, Ikeda M, Duthie M, Murgolo N, Wang L, VanderVere P, Bayne ML, Strader CD, Rommens JM, Fraser PE, St George-Hyslop P (1999) Presenilins interact with armadillo proteins including neural-specific plakophilin-related protein and beta-catenin. J Neurochem 72: 999–1008

    Article  PubMed  CAS  Google Scholar 

  • Levitan D, Greenwald I (1995). Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu YH, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977

    Article  PubMed  CAS  Google Scholar 

  • Li X, Greenwald I (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17: 1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Li X, Greenwald I (1998) Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc Natl Acad Sci USA 95: 7109–7114

    Article  PubMed  CAS  Google Scholar 

  • Murayama M, Tanaka S, Palacino J, Murayama O, Honda T, Sun X, Yasutake K, Nihonmatsu N, Wolozin B, Takashima A (1998) Direct association of presenilin-1 with beta-catenin. FEBS Lett 433: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP, Hickman LJ, Eckman CB, Uljon SN, Wang R, Golde TE (1999) gamma-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid beta peptides of varying length. J Biol Chem 274: 11914–11923

    Google Scholar 

  • Naruse S, Thinakaran G, Luo JJ, Kusiak JW, Tornita T, Iwatsubo T, Qian X, Ginty DD, Price DL, Borchelt DR et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21: 1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Niwa M, Sidrauski C, Kaufman RJ, Walter P (1999) A role for presenilin-1 in nuclear accumulation of Irel fragments and induction of the mammalian unfolded protein response. Cell 99: 691–702

    Article  PubMed  CAS  Google Scholar 

  • Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS (1999) Sterols regulate cycling of SREBP cleavage-activating protein ( SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci USA 96: 11235–11240

    Google Scholar 

  • Rawson RB, Zelenski NG, Nijhawan D, Ye J, Sakai J, Hasan MT, Chang TY, Brown MS, Goldstein JL (1997) Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREPBs. Mol Cell 1: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Ray WJ, Yao M, Mumm J, Schroeter EH, Saftig P, Wolfe M, Selkoe DJ, Kopan R, Goate AM (1999) Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of notch. J Biol Chem 274: 36801–36807

    Article  PubMed  CAS  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St George-Hyslop P (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778

    Article  PubMed  CAS  Google Scholar 

  • Ross SL, Martin F, Somonet L, Jacobsen F, Deshpande R, Vassar R, Bennett B, Luo Y, Wooden S, Hu S, Citron M, Burgess TL (1998) Amyloid precursor protein processing in sterol regulatory element-binding protein site 2 protease-deficient Chinese hamster ovary cells. J Biol Chem 273: 15309–15312

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 2: 505–514

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2: 864–870

    Article  PubMed  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382–386

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-l-eficient mice. Cell 89: 629–639

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop P (1995) Clining of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong H, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402: 537–540

    Article  PubMed  CAS  Google Scholar 

  • Song W, Nadeau P, Yuan M, Yang X, Shen J, Yankner BA (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc Natl Acad Sci USA 96: 6959–6963

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, Hardy J, Yu X, Picciano M, Fechteler K, Citron M, Kopan R, Pesold B, Keck S, Baader M, Tomita T, Iwatsubo T, Baumeister R, Haass C (1999) A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem 274: 28669–28673

    Article  PubMed  CAS  Google Scholar 

  • Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398: 522–525

    Article  PubMed  CAS  Google Scholar 

  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notch 1 is essential for postimplantation development in mice. Genes Dev 8: 707–719

    Article  PubMed  CAS  Google Scholar 

  • Tesco G, Kim TW, Diehlmann A, Beyreuther K, Tanzi RE (1998) Abrogation of the presenilin 1/betacatenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation. J Biol Chem 273: 33909–33914

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Borchelt DR, Lee MK, Stunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J, Grunberg J, Haass C, Iwatsubo T, Obaka K (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 94: 2025–2030

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R et al. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the trans-membrane aspartic protease BACE. Science 286: 735–741

    Article  PubMed  CAS  Google Scholar 

  • Vito P, Ghayur T, Adamio LD (1997) Generation of anti-apoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage. J Biol Chem 272: 28315–28320

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Capell A, Grunberg J, Pesold B, Schindzielorz A, Prior R, Podlisny MB, Fraser P, Hyslop PS, Sekoe DJ et al. (1996) The Alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol Med 2: 673–691

    PubMed  CAS  Google Scholar 

  • Wolfe MS, De Los Angeles J, Miller DD, Xia W, Selkoe DJ (1999a) Are presenilins intramembranecleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease. Biochemistry 38: 11223–11230

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Rahgmati T, Donkor IO, Selkoe DJ (1999b) Peptidomimetic probes and molecular modeling suggest that Alzheimer’s gamma-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38: 4720–4727

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999c) Two transmembrane aspartates in presenilin-1 required for presenelin endoproteolysis and gamma-secretase activity. Nature 398: 513–517

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B, Iwasaki K, Vito P, Ganjei JK, Lacana E, Sunderland T, Zhao B, Kusiak JW, Wasco W, Adamio LD (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 273: 1710–1713

    Article  Google Scholar 

  • Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJ, Trumbauer ME, Chen HY, Price DL, Van der Ploeg LH, Sisodia SS (1997) Presenilin 1 is required for Notch 1 and DIIl expression in the paraxial mesoderm. Nature 387: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Zhang J, Kholodenko D, Citron M, Podlisny MB, Teplow DB, Haass C, Seubert P, Koo EH, Selkoe DJ (1997). Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 272: 7977–7982

    Article  PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE et al. (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402: 533–537

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Lukinova N, Fortini ME (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398: 525–529

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Chen F, Levesque G, Nishimura M, Zhang DM, Levesque L, Rogaeva E, Xu D, Liang Y, Duthie M et al. (1998) The presinilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J Biol Chem 273: 16470–16475

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Hartmann H, Do VM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Sommer B, van de Wetering M, Vlevers H, Saftig P et al. (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395: 698–702.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Liyanage U, Medina M, Ho C, Simmons AD, Lovett M, Kosik KS (1997) Presenilin 1 interaction in the brain with a novel member of the Armadillo family. Neuroreport 8: 1489–1494

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Strooper, B., Herreman, A., Cupers, P., Craessaerts, K., Serneels, L., Annaert, W. (2001). The Putative Role of Presenilins in the Transmembrane Domain Cleavage of Amyloid Precursor Protein and Other Integral Membrane Proteins. In: Beyreuther, K., Christen, Y., Masters, C.L. (eds) Neurodegenerative Disorders: Loss of Function Through Gain of Function. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04399-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04399-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07448-6

  • Online ISBN: 978-3-662-04399-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics