Skip to main content

Pathogenesis and Mechanism of Cerebral Amyloidosis in APP Transgenic Mice

  • Conference paper
Neurodegenerative Disorders: Loss of Function Through Gain of Function

Summary

Transgenic mice that overexpress mutant human amyloid precursor protein (APP) exhibit one hallmark of Alzheimer’s disease pathology, namely the extracellular deposition of amyloid in plaques and vessels. In an effort to study the impact of cerebral amyloidosis on neurodegeneration, we have shown that amyloid plaque formation in APP transgenic mice is accompanied by region-specific neuron loss, synaptic changes, alterations in the cholinergic system, and a severe disruption of neuronal circuits. The deposition of amyloid in the vessel wall leads to smooth muscle cell degeneration and spontaneous hemorrhagic stroke. In humans several mechanisms may contribute to cerebral amyloidosis. Results from transgenic mice, however, suggest that a neuronal source of APP/Aβ is sufficient for the development of both amyloid plaques and cerebrovascular amyloid. Moreover, our results implicate neuronal transport and drainage mechanisms rather than local production or blood uptake of Aβ as a primary mechanism underlying cerebral amyloidosis in these mice. Aging and APP expression levels have been suggested to be key factors that potentiate amyloid deposition. But there are several other risk factors, such as apolipoprotein E and transforming growth factor TGFβ1, that have been identified and analyzed in association with APP transgenic mice. In conclusion, transgenic mouse models of cerebral amyloidosis have provided many clues about the significance and mechanism of cerebral amyloidosis. The continued analysis of these mice will provide the tools to develop therapeutic intervention in AD, cerebral amyloid angiopathy, and hemorrhagic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, Piccardo P, Ghetti B, Paul SM (1997) Lack of apolipoprotein E dramatically reduces amyloid 13-peptide deposition. Nature Genet 17: 263–264

    CAS  Google Scholar 

  • Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegniel V, Ghetti B, Paul SM (1999) Apolipoprotein E is essential for amyloid deposition in the APPv717F transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96: 15233–15238

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939–45

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL, Sisodia SS (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18: 9629–9637

    PubMed  CAS  Google Scholar 

  • Calhoun M, Wiederhold K, Abramowski D, Phinney A, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B, Jucker M (1998) Neuron loss in APP transgenic mice. Nature 395: 766–756

    Article  Google Scholar 

  • Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Stürchler-Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96: 14088–14093

    Article  PubMed  CAS  Google Scholar 

  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci 2: 271–276

    Article  PubMed  CAS  Google Scholar 

  • DeKosky ST, Scheff SW, Styren SD (1996). Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5: 417–421

    Article  Google Scholar 

  • Deller T, Drakew A, Frotscher M (1999) Different primary target cells are important for fiber lamination in the fascia dentata: a lesson from reeler mutant mice. Exp Neurol 156: 239–253

    Article  PubMed  CAS  Google Scholar 

  • Frautschy SA, Yang F, Irrizarry M; Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152: 307–317

    PubMed  CAS  Google Scholar 

  • Fukuchi K, Ho L, Younkin SG, Kunkel DD, Ogburn CE, LeBoeuf RC, Furlong CE, Deeb SS, Nochlin D, Wegiel J, Wisniewski HM, Martin GM (1996) High levels of circulating (3-amyloid peptide do not cause cerebral (3-amyloidosis in transgenic mice. Am J Pathol 149: 219–227

    PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Synder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F 3-amyloid precursor protein. Nature 373: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Gomez Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41: 17–24

    Article  Google Scholar 

  • Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20: 154–159

    Article  PubMed  CAS  Google Scholar 

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998). Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Med 4: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM, Bakes KB, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97: 2892–2897

    CAS  Google Scholar 

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96: 3228–3233

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, A(3 elevation, and amyloid plaques in transgenic mice. Science 274: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Buttini M, Wyss-Coray T, McConlogue L, Kodma T, Pitas RE, Mucke L (1999) Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid precursor protein. Am J Pathol 155: 1741–1747

    Article  PubMed  CAS  Google Scholar 

  • Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997a) APPs„, transgenic mice develop age-related A(3 deposits and neuropil abnormalities, but no neuronal loss in CAI. J Neuropathol Exp Neurol 56: 965–973

    Article  PubMed  CAS  Google Scholar 

  • Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT (1997b) A(3 deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17: 7053–7059

    PubMed  CAS  Google Scholar 

  • Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of (3-Amyloid by intracerebral infusion of Alzheimer brain extracts in (3APP-transgenic mice. J Neurosci 20: 3606–3611

    PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CM, Grzeschik K-H, Multhaup G, Beyreuther K, Müller Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayashi T, Shoji M, Sato M, Sasaki A, Ho L, Eckman CB, Prada CM, Younkin SG, Kobayashi T, Tada N, Matsurbara E, Iizuka T, Harigaya T, Kasai K (1996) Accumulation of (3-amyloid fibrils in pancreas of transgenic mice. Neurobiol Aging 17: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F (3-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16: 5795–5811

    PubMed  CAS  Google Scholar 

  • Mouton PR, Martin LJ, Calhoun ME, Dal Forno G, Price D (1998) Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol Aging 19: 371–377

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Johnson WB, Ruppe MD, Alford M, Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory M, Abraham CR (1994) Synaptotrophic effects of human amyloid 13 protein precursors in the cortex of transgenic mice. Brain Res 666: 151–167

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Abraham CR, Masliah E (1996) Neurotrophic and neuroprotective effects of hAPP in trans-genic mice. Ann NY Acad Sci 777: 82–88

    Article  PubMed  CAS  Google Scholar 

  • Phinney AL, Deller T, Stalder M, Calhoun ME, Frotscher M, Sommer B, Staufenbiel M, Tucker M (1999) Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J Neurosci 19: 8552–8559

    PubMed  CAS  Google Scholar 

  • Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and trangenic models. Ann Rev Neurosci 21: 479–505

    Article  PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandervert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-(3 attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275: 630–631

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8: 447–453

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21: 428–432

    Article  PubMed  CAS  Google Scholar 

  • Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M (1999) Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol 154: 1673–1684

    Article  PubMed  CAS  Google Scholar 

  • Stalder M, Seller T, Staufenbiel M, Jucker M (2000) 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: No evidence of intracellular amyloid. Neurobiol. Aging, in press

    Google Scholar 

  • Stanfield BB, Caviness VSJ, Cowan WM (1979) The organization of certain afferents to the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185: 461–483

    Article  PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staubenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94: 13287–13292

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Ni B (1998) Selective deposition of amyloid-(3 protein in the entorhinal-dentate projection of a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 53: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    Article  PubMed  CAS  Google Scholar 

  • Weller RO, Massey A, Newman TA, Hutchings M, Kuo Y-M, Roher AE (1998) Amyloid 13 accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153, 725–33

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344: 769–772

    Article  PubMed  CAS  Google Scholar 

  • Westerman MA, Cooper-Blacketer D, Hsiao KK, Low WC (1999) The cholinergic system in a transgenic mouse model of Alzheimer’s disease. Soc Neurosci Abstr. 25: 2117

    Google Scholar 

  • Winkler DT, Bondolfi L, Herzig MC, Jann L, Calhoun ME, Wiederhold K-H, Tolnay M, Staufenbiel M, Jucker M (2000) Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J. Neurosci, in press

    Google Scholar 

  • Wong TP, Debeir T, Duff K, Cuello AC (1999) Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J Neurosci 19: 2706–2716

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke (1997) Amyloidogenic role of cytokine TGF-131 in transgenic mice and in Alzheimer’s disease. Nature 389: 603–606

    CAS  Google Scholar 

  • Yankner B (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16: 921–932

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jucker, M. et al. (2001). Pathogenesis and Mechanism of Cerebral Amyloidosis in APP Transgenic Mice. In: Beyreuther, K., Christen, Y., Masters, C.L. (eds) Neurodegenerative Disorders: Loss of Function Through Gain of Function. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04399-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04399-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07448-6

  • Online ISBN: 978-3-662-04399-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics