Advertisement

A Gain of Function of the Huntington’s Disease and Amyotrophic Lateral Sclerosis-Associated Genetic Mutations May Be a Loss of Bioenergetics

  • M. F. Beal
Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)

Summary

There is accumulating evidence for bioenergetic defects that may be involved in the pathogenesis of neurodegenerative diseases. In Huntington’s disease (HD), the genetic defect is a CAG repeat expansion in a gene that encodes the protein huntingtin, whose function is unknown. Several lines of evidence have demonstrated that the HD mutation is associated with abnormalities in bioenergetics, both in lymphoblasts of patients as well as in postmortem brain material and in living patients, as assessed by MRI spectroscopy. Furthermore, recent studies in a transgenic mouse model of HD have shown that there are marked decreases in N-acetylaspartate and increases in glutamine consistent with a bioenergetic defect. In familial amyotrophic lateral sclerosis (FALS), there are point mutations in the enzyme copper/zinc superoxide dismutase (SOD1). Transgenic mice that overexpress SOD1 with FALS-associated mutations show prominent vacuolization of mitochondria, a finding that correlates with cell loss in the spinal cord as well as impaired motor function. Both the HD and FALS mutations appear to result in a gain of function. A consequence of this gain of function may be a deficit in bioenergetics. If this is the case, then several therapeutic strategies may be useful. We found that oral administration of the mitochondrial cofactor coenzyme Q10 or of the creatine kinase substrate creatine can significantly increase survival in transgenic mouse models of both ALS and HD. These may, therefore, be novel approaches for the treatment of these illnesses.

Keywords

Amyotrophic Lateral Sclerosis Sporadic Amyotrophic Lateral Sclerosis Familial Amyotrophic Lateral Sclerosis Adenine Nucleotide Transporter Creatine Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreassen OA, Ferrante RJ, Klivenyi P, Klein AM, Shinobu LA, Epstein CJ, Beal MF (2000) Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis. Ann Neurod 47: 447–455CrossRefGoogle Scholar
  2. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71: 2041–2048PubMedCrossRefGoogle Scholar
  3. Bates TE, Strangward M, Keelan J, Davey GP, Munro PMG, Clark JB (1996) Inhibition of N- acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7: 1397–1400Google Scholar
  4. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13: 4181–4192PubMedGoogle Scholar
  5. Beal MF, Henshaw R, Jenkins BG, Rosen BR, Schulz JB (1994) CoenzymeQlo and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol 36: 882–888PubMedCrossRefGoogle Scholar
  6. Beal MF, Matthews R, Tieleman A, Schults CW (1997a) Coenzyme Qio attenuates the MPTP induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 783: 109–114CrossRefGoogle Scholar
  7. Beal MF, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Ferrante RJ (1997b) Increased 3-nitrotyrosine and oxidative damage in mice with a human Cu, Zn superoxide dismutase. Neurol Abst 48: A149Google Scholar
  8. Beckman JS, Crow JP (1993) Pathological implications of nitric oxide superoxide and peroxynitrite formation. Biochem Soc Trans 21: 330–334PubMedGoogle Scholar
  9. Bernardi P, Basso E, Colonna R, Costantini P, Di Lisa F, Eriksson O, Fontaine E, Forte M, Ichas F, Mas-sari S, Nicolli A, Petronilli V, Scorrano L (1998) Perspectives of the mitochondrial permeability transition. Biochim Biophys Acta 1365: 200–206CrossRefGoogle Scholar
  10. Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46: 787–790PubMedCrossRefGoogle Scholar
  11. Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, Munnich A, Rotig A (1995) Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genet 11: 144–149PubMedCrossRefGoogle Scholar
  12. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. Biochem J 134: 707–716PubMedGoogle Scholar
  13. Bowling AC, Schulz JB, Brown Jr RH, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61: 2322–2325PubMedCrossRefGoogle Scholar
  14. Brouillet E, Hantraye P (1995) Effects of chronic MPTP and 3-nitropropionic acid in nonhuman primates. Curr Opin Neurol 8: 469–473PubMedCrossRefGoogle Scholar
  15. Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92: 7105–7109PubMedCrossRefGoogle Scholar
  16. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MMK, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41: 646–653PubMedCrossRefGoogle Scholar
  17. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281: 1851–1854PubMedCrossRefGoogle Scholar
  18. Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Cat’ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 414: 365–368PubMedCrossRefGoogle Scholar
  19. Carter AJ, Muller RE, Pschorn U, Stransky W (1995) Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem 64: 2691–2699PubMedCrossRefGoogle Scholar
  20. Cha J-HJ, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, Penney JB, Bates GP, Young AB (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc Natl Acad Sci USA 95: 6480–6485PubMedCrossRefGoogle Scholar
  21. Comi GP, Bordoni A, Salani S, Fransceschina L, Sciacco M, Prelle A, Fortunato F, Zeviani M, Napoli L, Bresolin N, Moggio M, Ausenda CD, Taanman J-W, Scarlato G (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43: 110–116PubMedCrossRefGoogle Scholar
  22. Corbett RJT, Laptook AR (1994) Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer. J Cereb Blood Flow Metab 14: 1070–1077PubMedCrossRefGoogle Scholar
  23. Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem 69: 1945–1953PubMedCrossRefGoogle Scholar
  24. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, Ceroni M (1996) Amyotrophic lateral sclerosis: Oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47: 1060–1064PubMedCrossRefGoogle Scholar
  25. Davies SW, Turmaine M. Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiari L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548PubMedCrossRefGoogle Scholar
  26. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144: 891–901PubMedCrossRefGoogle Scholar
  27. Deshpande SB, Fukuda A, Nishino H (1997) 3-Nitropropionic acid increases the intracellular Cat` in cultured astrocytes by reverse operation of the Na*-Ca2* exchanger. Exp Neurol 145: 38–45Google Scholar
  28. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993CrossRefGoogle Scholar
  29. Dragunow M, Faull RLM, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6: 1053–1057PubMedCrossRefGoogle Scholar
  30. Dunant Y, Loctin F, Marsal J, Muller D, Parducz A, Rabasseda X (1988) Energy metabolism and quantal acetylcholine release: effects of botulinum toxin, 1-fluoro-2,4-dinitrobenzene, and diamide in the Torpedo electric organ. J Neurochem 50: 431–439PubMedCrossRefGoogle Scholar
  31. Durham HD, Roy J, Dong L, Figlewicz DA (1997) Aggregation of mutant Cu/ZN superoxide dismutase proteins in a culture model of ALS. J Neuropath Exp Neurol 56: 523–530PubMedCrossRefGoogle Scholar
  32. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286: 2498–2500PubMedCrossRefGoogle Scholar
  33. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown Jr, RH, Beal MF (1997a) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69: 2064–2074PubMedCrossRefGoogle Scholar
  34. Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Beal MF (1997b) Increased 3-nitrotyrosine and oxidative damage in mice with a human Cu, Zn superoxide dismutase mutation. Ann Neurol 42: 326–334PubMedCrossRefGoogle Scholar
  35. Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20: 4384–4397Google Scholar
  36. Goebel HH, Heipertz R, Scholz W, Iqbal K, Tellez-Nagel I (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 28: 23–31PubMedCrossRefGoogle Scholar
  37. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312PubMedCrossRefGoogle Scholar
  38. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AHV (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39: 385–389PubMedCrossRefGoogle Scholar
  39. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng H-X, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772–1775PubMedCrossRefGoogle Scholar
  40. Hemmer W, Wallimann T (1993) Functional aspects of creatine kinase in brain. Dev Neurosci 15: 249–260PubMedCrossRefGoogle Scholar
  41. Huang H-C, Lee EHY (1998) MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic Biol Med 24: 76–84CrossRefGoogle Scholar
  42. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43: 2689–2695PubMedCrossRefGoogle Scholar
  43. Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, Rosen BR, Beal MF, Koroshetz WJ (1998) 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 50: 1357–1365Google Scholar
  44. Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, Beal MF (2000) Nonlinear decrease over time in n-acetylaspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74: 2108–2119PubMedCrossRefGoogle Scholar
  45. Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci USA 96: 11404–11409PubMedCrossRefGoogle Scholar
  46. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500–503PubMedCrossRefGoogle Scholar
  47. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95: 41–53PubMedCrossRefGoogle Scholar
  48. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med 5: 347–350PubMedCrossRefGoogle Scholar
  49. Kong J-M, Xu Z-S (1997) Four stages of disease progression in an ALS mouse model. Soc Neurosci Abst 23: 1913Google Scholar
  50. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 41: 160–165PubMedCrossRefGoogle Scholar
  51. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neurosci 3: 157–163PubMedCrossRefGoogle Scholar
  52. Liu R, Althaus JS, Ellerbrock BR, Becker DA, Gurney ME (1998) Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 44: 763–770PubMedCrossRefGoogle Scholar
  53. Lyons TJ, Liu H, Goto JJ, Nersissian A, Roe JA, Graden JA, Cafe C, Ellerby LM, Bredesen DE, ButlerGralla E, Selverstone-Valentine J (1996) Mutations in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc Natl Acad Sci USA 93: 12240–12244PubMedCrossRefGoogle Scholar
  54. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506PubMedCrossRefGoogle Scholar
  55. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58: 459–471PubMedCrossRefGoogle Scholar
  56. Masui Y, Mozai T, Kakehi K (1985) Functional and morphometric study of the liver in motor neuron disease. J Neurol 232: 15–19PubMedCrossRefGoogle Scholar
  57. Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998a) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18: 156–163PubMedGoogle Scholar
  58. Matthews RT, Yang S, Browne S, Baik M, Beal MF (1998b) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 95: 8892–8897PubMedCrossRefGoogle Scholar
  59. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157: 142–149PubMedCrossRefGoogle Scholar
  60. Nakano K, Hirayama K, Terao K (1987) Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 44: 103–106PubMedCrossRefGoogle Scholar
  61. Nicotera P, Lipton SA (1999) Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 19: 583–591PubMedCrossRefGoogle Scholar
  62. O’Gorman E, Beutner G, Wallimann T, Brdiczka D (1996) Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochim Biophys Acta 1276: 161–170PubMedCrossRefGoogle Scholar
  63. O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase inhibition of mitochondrial permeability transition. FEBS Lett 414: 253–257PubMedCrossRefGoogle Scholar
  64. Obrien CF, Miller C, Goldblatt D, Welle S, Forbes G, Lipinski B, Panzik J, Peck R, Plumb S, Oakes D, Kurlan R, Shoulson I (1990) Extraneural metabolism in early Huntington’s disease. Ann Neurol 28: 300–301Google Scholar
  65. Palfi S, Ferrante RJ, Brouillet E, Beal MF, Dolan R, Guyoi MC, Peschanski M, Hantraye P (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 16: 3019–3025PubMedGoogle Scholar
  66. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith G, Kasarskis E, Mattson MP (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44: 819–824PubMedCrossRefGoogle Scholar
  67. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington’s disease and excitotoxic animal models. J Neurosci 15: 3775–3787PubMedGoogle Scholar
  68. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DE, Wilcox HM, Flood DG, Beal MF, Brown Jr, RH, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutasedeficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet 13: 43–47PubMedCrossRefGoogle Scholar
  69. Rosen DR, Siddique T, Patterson D, Figiewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng H-X, Rhmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62PubMedCrossRefGoogle Scholar
  70. Ross CA (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutaminerepeat neurodegenerative diseases? Neuron 19: 1147–1150PubMedCrossRefGoogle Scholar
  71. Sanchez-Pernaute R, Garcia-Segura JM, del Barrio Alba A, Viano J, de Yebenes JG (1999) Clinical correlation of striatal 1H MRS changes in Huntington’s disease. Neurology 53: 806–812PubMedCrossRefGoogle Scholar
  72. Sasaki S, Maruyama S, Yamane K, Sakuma H, Takeishi M (1990) Ultrastructure of swollen proximal axons of anterior horn neurons in motor neuron disease. J Neurol Sci 97: 233–240PubMedCrossRefGoogle Scholar
  73. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66PubMedCrossRefGoogle Scholar
  74. Sauter A, Rudin M (1993) Determination of creatine kinase parameters in rat brain by NMR magnetization transfer: correlation with brain function. J Biol Chem 268: 13166–13171PubMedGoogle Scholar
  75. Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF, Jr., Greenamyre JT, Snyder SH, Ross CA (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med 5: 1194–1198PubMedCrossRefGoogle Scholar
  76. Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16: 6125–6133PubMedGoogle Scholar
  77. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38: 691–695PubMedCrossRefGoogle Scholar
  78. Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39: 203–219PubMedCrossRefGoogle Scholar
  79. Smith RG, Henry YK, Mattson MP, Appel SH (1998) Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44: 696–699PubMedCrossRefGoogle Scholar
  80. Steeghs K, Benders A, Oerlemans F, de Haan A, Heerschap A, Ruitenbeek W, Jost C, van Deursen J, Perryman B, Pette D, Bruckwilder M, Koudijs J, Jap P, Veerkamp J, Wieringa B (1997) Altered Cat+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89: 93–103PubMedCrossRefGoogle Scholar
  81. Swerdlow RH, Parks JK, Cassarino DS, Trimmer PA, Miller SW, Maguire DJ, Sheehan JP, Maguire RS, Pattee G, Juel VC, Phillips LH, Tuttle JB, Bennett J, JP, Davis RE, Parker JWD (1998) Mitochondria in sporadic amyotrophic lateral sclerosis. Exp Neurol 153: 135–142PubMedCrossRefGoogle Scholar
  82. Thomas LB, Gates DJ, Richfield EK, O’Brien TF, Schweitzer JB, Steindler DA (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133: 265–272PubMedCrossRefGoogle Scholar
  83. Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C (1999) Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 46: 129–131PubMedCrossRefGoogle Scholar
  84. Vielhaber S, Winkler K, Kirches E, Kunz D, Buchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS (1999) Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 169: 133–139PubMedCrossRefGoogle Scholar
  85. Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li SH, Yi H, Vonsattel JP, Gusella JF, Hersch S, Auerbach W, Joyner AL, MacDonald ME (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in Hdh(Q92) and Hdh(Q111) knock-in mice. Human Mol Genet 9: 503–513CrossRefGoogle Scholar
  86. White JK, Auerbach W, Duyao MP, Vonsattel J-P, Gusella JE, Joyner AL, MacDonald ME (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nature Genet 17: 404–410PubMedCrossRefGoogle Scholar
  87. White RJ, Reynolds IJ (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 16: 5688–5697PubMedGoogle Scholar
  88. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS, Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515–518PubMedCrossRefGoogle Scholar
  89. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156: 65–72PubMedCrossRefGoogle Scholar
  90. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105–1116PubMedCrossRefGoogle Scholar
  91. Xu CJ, Klunk WE, Kanfer JN, Xiong Q, Miller G, Pettegrew JW (1996) Phosphocreatine-dependent glutamate uptake by synaptic vesicles. J Biol Chem 271: 13435–13440PubMedCrossRefGoogle Scholar
  92. Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93: 5709–5714PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. F. Beal

There are no affiliations available

Personalised recommendations