Skip to main content

The Natural History of Alzheimer’s Disease: Minding the Gaps in Understanding the Mechanisms of Neurodegeneration

  • Conference paper
  • 146 Accesses

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Alzheimer’s disease (AD) remains a formidable challenge despite advances in our understanding of many of the molecular events which surround its development. Studies over the past 20 years have focused on the role of Aβ amyloid in this disorder, with the aim of developing rational therapeutic strategies which can modify or prevent the disease process. This approach has been vindicated by the general acceptance of the “Aβ amyloid hypothesis,” which, among other concepts, has delivered the therapeutic targets of the β- and γ-secretases of the amyloid protein precursor (APP) which form the basis of the biogenesis of Aβ amyloid, the presenilins which are also intimate participants in the generation of Aβ, and other interacting proteins such as ApoE for which genetic evidence exists of linkage to the AD process. Despite this wealth of new knowledge, there remain many large gaps in our understanding of the pathogenesis of AD. These gaps include:

  1. 1)

    a full description of quantifiable levels of Aβ in relation to the progression of AD, and whether Aβ levels in biological fluids (plasma, CSF) can be used as reliable biological markers of the disease process;

  2. 2)

    whether currently available transgenic mouse models of AD sufficiently replicate the human disease, and whether the failure of these mice to develop neurofibrillary tangles is a major impediment;

  3. 3)

    the physical forms of Aβ which are pathologically relevant to the neurodegenerative process;

  4. 4)

    the intracellular compartments in which these etiologically relevant forms of Aβ are produced;

  5. 5)

    how extracellular forms of Aβ are processed and cleared from the brain, and whether either the intracellular or extracellular locations of Aβ can account for the peculiar topographic vulnerability of the brain in AD.

Minding these gaps should lead to a more complete account of the natural history of AD and should also elucidate new therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleshkov SB, Li X, Lavrentiadou SN, Zannis VI (1999) Contribution of cysteine 158, the glycosylation site threonine 194, the amino-and carboxy-terminal domains of apolipoprotein E in the binding to amyloid peptide ß (1–40). Biochemistry 38: 8918–8925

    CAS  Google Scholar 

  • Allsop D, Landon M, Kidd M (1983) The isolation and amino acid composition of senile plaque core protein. Brain Res 259: 348–352

    PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fill-Psychiatrie und Psychisch-Gerichtliche Medizin 64: 146–148

    Google Scholar 

  • Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K (1999) Cerebrospinal fluid ß-amyloid (1–42) in Alzheimer’s disease: differences between early-and late-onset Alzheimer’s disease and stability during the course of disease. Arch Neurol 56: 673–680

    PubMed  CAS  Google Scholar 

  • Annaert G, Levesque L, Craessaerts K, Dierinck I, Snellings G, Westaway D, George-Hyslop PS, Cordell B, Fraser P, De Strooper B (1999) Presenilin 1 controls y-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J Cell Biol 147: 277–294

    PubMed  CAS  Google Scholar 

  • Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM (1999) Apolipoprotein E is essential for amyloid deposition in the APP (V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96: 15233–15238

    CAS  Google Scholar 

  • Beher D, Elle C, Underwood J, Davis JB, Ward R, Karran E, Masters CL, Beyreuther K, Multhaup G (1999) Proteolytic fragments of Alzheimer’s disease-associated presenilin 1 are present in synaptic organelles and growth cone membranes of rat brain. J Neurochem 72: 1564–1573

    PubMed  CAS  Google Scholar 

  • Behl C, Davis J, Cole GM, Schubert D (1992) Vitamin E protects nerve cells from amyloid 13 protein toxicity. Biochem Biophys Res Commun 186: 944–950

    CAS  Google Scholar 

  • Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid 13 protein toxicity. Cell 77: 817–827

    PubMed  CAS  Google Scholar 

  • Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RCP, Perry R, Watson B, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genet 19: 357–360

    PubMed  CAS  Google Scholar 

  • Blocq P, Marinesco G (1892) Sur les lésions et la pathogénése de l’épilepsie dite essentielle. Semaine Méd 12: 445

    Google Scholar 

  • Bohrmann B, Tjernberg L, Kuner P, Poli S, Levet-Trafit B, Naslund J, Richards G, Huber W, Dobeli H, Nordstedt C (1999) Endogenous proteins controlling amyloid (3-peptide polymerization. Possible implications for (3-amyloid formation in the central nervous system and in peripheral tissues. J Biol Chem 274: 15990–15995

    PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate A(31–42/1–40 ratio in vitro and in vivo. Neuron 17: 1005–1013

    PubMed  CAS  Google Scholar 

  • Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939–945

    PubMed  CAS  Google Scholar 

  • Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA (1993) Generation of (3-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 90: 2092–2096

    PubMed  CAS  Google Scholar 

  • Bush AI, Multhaup G, Moir RD, Williamson TG, Small DH, Rumble B, Pollwein P, Beyreuther K, Masters CL (1993) A novel zinc (II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem 268: 16109–1 61 12

    Google Scholar 

  • Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer A(3 amyloid formation by zinc. Science 265: 1464–1467

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Hensley K, Harris M, Mattson M, Carney 1 (1994) (3-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 200: 710–715

    Google Scholar 

  • Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor a converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273: 27765–27767

    PubMed  CAS  Google Scholar 

  • Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler-Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96: 14088–14093

    PubMed  CAS  Google Scholar 

  • Capell A, Steiner H, Romig H, Keck S, Baader M, Grim MG, Baumeister R, Haass C (2000) Presenilin-1 differentially facilitates endoproteolysis of the (3-amyloid precursor protein and Notch. Nature Cell Biol 2: 205–211

    PubMed  CAS  Google Scholar 

  • Chapman PF, White GL, Jones WM, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci 2: 271–276

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the (3-amyloid precursor protein gene. Nature 353: 844–846

    PubMed  CAS  Google Scholar 

  • Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI (1999) Aqueous dissolution of Alzheimer’s disease A(3 amyloid deposits by biometal depletion. J Biol Chem 274: 23223–23228

    PubMed  CAS  Google Scholar 

  • Christie G, Markwell RE, Gray CW, Smith L, Godfrey F, Mansfield F, Wadsworth H, King R, McLaughlin M, Cooper DG, Ward RV, Howlett DR, Hartmann T, Lichtenthaler SF, Beyreuther K, Underwood J, Gribble SK, Cappai R, Masters CL, Tamaoka A, Gardner RL, Rivett AJ, Karran EH, Allsop D (1999) Alzheimer’s disease: correlation of the suppression of β-amyloid peptide secretion from cultured cells with inhibition of the chymotrypsin-like activity of the proteasome. J Neurochem 73: 195–204

    PubMed  CAS  Google Scholar 

  • Chui DH, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O, Suzuki H, Araki W, Inoue H, Shirotani K, Takahasi K, Gallyas F, Tabira T (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 5: 560–564

    PubMed  CAS  Google Scholar 

  • Chung H, Brazil MI, Soe TT, Maxfield FR (1999) Uptake, degradation, and release of fibrillar and solu- ble forms of Alzheimer’s amyloid (3-peptide by microglial cells. J Biol Chem 274: 32301–32308

    PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the (3-amyloid precursor protein in familial Alzheimer’s disease increases 13-protein production. Nature 360: 672–674

    PubMed  CAS  Google Scholar 

  • Clarris HJ, Nurcombe V, Small DH, Beyreuther K, Masters CL (1994) Secretion of nerve growth factor from septum stimulates neurite outgrowth and release of the amyloid protein precursor of Alzheimer’s disease from hippocampal explants. J Neurosci Res 38: 248–258

    PubMed  CAS  Google Scholar 

  • Clarris HJ, Key B, Beyreuther K, Masters CL, Small DH (1995) Expression of the amyloid protein precursor of Alzheimer’s disease in the developing rat olfactory system. Brain Res Dev Brain Res 88: 87–95

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both a-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97: 571–576

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923

    CAS  Google Scholar 

  • Culvenor JG, Friedhuber A, Fuller SJ, Beyreuther K, Masters CL (1995) Expression of the amyloid precursor protein of Alzheimer’s disease on the surface of transfected HeLa. Exp Cell Res 220: 474–481

    PubMed  CAS  Google Scholar 

  • Culvenor JG, Maher F, Evin G, Malchiodi-Albedi F, Cappai R, Underwood JR, Davis JB, Karran EH, Roberts GW, Beyreuther K, Masters CL (1997) Alzheimer’s disease-associated presenilin 1 in neuronal cells: evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. J Neurosci Res 49: 719–731

    PubMed  CAS  Google Scholar 

  • Culvenor JG, McLean CA, Cutt S, Campbell BC, Maher F, Jakala P, Hartmann T, Beyreuther K, Masters CL, Li QX (1999) Non-A(3 component of Alzheimer’s disease amyloid ( NAC) revisited: NAC and a-synuclein are not associated with Aß amyloid. Am J Pathol 155: 1173–1181

    Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Vonfigura K, Vanleuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390

    PubMed  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) A presenilin-l-dependent y-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518–522

    PubMed  Google Scholar 

  • Divry P (1927) Étude histochimique des plaques séniles. J Belge Neurol Psych 27: 643–657

    Google Scholar 

  • Dyrks T, Dyrks E, Hartmann T, Masters C, Beyreuther K (1992) Amyloidogenicity of (3A4 and IA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol Chem 267: 18210–18217

    PubMed  CAS  Google Scholar 

  • Dumanchin C, Czech C, Campion D, Cuif MH, Poyot T, Martin C, Charbonnier F, Goud B, Pradier L, Frebourg T (1999) Presenilins interact with Rab 11, a small GTPase involved in the regulation of vesicular transport. Human Mol Genet 8: 1263–1269

    CAS  Google Scholar 

  • Emilién G, Maloteaux JM, Beyreuther K, Masters CL (2000) Alzheimer disease: mouse models pave the way for therapeutic opportunities. Arch Neurol 57: 176–181

    PubMed  Google Scholar 

  • Enya M, Morishima-Kawashima M, Yoshimura M, Shinkai Y, Kusui K, Khan K, Games D, Schenk D, Sugihara S, Yamaguchi H, Ihara Y (1999) Appearance of sodium dodecyl sulfate-stable amyloid (3-protein (A(3) dimer in the cortex during aging. Am J Pathol 154: 271–279

    PubMed  CAS  Google Scholar 

  • Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleav- age of amyloid 13 peptide during constitutive processing of its precursor. Science 248: 1122–1124

    PubMed  CAS  Google Scholar 

  • Evin G, Cappai R, Li QX, Culvenor JG, Small DH, Beyreuther K, Masters CL (1995) Candidate ysecretases in the generation of the carboxyl terminus of the Alzheimer’s disease 13A4 amyloid: possible involvement of cathepsin D. Biochemistry 34: 14185–14192

    PubMed  CAS  Google Scholar 

  • Evin G, Le Brocque D, Culvenor JG, Cappai D, Weidemann A, Beyreuther K, Masters CL, Cappai R (2000) Presenilin 1 expression in yeast lowers secretion of the amyloid precursor protein. NeuroReport 11: 405–408

    CAS  Google Scholar 

  • Fuller SJ, Storey E, Li QX, Smith AI, Beyreuther K, Masters CL (1995) Intracellular production of 0A4 amyloid of Alzheimer’s disease: modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein. Biochemistry 34: 8091–8098

    PubMed  CAS  Google Scholar 

  • Funato H, Enya M, Yoshimura M, Morishima-Kawashima M, Ihara Y (1999) Presence of sodium dodecyl sulfate-stable amyloid 0-protein dimers in the hippocampus CAl not exhibiting neurofibrillary tangle formation. Am J Pathol 155: 23–28

    PubMed  CAS  Google Scholar 

  • Galeazzi L, Ronchi P, Franceschi C, Giunta S (1999) In vitro peroxidase oxidation induces stable dimers of (3-amyloid (1–42) through dityrosine bridge formation. Amyloid: Int J Exp Clin Invest 6: 7–13

    Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F (3-amyloid precursor protein. Nature 373: 523–527

    PubMed  CAS  Google Scholar 

  • Georgakopoulos A, Marambaud P, Efthimiopoulos S, Shioi J, Cui W, Li HC, Schutte M, Gordon R, Holstein GR, Martinelli G, Mehta P, Friedrich VL Jr, Robakis NK (1999) Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol Cell 4: 893–902

    PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein Biochem Biophys Res Commun 120: 885–890

    CAS  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704–706

    PubMed  CAS  Google Scholar 

  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: 877–880

    PubMed  CAS  Google Scholar 

  • Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255: 728–730

    PubMed  CAS  Google Scholar 

  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal A042 accumulation in human brain. Am J Pathol 156: 15–20

    PubMed  CAS  Google Scholar 

  • Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer 13- amyloid peptides. Proc Natl Acad Sci USA 96: 742–747

    PubMed  CAS  Google Scholar 

  • Grüninger-Leitch F, Berndt P, Langen H, Nelboeck P, Dobeli H (2000) Identification of 13-secretase-like activity using a mass spectrometry-based assay system. Nature Biotechnol 18: 66–70

    Google Scholar 

  • Haass C, De Strooper B (1999) Presenilins in Alzheimer’s disease-proteolysis hold the key. Science 286: 916–919

    PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB (1992) Amyloid 0-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325

    PubMed  CAS  Google Scholar 

  • Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ (1993) (3-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268: 3021–3024

    Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT Jr (1999) Assembly of Aß amyloid protofibrils: an in vitro model for a possible early event in Alzheinmer’s disease. Biochemistry 38: 8972–8980

    PubMed  CAS  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Proto-fibrillar intermediates of amyloid 3-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19: 8876–8884

    PubMed  CAS  Google Scholar 

  • Hartmann T, Bergsdorf C, Sandbrink R, Tienari PJ, Multhaup G, Ida N, Sieger S, Dyrks T, Weidemann A, Masters CL, Beyreuther K (1996) Alzheimer’s disease ßA4 protein release and amyloid precursor protein sorting are regulated by alternative splicing. J Biol Chem 271: 13208–13214

    PubMed  CAS  Google Scholar 

  • Hartmann T, Bieger SC, Bruhl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K (1997) Distinct sites of intracellular production for Alzheimer’s disease Aß-40/42 amyloid peptides. Nature Med 3: 1016–1020

    PubMed  CAS  Google Scholar 

  • Hendriks L, van Duijn CM, Gras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, Hofman A, van Broeckhoven C (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the (3-amyloid precursor protein gene. Nature Genet 1: 218–221

    PubMed  CAS  Google Scholar 

  • Higaki J, Quon D, Zhong Z, Cordell B (1995) Inhibition of (3-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14: 651–659

    PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991) Human and rodent sequence analogs of Alzheimer’s amyloid (3A4 share similar properties and can be solubilized in buffers of pH 7.4. Eur J Biochem 201: 61–69

    PubMed  CAS  Google Scholar 

  • Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D (1999) Behavioral changes in trans-genic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29: 177–185

    PubMed  CAS  Google Scholar 

  • Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid-(3 deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103: R15 - R21

    CAS  Google Scholar 

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96: 3228–3233

    PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, A3 elevation, and amyloid plaques in transgenic mice. Science 274: 99–102

    Google Scholar 

  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush A (1999) Cu (II) potentiation of Alzheimer A(3 neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274: 37111–37116

    Google Scholar 

  • Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP (1999) Improved discrimination of AD patients using (3-amyloid (1–42) and tau levels in CSF. Neurology 52: 1555–1562

    PubMed  CAS  Google Scholar 

  • Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as (3-secretase. Mol Cell Neurosci 4: 419–427

    Google Scholar 

  • Ida N, Hartmann T, Pantel J, Schroder J, Zerfass R, Forstl H, Sandbrink R, Masters CL, Beyreuther K (1996) Analysis of heterogeneous (3A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271: 22908–22914

    PubMed  CAS  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Identification of the major A(31–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Med 6: 143–150

    PubMed  CAS  Google Scholar 

  • Jacobsen H, Reinhardt D, Brockhaus M, Bur D, Kocyba C, Kurt H, Grim MG, Baumeister R, Loetscher H (1999) The influence of endoproteolytic processing of familial Alzheimer’s disease presenilin 2 on ßA42 amyloid peptide formation. J Biol Chem 274: 35233–35239

    PubMed  CAS  Google Scholar 

  • Jensen M, Schroder J, Blomberg M, Engvall B, Pantel J, Ida N, Basun H, Wahlund LO, Werle E, Jauss M, Beyreuther K, Lannfelt L, Hartmann T (1999) Cerebrospinal fluid Aß42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Ann Neurol 45: 504–511

    PubMed  CAS  Google Scholar 

  • Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E (1999) Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett 451: 39–44

    PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736

    PubMed  CAS  Google Scholar 

  • Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M, Tohyama M (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol 1: 479–485

    PubMed  CAS  Google Scholar 

  • Kimberly WT, Xia W, Rahmati T, Wolfe MS, Selkoe DJ (2000) The transmembrane aspartates in presenilin 1 and 2 are obligatory for y-secretase activity and amyloid 13-protein generation. J Biol Chem 275: 3173–3178

    PubMed  CAS  Google Scholar 

  • Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331: 530–532

    PubMed  CAS  Google Scholar 

  • Koo EH, Lansbury PT Jr, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration Proc Natl Acad Sci USA 96: 9989–9990

    CAS  Google Scholar 

  • Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer’s (3-amyloid peptide on different substrates: new insights into mechanism of 13-sheet formation. Proc Natl Acad Sci USA 96: 3688–3693

    Google Scholar 

  • Kuo YM, Emmerling MR, Lampert HC, Hempelman SR, Kokjohn TA, Woods AS, Cotter RJ, Roher AE (1999) High levels of circulating A1342 are sequestered by plasma proteins in Alzheimer’s disease. Biochem Biophys Res Commun 257: 787–791

    PubMed  CAS  Google Scholar 

  • Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated a-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96: 3922–3927

    PubMed  CAS  Google Scholar 

  • LeBlanc AC, Goodyer CG (1999) Role of endoplasmic reticulum, endosomal-lysosomal compartments, and microtubules in amyloid precursor protein metabolism of human neurons. J Neurochem 72: 1832–1842

    PubMed  CAS  Google Scholar 

  • Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248: 1124–1126

    PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977

    PubMed  CAS  Google Scholar 

  • Li QX, Berndt MC, Bush AI, Rumble B, Mackenzie I, Friedhuber A, Beyreuther K, Masters CL (1994) Membrane-associated forms of the 13A4 amyloid protein precursor of Alzheimer’s disease in human platelet an brain: surface expression on the activated human platelet. Blood 84: 133–142

    PubMed  CAS  Google Scholar 

  • Li QX, Whyte S, Tanner JE, Evin G, Beyreuther K, Masters CL (1998) Secretion of Alzheimer’s disease A(3 amyloid peptide by activated human platelets. Lab Invest 78: 461–469

    PubMed  CAS  Google Scholar 

  • Li QX, Fuller SJ, Beyreuther K, Masters CL (1999a) The amyloid precursor protein of Alzheimer’s disease in human brain and blood. J Leukoc Biol 66: 567–574

    PubMed  CAS  Google Scholar 

  • Li QX, Maynard C, Cappai R, McLean CA, Cherny RA, Lynch T, Culvenor JG, Trevaskis J, Tanner JE, Bailey KA, Czech C, Bush AI, Beyreuther K, Masters CL (1999b) Intracellular accumulation of detergent-soluble amyloidogenic A13 fragment of Alzheimer’s disease precursor protein in the hippo-campus of aged transgenic mice. J Neurochem 72: 2479–2487

    PubMed  CAS  Google Scholar 

  • Li Y, Xu C, Schubert D (1999c) The up-regulation of endosomal-lysosomal components in amyloid 13-resistant cells. J Neurochem 73: 1477–1482

    PubMed  CAS  Google Scholar 

  • Lichtenthaler SF, Wang R, Grimm H, Uljon SN, Masters CL, Beyreuther K (1999) Mechanism of the cleavage specificity of Alzheimer’s disease y-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc Natl Acad Sci USA 96: 3053–3058

    PubMed  CAS  Google Scholar 

  • Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J (2000) Human aspartic protease memapsin 2 cleaves the 13-secretase site of 13-amyloid precursor protein. Proc Natl Acad Sci USA 97: 1456–1460

    PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid (3 peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155: 853–862

    PubMed  CAS  Google Scholar 

  • Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96: 3228–3233

    PubMed  Google Scholar 

  • Mason RP, Jacob RF, Walter MF, Mason PE, Avdulov NA, Chochina SV, Igbavboa U, Wood WG (1999) Distribution and fluidizing action of soluble and aggregated amyloid (3-peptide in rat synaptic plasma membranes. J Biol Chem 274: 18801–18807

    PubMed  CAS  Google Scholar 

  • Masters CL, Beyreuther K (1998) Alzheimer’s disease. Brit Med J 316: 446–448

    PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249

    PubMed  CAS  Google Scholar 

  • Matsubara E, Ghiso J, Frangione B, Amari M, Tomidokoro Y, Ikeda Y, Harigaya Y, Okamoto K, Shoji M (1999) Lipoprotein-free amyloidogenic peptides in plasma are elevated in patients with sporadic Alzheimer’s disease and Down’s syndrome. Ann Neurol 45: 537–541

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Horikiri C (1999) Interactions of amyloid 0-peptide (1–40) with ganglioside-containing membranes. Biochemistry 38: 4137–4142

    PubMed  CAS  Google Scholar 

  • Mayeux R, Tang MX, Jacobs DM, Manly J, Bell K, Merchant C, Small SA, Stern Y, Wisniewski HM, Mehta PD (1999) Plasma amyloid 13-peptide 1–42 and incipient Alzheimer’s disease. Ann Neurol 46: 412–416

    PubMed  CAS  Google Scholar 

  • McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D, Dickson D, Duff K (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6: 231–244

    PubMed  CAS  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of All amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46: 860–866

    PubMed  CAS  Google Scholar 

  • Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM (2000) Plasma and cerebrospinal fluid levels of amyloid 13 proteins 1–40 and 1–42 in Alzheimer’s disease. Arch Neurol 57: 100–105

    PubMed  CAS  Google Scholar 

  • Moir RD, Lynch T, Bush AI, Whyte S, Henry A, Portbury S, Multhaup G, Small DH, Tanzi RE, Beyreuther K, Masters CL (1998) Relative increase in Alzheimer’s disease of soluble forms of cerebral All amyloid protein precursor containing the Kunitz protease inhibitory domain. J Biol Chem 273: 5013–5019

    PubMed  CAS  Google Scholar 

  • Moir RD, Atwood CS, Romano DM, Laurans MH, Huang X, Bush AI, Smith JD, Tanzi RE (1999) Differential effects of apolipoprotein E isoforms on metal-induced aggregation of Aß using physiological concentrations. Biochemistry 38: 4595–4603

    CAS  Google Scholar 

  • Mok SS, Sberna G, Heffernan D, Cappai R, Galatis D, Clarris HJ, Sawyer WH, Beyreuther K, Masters CL, Small DH (1997) Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer’s disease. FEBS Lett 415: 303–307

    PubMed  CAS  Google Scholar 

  • Morelli L, Giambartolomei GH, Prat MI, Castano EM (1999) Internalization and resistance to degradation of Alzheimer’s A(31–42 at nanomolar concentrations in THP-1 human monocytic cell line. Neurosci Lett 262: 5–8

    PubMed  CAS  Google Scholar 

  • Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper ( II) to copper. Science 271: 1406–1409

    Google Scholar 

  • Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Bill E, Pipkorn R, Masters CL, Beyreuther K (1998) Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Biochemistry 37: 7224–7730

    PubMed  CAS  Google Scholar 

  • Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254: 97–99

    PubMed  CAS  Google Scholar 

  • Näslund J, Haroutunian V, Mohs R, Davis KL, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid 0-peptide in the brain and cognitive decline. 283: 1571–1577

    Google Scholar 

  • Nikaido T, Austin J, Rinehart R, Trueb L, Hutchinson J, Stukenbrok H, Miles B (1971) Studies in aging of the brain I. Isolation and preliminary characterization of Alzheimer plaques and cores. Archives of Neurology 25: 198–211

    Google Scholar 

  • Niwa M, Sidrauski C, Kaufman RJ, Walter P (1999) A role for presenilin-1 in nuclear accumulation of Irel fragments and induction of the mammalian unfolded protein response. Cell 99: 691–702

    PubMed  CAS  Google Scholar 

  • Octave JN, Essalmani R, Tasiaux B, Menager J, Czech C, Mercken L (2000) The role of presenilin-1 in the y-secretase cleavage of the amyloid precursor protein of Alzheimer’s disease. J Biol Chem 275: 1525–1528

    PubMed  CAS  Google Scholar 

  • Palacino J, Berechid BE, Alexander P, Eckman C, Younkin S, Nye JS, Wolozin B (2000) Regulation of amyloid precursor protein processing by presenilin 1 (PSI) and PS2 in PSI knockout cells. J Biol Chem 275: 215–222

    PubMed  CAS  Google Scholar 

  • Parkin ET, Turner AJ, Hooper NM (1999) Amyloid precursor protein, although partially detergentinsoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem J 344: 23–30

    PubMed  CAS  Google Scholar 

  • Peraus GC, Masters CL, Beyreuther K (1997) Late compartments of amyloid precursor protein transport in SY5Y cells are involved in 0-amyloid secretion. J Neurosci 17: 7714–7724

    PubMed  CAS  Google Scholar 

  • Perez RG, Soriano S, Hayes JD, Ostaszewski B, Xia W, Selkoe DJ, Chen X, Stokin GB, Koo EH (1999) Mutagenesis identifies new signals for 0-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including A042. J Biol Chem 274: 18851–18856

    PubMed  CAS  Google Scholar 

  • Pillot T, Drouet B, Queille S, Labeur C, Vandekerckhove J, Rosseneu M, Pincon-Raymond M, Chambaz J (1999a) The nonfibrillar amyloid 0-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J Neurochem 73: 1626–1634

    PubMed  CAS  Google Scholar 

  • Pillot T, Goethals M, Najib J, Labeur C, Lins L, Chambaz J, Brasseur R, Vandekerckhove J, Rosseneu M (1999b) 0-amyloid peptide interacts specifically with the carboxy-terminal domain of human apolipoprotein E: relevance to Alzheimer’s disease. J Neurochem 72: 230–237

    Google Scholar 

  • Poduslo JF, Curran GL, Sanyal B, Selkoe DJ (1999) Receptor-mediated transport of human amyloid E3-protein 1–40 and 1–42 at the blood-brain barrier. Neurobiol Dis 6: 190–199

    PubMed  CAS  Google Scholar 

  • Ponte P, Gonzalez-DeWhitt P, Schilling J, Miller J, Hsu D, Greenberg B, Davis K, Wallace W, Lieber-burg I, Fuller F (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331: 525–527

    PubMed  CAS  Google Scholar 

  • Pradier L, Carpentier N, Delalonde L, Clavel N, Bock MD, Buee L, Mercken L, Tocque B, Czech C (1999) Mapping the APP/presenilin (PS) binding domains: the hydrophilic N-terminus of PS2 is sufficient for interaction with APP and can displace APP/PS1 interaction. Neurobiol Dis 6: 43–55

    PubMed  CAS  Google Scholar 

  • Qiu Z, Strickland DK, Hyman BT, Rebeck GW (1999) A2-macroglobulin enhances the clearance of endogenous soluble 0-amyloid peptide via low-density lipoprotein receptor-related protein in cortical neurons. J Neurochem 73: 1393–1398

    PubMed  CAS  Google Scholar 

  • Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B (1991) Formation of 0-amyloid protein deposits in brains of transgenic mice. Nature 352: 239–241

    PubMed  CAS  Google Scholar 

  • Ray WJ, Yao M, Mumm J, Schroeter EH, Saftig P, Wolfe M, Selkoe DJ, Kopan R, Goate AM (1999) Cell surface presenilin-1 participates in the y-secretase-like proteolysis of Notch. J Biol Chem 274: 36801–36807

    PubMed  CAS  Google Scholar 

  • Redlich E (1898) Ueber miliäre Skerose der Hirnrinde bei seniler Atrophie. Jahrb Psychiat Neurol 17: 208

    Google Scholar 

  • Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM (1987) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA 84: 4190–4194

    PubMed  CAS  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778

    PubMed  CAS  Google Scholar 

  • Roher A, Wolfe D, Palutke M, KuKuruga D (1986) Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc Natl Acad Sci USA 83: 2662–2666

    PubMed  CAS  Google Scholar 

  • Roher AE, Kuo YM, Kokjohn KM, Emmerling MR, Gracon S (1999) Amyloid and lipids in the pathology of Alzheimer’s disease. Amyloid: Int J Exp Clin Invest 6: 136–145

    Google Scholar 

  • Samuels SC, Silverman JM, Marin DB, Peskind ER, Younki SG, Greenberg DA, Schnur E, Santoro J, Davis KL (1999) CSF (3-amyloid, cognition, and APOE genotype in Alzheimer’s disease. Neurology 52: 547–551

    PubMed  CAS  Google Scholar 

  • Sandbrink R, Masters CL, Beyreuther K (1994a) Complete nucleotide and deduced amino acid sequence of rat amyloid protein precursor-like protein (APLP2/APPH): two amino acids length difference to human and murine homologues. Biochim Biophys Acta 1219: 167–170

    PubMed  CAS  Google Scholar 

  • Sandbrink R, Masters CL, Beyreuther K (1994b) Similar alternative splicing of a non-homologous domain in (3A4-amyloid protein precursor-like proteins. J Biol Chem 269: 14227–14234

    PubMed  CAS  Google Scholar 

  • Sberna G, Saez-Valero J, Beyreuther K, Masters CL, Small DH (1997) The amyloid 13-protein of Alzheimer’s disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem 69: 1177–1184

    PubMed  CAS  Google Scholar 

  • Sberna G, Saez-Valero J, Li QX, Czech C, Beyreuther K, Masters CL, McLean CA, Small DH (1998) Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the (3-amyloid protein precursor of Alzheimer’s disease. J Neurochem 71: 723–731

    PubMed  CAS  Google Scholar 

  • Scharnagl H, Tisljar U, Winkler K, Huttinger M, Nauck MA, Gross W, Wieland H, Ohm TG, Marz W (1999) The (3A4 amyloid peptide complexes to and enhances the uptake of 13-very low density lipoproteins, the low density lipoprotein receptor-related protein and heparan sulfate proteoglycans pathway. Lab Invest 79: 1271–1286

    PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-I3 attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177

    PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid 13-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2: 864–870

    PubMed  CAS  Google Scholar 

  • Scholz W (1938) Studien zur Pathologie der Hirngefäße II. Die drusige Entartung der Hirnarterien and -capillaren. (Eine Form seniler Gefäßerkrankung.) Zeit ges Neurol Psychiat 162: 694–715

    Google Scholar 

  • Schröder J, Pantel J, Ida N, Essig M, Hartmann T, Knopp MV, Schad LR, Sandbrink R, Sauer H, Masters CL, Beyreuther K (1997) Cerebral changes and cerebrospinal fluid 13-amyloid in Alzheimer’s disease–a study with quantitative magnetic resonance imaging. Mol Psychiat 2: 505–507

    Google Scholar 

  • Schubert D, Chevion M (1995) The role of iron in 13 amyloid toxicity. Biochem Biophys Res Commun 216: 702–707

    PubMed  CAS  Google Scholar 

  • Schwarzman AL, Singh N, Tsiper M, Gregori L, Dranovsky A, Vitek MP, Glabe CG, St George-Hyslop PH, Goldgaber D (1999) Endogenous presenilin 1 redistributes to the surface of lamellipodia upon adhesion of Jurkat cells to a collagen matrix. Proc Natl Acad Sci USA 96: 7932–7937

    PubMed  CAS  Google Scholar 

  • Sekijima Y, Kametani F, Tanaka K, Okochi M, Usami M, Mori H, Tokuda T, Ikeda S (1999) Presenilin-1 exists in the axoplasm fraction in the brains of aged Down’s syndrome subjects and non-demented individuals. Neurosci Lett 267: 121–124

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399: A23–31

    PubMed  CAS  Google Scholar 

  • Selkoe DJ, Abraham CR, Podlisny MB, Duffy LK (1986) Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease. J Neurochem 46: 1820–1834

    PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindleshurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s (3-peptide from biological fluids. Nature 359: 325–327

    PubMed  CAS  Google Scholar 

  • Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LC, Galasko D, Thal LJ, Lieberburg I, Schenk DB (1993) Secretion of (3-amyloid precursor protein cleaved at the amino terminus of the (3-amyloid peptide. Nature 361: 260–263

    PubMed  CAS  Google Scholar 

  • Shao H, Jao S, Ma K, Zagorski MG (1999) Solution structures of micelle-bound amyloid (3-(1–40) and (3-(1–42) peptides of Alzheimer’s disease. J Mol Biol 285: 755–773

    PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinnessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Rommens JM, St George Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760

    PubMed  CAS  Google Scholar 

  • Shirotani K, Takahashi K, Araki W, Maruyama K, Tabira T (2000) Mutational analysis of intrinsic regions of presenilin 2 that determine its endoproteolytic cleavage and pathological function. J Biol Chem 275: 3681–3686

    PubMed  CAS  Google Scholar 

  • Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangi-one B, Younkin SG (1992) Production of the Alzheimer amyloid (3 protein by normal proteolytic processing. Science 258: 126–129

    PubMed  CAS  Google Scholar 

  • Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein f3-secretase from human brain. Nature 402: 537–540

    PubMed  CAS  Google Scholar 

  • Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM (2000) Protein kinase C-dependent ctsecretase competes with (3-secretase for cleavage of amyloid-f3 precursor protein in the trans-Golgi network. J Biol Chem 275: 2568–2575

    PubMed  CAS  Google Scholar 

  • Soriano S, Chyung AS, Chen X, Stokin GB, Lee VM, Koo EH (1999) Expression of f3-amyloid precursor protein-CD3y chimeras to demonstrate the selective generation of amyloid 3 (1–40) and amyloid 3 (1–42) peptides within secretory and endocytic compartments. J Biol Chem 274: 32295–32300

    PubMed  CAS  Google Scholar 

  • Steiner H, Romig H, Pesold B, Philipp U, Baader M, Citron M, Loetscher H, Jacobsen H, Haass C (1999) Amyloidogenic function of the Alzheimer’s disease-associated presenilin 1 in the absence of endoproteolysis. Biochemistry 38: 14600–14605

    PubMed  CAS  Google Scholar 

  • Storey E, Spurck T, Pickett-Heaps J, Beyreuther K, Masters CL (1996a) The amyloid precursor protein of Alzheimer’s disease is found on the surface of static but not activity motile portions of neurites. Brain Res 735: 59–66

    PubMed  CAS  Google Scholar 

  • Storey E, Beyreuther K, Masters CL (1996b) Alzheimer’s disease amyloid precursor protein on the surface of cortical neurons in primary culture co-localizes with adhesion patch components. Brain Res 735: 217–231

    PubMed  CAS  Google Scholar 

  • Storey E, Katz M, Brickman Y, Beyreuther K, Masters CL (1999) Amyloid precursor protein of Alzheimer’s disease: evidence for a stable, full-length, trans-membrane pool in primary neuronal cultures. Eur J Neurosci 11: 1779–1788

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid (3 peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 8098–8102

    CAS  Google Scholar 

  • Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94: 13287–13292

    PubMed  CAS  Google Scholar 

  • Tanzi RE, Gusella JF, Watkins PC, Bruns GAP, St George-Hyslop P, van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid (3 protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer locus. Science 235: 880–884

    PubMed  CAS  Google Scholar 

  • Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331: 528–530

    PubMed  CAS  Google Scholar 

  • Tapiola T, Pirttila T, Mikkonen M, Mehta PD, Alafuzoff I, Koivisto K, Soininen H (2000) Three-year follow-up of cerebrospinal fluid tau, f3-amyloid 42 and 40 concentrations in Alzheimer’s disease. Neurosci Lett 280: 119–122

    PubMed  CAS  Google Scholar 

  • Tienari PJ, De Strooper B, Ikonen E, Simons M, Weidemann A, Czech C, Hartmann T, Ida N, Multhaup G, Masters CL, Van Leuven F, Beyreuther K, Dotti CG (1996a) The (3-amyloid domain is essential for axonal sorting of amyloid precursor protein. EMBO J 15: 5218–5229

    PubMed  CAS  Google Scholar 

  • Tienari PJ, De Strooper B, Ikonen E, Ida N, Simons M, Masters CL, Dotti CG, Beyreuther K (1996b) Neuronal sorting and processing of amyloid precursor protein: implications for Alzheimer’s disease. Cold Spring Harb Symp Quant Biol 61: 575–585

    PubMed  CAS  Google Scholar 

  • Tienari PJ, Ida N, Ikonen E, Simons M, Weidemann A, Multhaup G, Masters CL, Dotti CG, Beyreuther K (1997) Intracellular and secreted Alzheimer’s (3-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc Natl Acad Sci USA 94: 4125–4130

    PubMed  CAS  Google Scholar 

  • Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, Thyberg J, Nordstedt C (1999) A molecular model of Alzheimer’s amyloid 0-peptide fibril formation. J Biol Chem 274: 12619–12625

    PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) 0-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741

    Google Scholar 

  • Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ (2000) Neurons regulate extracellular levels of amyloid 13-protein via proteolysis by insulin-degrading enzyme. J Neurosci 20: 1657–1665

    PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid 0-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274: 25945–25952

    Google Scholar 

  • Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain A(3 distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 158: 328–337

    PubMed  CAS  Google Scholar 

  • Weidemann A, Paliga K, Durrwang U, Czech C, Evin G, Masters CL, Beyreuther K (1997) Formation of stable complexes between two Alzheimer’s disease gene products: presenilin-2 and 13-amyloid precursor protein. Nature Med 3: 328–332

    PubMed  CAS  Google Scholar 

  • Weidemann A, Paliga K, Dürrwang U, Reinhard FBM, Schuckert O, Evin G, Masters CL (1999) Proteolytic processing of the Alzheimer’s disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J Biol Chem 274: 5823–5829

    PubMed  CAS  Google Scholar 

  • Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid 13 protein enhances the survival of hippocampal neurons in vitro. Science 243: 1488–1490

    PubMed  CAS  Google Scholar 

  • Whyte S, Wilson N, Currie J, Maruff P, Malone V, Shafiq-Antonacci R, Tyler P, Derry KL, Underwood J, Li QX, Beyreuther K, Masters CL (1997) Collection and normal levels of the amyloid precursor protein in plasma. Ann Neurol 41: 121–124

    PubMed  CAS  Google Scholar 

  • Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286: 1888–1893

    PubMed  CAS  Google Scholar 

  • Wisniewski T, Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 135: 235–238

    PubMed  CAS  Google Scholar 

  • Williamson TG, Mok SS, Henry A, Cappai R, Lander AD, Nurcombe V, Beyreuther K, Masters CL, Small DH (1996) Secreted glypican binds to the amyloid precursor protein of Alzheimer’s disease ( APP) and inhibits APP-induced neurite outgrowth. J Biol Chem 271: 31215–31221

    Google Scholar 

  • Wilson CA, Doms RW, Lee VM (1999) Intracellular APP processing and A0 production in Alzheimer disease. J Neuropathol Exp Neurol 58: 787–794

    PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999a) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and y-secretase activity. Nature 398: 513–517

    PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Rahmati T, Donkor IO, Selkoe DJ (1999b) Peptidomimetic probes and molecular modeling suggest that Alzheimer’s y-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38: 4720–4727

    PubMed  CAS  Google Scholar 

  • Yamin R, Malgeri EG, Sloane JA, McGraw WT, Abraham CR (1999) Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer’s amyloid-(3 peptide degradation. J Biol Chem 274: 18777–18784

    PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease ß-secretase activity. Nature 402: 533–537

    PubMed  CAS  Google Scholar 

  • Yang AJ, Chandswangbhuvana D, Shu T, Henschen A, Glabe CG (1999a) Intracellular accumulation of insoluble, newly synthesized A0n-42 in amyloid precursor protein-transfected cells that have been treated with A01–42. J Biol Chem 274: 20650–20656

    PubMed  CAS  Google Scholar 

  • Yang DS, Small DH, Seydel U, Smith JD, Hallmayer J, Gandy SE, Martins RN (1999b) Apolipoprotein E promotes the binding and uptake of (3-amyloid into Chinese hamster ovary cells in an isoformspecific manner. Neuroscience 90: 1217–1226

    CAS  Google Scholar 

  • Yang DS, Yip CM, Huang TH, Chakrabartty A, Fraser PE (1999c) Manipulating the amyloid-(3 aggregation pathway with chemical chaperones. J Biol Chem 274: 32970–32974

    PubMed  CAS  Google Scholar 

  • Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245: 417–420

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masters, C.L., Beyreuther, K. (2001). The Natural History of Alzheimer’s Disease: Minding the Gaps in Understanding the Mechanisms of Neurodegeneration. In: Beyreuther, K., Christen, Y., Masters, C.L. (eds) Neurodegenerative Disorders: Loss of Function Through Gain of Function. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04399-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04399-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07448-6

  • Online ISBN: 978-3-662-04399-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics