Advertisement

Interpolatory Subdivision Schemes

  • Nira Dyn
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Interpolatory subdivision schemes are refinement rules, which refine data by inserting values corresponding to intermediate points, using linear combinations of neighbouring points. Here we consider only refinements of regular meshes, which in the univariate case (subdivision for curve generation) are uniformly distributed points on the real line, and in the bivariate case (subdivision for surface generation) are either square grids or regular triangulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Cavaretta, W. Dahmen, and C. A. Micchelli. Stationary subdivision. Memoirs of AMS 93, 1991.Google Scholar
  2. 2.
    I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.Google Scholar
  3. 3.
    I. Daubechies and J. Lagarias. Two scale difference equations II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23, 1992, 1031–1079.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    G. Deslauriers and S. Dubuc. Symmetrie iterative interpolation. Constr. Approx. 5, 1989, 49–68.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    S. Dubuc. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 1986, 185–204.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    N. Dyn. Subdivision schemes in Computer-Aided Geometric Design. Advances in Numerical Analysis, Vol. II, Wavelets, Subdivision Algorithms and Radial Basis Functions, W. Light (ed.), Clarendon Press, Oxford, 1992, 36–104.Google Scholar
  7. 7.
    N. Dyn, J. A. Gregory, and D. Levin. A four-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4, 1987, 257–268.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    N. Dyn, J. A. Gregory, and D. Levin. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. on Graphics 9, 1990, 160–169.zbMATHCrossRefGoogle Scholar
  9. 9.
    N. Dyn and D. Levin. Interpolatory subdivision schemes for the generation of curves and surfaces. Multivariate Approximation and Interpolation, W. Haussmann and K. Jetter (eds.), Birkhäuser Verlag, Basel, 1990, 91–106.Google Scholar
  10. 10.
    N. Dyn and D. Levin. Stationary and non-stationary binary subdivision schemes. Mathematical Methods in Computer Aided Geometric Design II, T. Lydie and L. L. Schumaker (eds.), Academic Press, New York, 1992, 209–216.Google Scholar
  11. 11.
    N. Dyn, D. Levin, and A. Luzzatto. Non-stationary interpolatory subdivision schemes reproducing spaces of exponential polynomials. Preprint.Google Scholar
  12. 12.
    N. Dyn, D. Levin, and C. A. Micchelli. Using parameters to increase smoothness of curves and surfaces generated by subdivision. Comput. Aided Geom. Design 7, 1990, 129–140.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    N. Dyn. Analysis of convergence and smoothness by the formalism of Laurent polynomials. This volume.Google Scholar
  14. 14.
    J. A. Gregory. An introduction to bivariate uniform subdivision. Numerical Analysis 1991, D. F. Griffiths and G. A. Watson (eds.), Pitman Research Notes in Mathematics, Longman Scientific and Technical, 1991, 103–117.Google Scholar
  15. 15.
    L. Kobbelt. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Eurographics 1996, 409–420.Google Scholar
  16. 16.
    A. Levin. Combined Subdivision Schemes with Applications to Surface Design. PhD Thesis, Tel-Aviv University, 1999.Google Scholar
  17. 17.
    A. Luzzatto. Multi-Scale Signal Processing, Based on Non-Stationary Subdivision. PhD Thesis, Tel-Aviv University, 2000.Google Scholar
  18. 18.
    G. Morin, J. Warren, and H. Weimer. A subdivision scheme for surfaces of revolution. Comput. Aided Geom. Design 18, 2001, 483–503.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    M. Sabin. Subdivision of box-splines. This volume.Google Scholar
  20. 20.
    M. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. This volume.Google Scholar
  21. 21.
    D. Zorin, P. Schröder, and W. Sweldens. Interpolating subdivision for meshes with arbitrary topology. SIGGRAPH 1996, 189–192.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Nira Dyn
    • 1
  1. 1.School of Mathematical SciencesTel-Aviv UniversityIsrael

Personalised recommendations