Skip to main content

Multiresolution Mesh Representation: Models and Data Structures

  • Chapter
Tutorials on Multiresolution in Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Multiresolution meshes are a common basis for building representations of a geometric shape at different levels of detail. The use of the term multiresolution depends on the remark that the accuracy (or, level of detail) of a mesh in approximating a shape is related to the mesh resolution, i.e., to the density (size and number) of its cells. A multiresolution mesh provides several alternative mesh-based approximations of a spatial object (e.g., a surface describing the boundary of a solid object, or the graph of a scalar field).

A multiresolution mesh is a collection of mesh fragments, describing usually small portions of a spatial object with different accuracies, plus suitable relations that allow selecting a subset of fragments (according to user-defined accuracy criteria), and combining them into a mesh covering the whole object, or an object part. Existing multiresolution models differ in the type of mesh fragments they consider and in the way they define relations among such fragments.

In this chapter, we introduce a framework for multiresolution meshes in order to analyze and compare existing models proposed in the literature on a common basis. We have identified two sets of basic queries on a multiresolution meshes, that we call selective refinement and spatial selection. We describe two approaches for answering such queries, and discuss the primitives involved in them, which must be efficiently supported by any data structure implementing a multiresolution mesh. We then describe and analyze data structures proposed in the literature for encoding multiresolution meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. K. Agoston. Algebraic Topology: a First Course. Pure and Applied Mathematics, M. Dekker (ed.), New York, 1976.

    Google Scholar 

  2. C. L. Bajaj, F. Bernardini, J. Chen, and D. R. Schikore. Automatic reconstruction of 3D CAD models. Theory and Practice of Geometric Modeling, W. Straßer, R. Klein, and R. Rau (eds.), Springer-Ver lag, Berlin, 1996.

    Google Scholar 

  3. M. Bertolotto, E. Bruzzone, L. De Floriani, and E. Puppo. Multiresolution representation of volume data through hierarchical simplicial complexes. Aspects of Visual Form Processing, World Scientific, Singapore, 1994, 73–82.

    Google Scholar 

  4. M. Bertolotto, L. De Floriani, and P. Marzano. Pyramidal simplicial complexes. 4th International Symposium on Solid Modeling, Salt Lake City, Utah, U.S.A., ACM Press, 1995, 153–162.

    Google Scholar 

  5. J. Bey. Tetrahedral mesh refinement. Computing 55, 1995, 355–378.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. J. C. Brown. A fast algorithm for selective refinement of terrain meshes. COMPUGRAPHICS 96, GRASP, 1996, 70–82. A longer version is available as Technical Report No. 417, Computer Laboratory, Cambridge University, CB2 3QG, UK, February 1997.

    Google Scholar 

  7. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 1978, 350–355.

    Article  Google Scholar 

  8. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simplification of tetrahedral volume with accurate error evaluation. IEEE Visualization’00, IEEE Computer Society, 2000, 85–92.

    Google Scholar 

  9. P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. TAn2 -visualization of large irregular volume datasets. Technical Report DISI-TR-00–07, Department of Computer and Information Science, University of Genova (Italy), 2000. Submitted for publication.

    Google Scholar 

  10. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution modeling and rendering of volume data based on simplicial complexes. 1994 Symposium on Volume Visualization, ACM Press, 1994, 19–26.

    Google Scholar 

  11. P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Multiresolution modeling and visualization of volume data. IEEE Transactions on Visualization and Computer Graphics 3, 1997, 352–369.

    Article  Google Scholar 

  12. P. Cignoni, E. Puppo, and R. Scopigno. Representation and visualization of terrain surfaces at variable resolution. The Visual Computer 13, 1997, 199–217. A preliminary version appeared in Int. Symp. Scientific Visualization ‘95, World Scientific, 1995, 50–68.

    Article  Google Scholar 

  13. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Compressing multiresolution triangle meshes. 7th International Symposium on Spatial and Temporal Databases, SSTD 2001, Los Angeles, CA, USA, 2001.

    Google Scholar 

  14. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Representing vertex-based simplicial multi-complexes. Digital and Image Geometry, Lecture Notes in Computer Science 2243, G. Bertrand, A. Imiya, and R. Klette (eds.), Springer-Verlag, New York, 2001, 128–147.

    Google Scholar 

  15. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures for 3D multi-tessellations: an overview. Technical Report DISI-TR-02–01, Department of Computer and Information Science, University of Genova (Italy), 2002.

    Google Scholar 

  16. M. de Berg and K. Dobrindt. On levels of detail in terrains. 11th ACM Symposium on Computational Geometry, Vancouver (Canada), ACM Press, 1995, C26-C27.

    Google Scholar 

  17. L. De Floriani. A pyramidal data structure for triangle-based surface description. IEEE Computer Graphics and Applications 8, 1989, 67–78.

    Article  Google Scholar 

  18. L. De Floriani, P. Magillo, F. Morando, and E. Puppo. Dynamic view-dependent multiresolution on a client-server architecture. CAD Journal 32, 2000, 805–823.

    Google Scholar 

  19. L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. IEEE Visualization 97, Phoenix, AZ (USA), 1997, 103–110.

    Google Scholar 

  20. L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes. Advances in Spatial Databases, Lecture Notes in Computer Science 1651, Guting, Papadias, and A Lochovsky (eds.), Springer-Verlag, Berlin, 1999, 33–51.

    Chapter  Google Scholar 

  21. L. De Floriani and E. Puppo. Hierarchical triangulation for multiresolution surface description. ACM Trans. on Graphics 14, 1995, 363–411.

    Article  Google Scholar 

  22. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. Geometric Modeling: Theory and Practice, R. Klein, W. Straßer, and R. Rau (eds.), Springer-Verlag, Berlin, 1997, 302–323.

    Chapter  Google Scholar 

  23. D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. Algorithmica 4, 1989, 3–32.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Doo and M. Sabin. Analysis of the behaviour of recursive subdivision surfaces near extraordinary points. Computer-Aided Design 10, 1978, 356–360.

    Article  Google Scholar 

  25. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineed-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. IEEE Visualization’97, 1997, 81–88.

    Google Scholar 

  26. G. Dutton. Improving locational specificity of map data — a multiresolution, metadata-driven approach and notation. International Journal of Geographic Information Systems 10, 1996, 253–268.

    Google Scholar 

  27. N. Dyn. Interpolatory subdivision schemes. This volume.

    Google Scholar 

  28. N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. on Graphics 9, 1990, 160–169.

    Article  MATH  Google Scholar 

  29. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer Graphics Forum 18, 1999, C83-C94.

    Article  Google Scholar 

  30. W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular networks. Algorithmica 30, 2001, 264–286.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Gerstner. Multiresolution visualization and compression of global topographic data. To appear in Geolnformatica. Short version appeared inSpatial Data Handling, P. Forer, A.G.O. Yeh, and J. He (eds.), IGU/GISc, 2000, 14–27.

    Google Scholar 

  32. T. Gerstner and R. Pajarola. Topology preserving and controlled topology simplifying multiresolution isosurface extraction. IEEE Visualization 2000, IEEE Computer Society, 2000, 259–266.

    Google Scholar 

  33. T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. 1999 Symposium on Volume Visualization, ACM Press, 1999.

    Google Scholar 

  34. T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman, and I. J. Trotts. Constructing hierarchies of triangle meshes. IEEE Transactions on Visualization and Computer Graphics 4, 1997, 145–160.

    Article  Google Scholar 

  35. D. Gomez and A. Guzman. Digital model for three-dimensional surface representation. Geo-Processing 1, 1979, 53–70.

    Google Scholar 

  36. C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression of 3D Meshes. This volume.

    Google Scholar 

  37. G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer 16, 2000, 357–365.

    Article  MATH  Google Scholar 

  38. M. H. Gross and O. G. Staadt. Progressive tetrahedralizations. IEEE Visualization’98, Research Triangle Park, NC, IEEE Computer Society, 1998, 397–402.

    Google Scholar 

  39. M. H. Gross, O. G. Staadt, and R. Gatti. Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer Graphics 2, 1996, 130–144.

    Article  Google Scholar 

  40. R. Grosso, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. IEEE Visualization ‘97, Phoenix, AZ, IEEE Computer Society, 1997, 387–394.

    Google Scholar 

  41. A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial maps for progressive transmission of polygonal surfaces. ACM VRML98, 1998, 25–31.

    Google Scholar 

  42. B. Hamann. A data reduction scheme for triangulated surfaces. Comput. Aided Geom. Design 11, 1994, 197–214.

    MathSciNet  MATH  Google Scholar 

  43. D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation 17, 1994, 457–472.

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Holliday and G. Nielson. Progressive volume model for rectilinear data using tetrahedral Coons patches. Data Visualization, W. de Leeuw and R. van Liere (eds.), Springer Verlag, 2000.

    Google Scholar 

  45. H. Hoppe. Progressive meshes. SIGGRAPH 1996, 99–108.

    Google Scholar 

  46. H. Hoppe. View-dependent refinement of progressive meshes. SIGGRAPH 1997, 189–198.

    Google Scholar 

  47. J. Kim and S. Lee. Truly selective refinement of progressive meshes. Graphics Interface 2001, Ottawa, Canada, 2001, 101–110.

    Google Scholar 

  48. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput. 12, 1983, 28–35.

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. Visualization in Scientißc Computing ‘98, Springer-Verlag, Berlin, 1998, 13–24.

    Google Scholar 

  50. R. Klein and W. Straßer. Generation of multiresolution models from CAD data for real time rendering. Theory and Practice of Geometric Modeling (Blaubeuren II), R. Klein, W. Straßer, and R. Rau (eds.), Springer-Verlag, Berlin, 1997.

    Google Scholar 

  51. L. Kobbelt. (math) subdivision. SIGGRAPH 2000, 103–112.

    Book  Google Scholar 

  52. L. Kobbelt, S. Campagna, J. Vorsatz, and H. P. Seidel. Interactive multiresolution modeling of arbitrary meshes. SIGGRAPH 1998, 105–114.

    Google Scholar 

  53. M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierarchical meshes. International Conference on Shape Modeling, Genova (Italy), May 7–11 2001, 286–295.

    Google Scholar 

  54. M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees. ACM Trans. on Graphics 19, 2000.

    Google Scholar 

  55. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time, continuous level of detail rendering of height fields. SIGGRAPH 1996, 109–118.

    Google Scholar 

  56. P. Lindstrom and V. Pascucci. Visualization of large terrains made easy. IEEE Visualization’01, San Diego, CA, 2001, 363–370.

    Google Scholar 

  57. D. Luebke. Robust view-dependent simplification for very large-scale CAD visualization. Technical Report TR CS-99–33, University of Virginia, 1999.

    Google Scholar 

  58. D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. SIGGRAPH 1997, 199–207.

    Google Scholar 

  59. P. Magillo. Spatial Operations on Multiresolution Cell Complexes. PhD thesis, Dept. of Computer and Information Sciences, University of Genova (Italy), 1999.

    Google Scholar 

  60. J. M. Maubach. Local bisection refinement for N-simplicial grids generated by reflection. SIAM J. Comput. 16, 1995, 210–227.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Ohlberger and M. Rumpf. Hierachical and adaptive visualization on nested grids. Computing 56, 1997, 365–385.

    Article  MathSciNet  Google Scholar 

  62. R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. IEEE Visualization’98, Research Triangle Park, NC, IEEE Computer Society, 1998, 19–26.

    Google Scholar 

  63. P. Lindstrom. Out-of-core simplification of large polygonal models. SIGGRAPH 2000, 259–270.

    Google Scholar 

  64. J. Popovic and H. Hoppe. Progressive simplicial complexes. SIGGRAPH 1997, 217–224.

    Google Scholar 

  65. E. Puppo. Variable resolution terrain surfaces. Eight Canadian Conference on Computational Geometry, Ottawa, Canada, 1996, 202–210. Extended version appeared with title Variable Resolution Triangulations, Computational Geometry 11, 1998, 219–238.

    Google Scholar 

  66. K.J. Renze and J. H. Oliver. Generalized unstructured decimation. IEEE Computational Geometry & Applications 16, 1996, 24–32.

    Google Scholar 

  67. M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. International Journal of Numerical Engineering 20, 1984.

    Google Scholar 

  68. R. Southern, S. Perkins, B. Steyn, A. Muller, P. Marais, and E. Blake. A stateless client for progressive view-dependent transmission. WEB 3D 2001, February 2001.

    Google Scholar 

  69. J. Ruppert and R. Seidel. On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra. 5nd ACM Symposium on Computational Geometry, 1989, 380–392.

    Google Scholar 

  70. M. Sabin. Subdivision of Box-Splines. This volume.

    Google Scholar 

  71. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison Wesley, Reading, MA, 1990.

    Google Scholar 

  72. L. Scarlatos and T. Pavlidis. Hierarchical triangulation using cartographies coherence. Computer Vision, Graphics, and Image Processing : Graphical Models and Image Processing 54, 1992, 147–161.

    Article  Google Scholar 

  73. G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in constant time. Computer Vision, Graphics, and Image Processing: Image Understanding 55, 1992, 221–230.

    MATH  Google Scholar 

  74. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes. SIGGRAPH 1992, 65–70.

    Google Scholar 

  75. J. R. Shewchuck. Tetrahedral mesh generation by Delaunay refinement. 14th Annual Symposium on Computational Geometry, Minneapolis, Minnesota, ACM Press, 1998, 86–95.

    Google Scholar 

  76. R. Sivan and H. Samet. Algorithms for constructing quadtree surface maps. 5th International Symposium on Spatial Data Handling, Charleston, 1992, 361–370.

    Google Scholar 

  77. P. M. Sutton and C. D. Hansen. Accelerated isosurface extraction in time-varying fields. IEEE Transactions on Visualization and Computer Graphics 6, 2000, 97–107.

    Article  Google Scholar 

  78. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split compression. SIGGRAPH 1998, 123–132.

    Google Scholar 

  79. I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of tetrahedral meshes with error bounds. IEEE Transactions on Visualization and Computer Graphics 5, 1999, 224–237.

    Article  Google Scholar 

  80. I. J. Trotts, B. Hamann, K. I. Joy, and D. F. Wiley. Simplification of tetrahedral meshes. IEEE Visualization’98, Research Triangle Park, NC, 1998, 287–295.

    Google Scholar 

  81. L. Velho. Mesh simplification using four-face clusters. International Conference on Shape Modeling, Genova (Italy), May 7–11 2001.

    Google Scholar 

  82. L. Velho, L. Henriquez de Figueredo, and J. Gomes. A unified approach for hierarchical adaptive tesselation of surfaces. ACM Trans. on Graphics 4, 1999, 329–360.

    Article  Google Scholar 

  83. L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applications. Computer Graphics Forum 19, 2000, 195–214.

    Article  Google Scholar 

  84. B. Von Herzen and A. H. Barr. Accurate triangulations of deformed, intersecting surfaces. SIGGRAPH 1987, 103–110.

    Google Scholar 

  85. R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Visual Computer 15, 1999, 100–111.

    Article  Google Scholar 

  86. J. C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics 3, 1997, 171–183.

    Article  Google Scholar 

  87. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing regular volume data. IEEE Visualization ‘97, IEEE Computer Society, 1997, 135–142.

    Google Scholar 

  88. D. Zorin. A method for analysis of C 1-continuity of subdivision surfaces. SIAM J. Numer. Anal. 37, 2000.

    Google Scholar 

  89. D. Zorin and P. Schröder (eds.). Subdivisions for Modeling and Animation, ACM SIGGRAPH 2000, Course Notes No.23, ACM Press, July 2000.

    Google Scholar 

  90. D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. SIGGRAPH 1997, 259–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Floriani, L., Magillo, P. (2002). Multiresolution Mesh Representation: Models and Data Structures. In: Iske, A., Quak, E., Floater, M.S. (eds) Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04388-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04388-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07819-4

  • Online ISBN: 978-3-662-04388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics