Parameterization of Triangulations and Unorganized Points

  • Michael Floater
  • Kai Hormann
Part of the Mathematics and Visualization book series (MATHVISUAL)


A parameterization of a surface is a one-to-one mapping from a parameter domain to the surface. This paper studies the construction of piecewise linear parameterizations of triangulations and of discrete parameterizations of sets of unorganized points. Such parameterizations are useful tools for the approximation of triangulations by smoother surfaces as well as for the construction of triangulations from unorganized points. Parameterization can also be used as the starting point for multiresolution analysis of triangulations, through remeshing by triangulations with subdivision connectivity.


Convex Combination Delaunay Triangulation Parameter Domain Multiresolution Analysis Texture Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bennis, J.-M. Vezien, and G. Iglésias. Piecewise surface flattening for non-distorted texture mapping. SIGGRAPH 1991, 237–246.Google Scholar
  2. 2.
    G.-P. Bonneau. BLaC wavelets and non-nested wavelets. This volume.Google Scholar
  3. 3.
    M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey, 1976.zbMATHGoogle Scholar
  4. 4.
    J. Chen and Y. Han. Shortest paths on a polyhedron. Intern. J. Computational Geometry & Applications 6, 1996, 127–144.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary meshes. SIGGRAPH 1995, 173–182.Google Scholar
  6. 6.
    I. Eckstein, V. Surazhsky, and C. Gotsman. Texture mapping with hard constraints. Proceedings of Eurographics, 2001.Google Scholar
  7. 7.
    M.S. Floater. Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Design 14, 1997, 231–250.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. S. Floater. Parametric tilings and scattered data approximation. Intern. J. Shape Modeling 4, 1998, 165–182.CrossRefGoogle Scholar
  9. 9.
    M. S. Floater. Meshless parameterization and B-spline surface approximation. The Mathematics of Surfaces IX, R. Cipolla and R. Martin (eds.), Springer, 2000, 1–18.CrossRefGoogle Scholar
  10. 10.
    M. S. Floater. One-to-one piecewise linear mappings over triangulations. To appear in Math. Comp.Google Scholar
  11. 11.
    M. S. Floater, K. Hormann, and M. Reimers. Parameterization of manifold triangulations. Approximation Theory X: Abstract and Classical Analysis, C. K. Chui, L. L. Schumaker, and J. Stöckler (eds.), Vanderbilt University Press, Nashville, 2002, 197–209.Google Scholar
  12. 12.
    M. S. Floater and E. G. Quak. Piecewise linear prewavelets on arbitrary triangulations. Numer. Math. 82, 1999, 221–252.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M. S. Floater and M. Reimers. Meshless parameterization and surface reconstruction. Comput. Aided Geom. Design 18, 2001, 77–92.MathSciNetzbMATHGoogle Scholar
  14. 14.
    G. H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins University Press, Baltimore, 1989.zbMATHGoogle Scholar
  15. 15.
    C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and compression of 3D meshes. This volume.Google Scholar
  16. 16.
    K. Hormann and G. Greiner. MIPS: An efficient global parametrization method. Curve and Surface Design: Saint-Malo 1999, P.-J. Laurent, P. Sablonnière, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2000, 153–162.Google Scholar
  17. 17.
    A. Iske. Scattered data modelling using radial basis functions. This volume.Google Scholar
  18. 18.
    B. Kaneva and J. O’Rourke. An implementation of Chen & Han’s shortest paths algorithm. Proceedings of the 12th Canadian Conference on Computational Geometry, 2000.Google Scholar
  19. 19.
    A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover Publications, New York, 1975.Google Scholar
  20. 20.
    A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. SIGGRAPH 1998, 95–104.Google Scholar
  21. 21.
    B. Lévy. Constrained texture mapping for polygonal meshes. SIGGRAPH 2001, 417–424.Google Scholar
  22. 22.
    B. Levy and J.-L. Mallet. Non-distorted texture mapping for sheared triangulated meshes. SIGGRAPH 1998, 343–352.Google Scholar
  23. 23.
    M. Lounsbery, T. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. on Graphics 16, 1997, 34–73.CrossRefGoogle Scholar
  24. 24.
    J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. SIGGRAPH 1993, 27–34.Google Scholar
  25. 25.
    U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 1993, 15–36.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    E. Quak. Nonuniform B-splines and B-wavelets. This volume.Google Scholar
  27. 27.
    P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes. SIGGRAPH 2001, 409–416.Google Scholar
  28. 28.
    L. L. Schumaker. Fitting surfaces to scattered data. Approximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, New York, 1976, 203–268.Google Scholar
  29. 29.
    P. Schröder and W. Sweldens. Spherical wavelets: efficiently representing functions on the sphere. SIGGRAPH 1995, 161–172.Google Scholar
  30. 30.
    A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangulation flattening. Proceedings of the International Meshing Round Table Conference, 2000.Google Scholar
  31. 31.
    R. S. Varga. Matrix Iterative Analysis. Springer, Berlin, 2000.zbMATHCrossRefGoogle Scholar
  32. 32.
    F. Zeilfelder. Scattered data fitting with bivariate splines. This volume.Google Scholar
  33. 33.
    G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Visualization and Computer Graphics, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Floater
    • 1
  • Kai Hormann
    • 2
  1. 1.SINTEF Applied MathematicsOsloNorway
  2. 2.FB InformatikUniversity of ErlangenGermany

Personalised recommendations