# Scattered Data Fitting with Bivariate Splines

• Frank Zeilfelder
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

## Abstract

We describe scattered data fitting by bivariate splines, i.e., splines defined w.r.t. triangulations in the plane. These spaces are powerful tools for the efficient approximation of large sets of scattered data which appear in many real world problems. Bernstein-Bézier techniques can be used for the efficient computation of bivariate splines and for analysing the complex structure of these spaces. We report on the classical approaches and we describe interpolation and approximation methods for bivariate splines that have been developed recently. For the latter methods, we give illustrative examples treating sets of geodetic data (consisting of up to 106 points).

## Keywords

Scattered Data Interpolation Point Lagrange Interpolation Hermite Interpolation Interior Vertex
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
M. H. Adam. Bivariate Spline-Interpolation auf Crosscut-Partitionen. PhD-Thesis, University of Mannheim, Mannheim, Germany, 1995.Google Scholar
2. 2.
H. Akima. On estimating partial derivatives for bivariate interpolation of scattered data. Rocky Mountain J. Math. 14, 1, 1984, 41–52.
3. 3.
P. Alfeld. Scattered data interpolation in three or more variables. Mathematical Methods in CAGD, T. Lyche and L. L. Schumaker (eds.), Academic Press, Boston, 1989, 1–43.Google Scholar
4. 4.
P. Alfeld. Bivariate spline spaces and minimal determining sets. J. Comput. Appl. Math. 119, 2000, 13–27.
5. 5.
P. Alfeld and L. L. Schumaker. On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1. Numer. Math. 57, 1990, 651–661.
6. 6.
P. Alfeld and L. L. Schumaker. Smooth macro-elements based on Clough-Tocher split. Preprint 2001.Google Scholar
7. 7.
P. Alfeld and L. L. Schumaker. Smooth macro-elements based on Powell-Sabin split. Preprint 2001.Google Scholar
8. 8.
P. Alfeld, B. Piper, and L. L. Schumaker. Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree d ≥ 4r + 1. Comput. Aided Geom. Design 4, 1987, 105–123.
9. 9.
P. Alfeld, B. Piper, and L. L. Schumaker. An explicit basis for C 1 quartic bivariate splines. SIAM J. Numer. Anal. 24, 1989, 891–911.
10. 10.
P. Alfeld, L. L. Schumaker, and W. Whiteley. The generic dimension of the space of C 1 splines of degree d ≥ 8 on tetrahedral decompositions. SIAM J. Numer. Anal. 30, 1993, 889–920.
11. 11.
J. H. Argyis, I. Pried, and D. W. Scharpf. The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. Roy. Aeronaut. Soc. 72, 1968, 701–709.Google Scholar
12. 12.
R. H. Bartels and D. R. Foley. Surface fitting with hierarchical splines. ACM Trans. Graphics 14, 1995, 134–161.
13. 13.
M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. Proc. 31st IEEE Symp. Foundation Comp. Science. 1990, 231–241.Google Scholar
14. 14.
L. J. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans. Amer. Math. Soc. 310, 1988, 325–340.
15. 15.
L. J. Billera and R. Haas. The dimension and bases of divergence-free splines; a homological approach. Approx. Theory Appl. 7, 1, 1991, 91–99.
16. 16.
W. Boehm. Inserting new knots into B-spline curves. Comput. Aided Geom. Design 12, 1980, 199–201.Google Scholar
17. 17.
W. Boehm, G. Farin, and J. Kahmann. A survey of curve and surface methods in CAGD. Comput. Aided Geom. Design 1, 1984, 1–60.
18. 18.
W. Boehm, J. Hoschek, and H.-P. Seidel. Mathematical aspects of computer aided geometric design. Duration and Change: Fifty Years at Oberwolfach. M. Artin et. al. (eds.), Springer, 1994, 106–138.
19. 19.
C. de Boor. On calculating with B-Splines. J. Approx. Theory 6, 1972, 50–62.
20. 20.
C. de Boor. A practical Guide to Splines. Springer, New York, 1978.
21. 21.
C. de Boor. Efficient computer manipulation of tensor products. ACM Trans. Math. Software 5, 1979, 173–182.
22. 22.
C. de Boor. B-form basics. Geometric Modeling. G. Farin (ed.), SIAM, Philadelphia, 1987, 131–148.Google Scholar
23. 23.
C. de Boor and G. J. Fix. Spline approximation by smooth multivariate splines. Trans. Amer. Math. Soc. 276, 1973, 775–788.
24. 24.
C. de Boor and K. Höllig. Approximation order from bivariate C1 cubics: a counterexample. Proc. Amer. Math. Soc. 87, 1983, 649–655.
25. 25.
C. de Boor and K. Höllig. Approximation power of smooth bivariate pp functions. Math. Z. 197, 1988, 343–363.
26. 26.
C. de Boor and Q. Jia. A sharp upper bound on the approximation order of smooth bivariate pp functions. J. Approx. Theory 72, 1993, 24–33.
27. 27.
P. de Casteljau. Formes à pôles. Hermes, Paris, 1985.Google Scholar
28. 28.
Z. B. Chen, Y. Y. Feng, and F. Kozak. The blossoming approach to the dimension of the bivariate spline space. J. Comput. Math. 18, 2000, 183–198.
29. 29.
E. W. Cheney and W. A. Light. Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics 1109, Springer, Berlin, 1985.Google Scholar
30. 30.
31. 31.
C. K. Chui, D. Hong, and Q. Jia. Stability of optimal-order approximation by bivariate splines over arbitrary triangulations. Trans. Amer. Math. Soc. 347, 1995, 3301–3318.
32. 32.
C. K. Chui and R. H. Wang. Multivariate spline spaces. J. Math. Anal. Appl. 94, 1983, 197–221.
33. 33.
C. K. Chui and R. H. Wang. On smooth multivariate spline functions. Math. Comp. 41, 1983, 131–142.
34. 34.
C. K. Chui and M.-J. Lai. On bivariate super vertex splines. Constr. Approx. 6, 1990, 399–419.
35. 35.
P. Cignoni, C. Montani, and R. Scorpigno. A comparison of mesh simplification algorithms. Computers &; Graphics, 1998, 37–54.Google Scholar
36. 36.
R. W. Clough and J. L. Tocher. Finite element stiffness matrices for analysis of plates in bending. Proc. Conf. on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio, 1965.Google Scholar
37. 37.
E. Cohen, T. Lyche, and R. F. Riesenfeld. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comp. Graphics and Image Proc. 14, 1980, 87–111.
38. 38.
E. Cohen and L. L. Schumaker. Rates of convergence of control polygons. Comput. Aided Geom. Design 2, 1985, 229–235.
39. 39.
M. G. Cox. The numerical evaluation of B-splines. J. Inst. Math. Applics. 10, 1972, 134–149.
40. 40.
M. Daehlen, T. Lyche, K. Mørken, R. Schneider, and H.-P. Seidel. Multiresolution analysis over triangles based on quadratic Hermite interpolation. J. Comput. Appl. Math. 119, 2000, 97–114.
41. 41.
W. Dahmen, R. H. J. Gmelig Meyling, and J. H. M. Ursem. Scattered data interpolation by bivariate C 1-piecewise quadratic functions. Approx. Theory Appl. 6, 3, 1990, 6–29.
42. 42.
W. Dahmen, P. Oswald, and X.-Q. Shi. C 1 hierarchical basis. J. Comput. Appl. Math. 51, 1994, 37–56.
43. 43.
W. Dahmen and R. Stevenson. Element by element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37, 1999, 319–325.
44. 44.
O. Davydov. On almost interpolation. J. Approx. Theory 91, 1997, 398–418.
45. 45.
O. Davydov and G. Nürnberger. Interpolation by C 1 splines of degree q ≥ 4 on triangulations. J. Comput. Appl. Math. 126, 2000, 159–183.
46. 46.
O. Davydov, G. Nürnberger, G. Walz, and F. Zeilfelder. Interpolation by bivariate splines on crosscut partitions. Multivariate Approximation and Splines. G. Nürnberger et al. (eds.), ISNM 125, Birkhäuser, Basel, 1997, 189–204.Google Scholar
47. 47.
O. Davydov, G. Nürnberger, and F. Zeilfelder. Approximation order of bivariate spline interpolation for arbitrary smoothness. J. Comput. Appl. Math. 90, 1998, 117–134.
48. 48.
O. Davydov, G. Nürnberger, and F. Zeilfelder. Interpolation by cubic splines on triangulations. Approximation Theory IX, Vol 1: Theoretical Aspects, C. K. Chui and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1998, 17–24.Google Scholar
49. 49.
O. Davydov, G. Nürnberger, and F. Zeilfelder. Interpolation by splines on triangulations. New Developments in Approximation Theory. M. W. Müller et. al. (eds.), Birkhäuser, Basel, 1999, 49–70.
50. 50.
O. Davydov, G. Nürnberger, and F. Zeilfelder. Cubic spline interpolation on nested polygon triangulations. Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2000, 161–170Google Scholar
51. 51.
O. Davydov, G. Nürnberger, and F. Zeilfelder. Bivariate spline interpolation with optimal approximation order. Constr. Approx. 17, 2001, 181–208.
52. 52.
O. Davydov, M. Sommer, and H. Strauss. On almost interpolation and locally linearly independent basis. East J. Approx. 5, 1999, 67–88.
53. 53.
O. Davydov, M. Sommer, and H. Strauss. Interpolation by bivariate linear splines. J. Comput. Appl. Math. 119, 2000, 243–262.
54. 54.
O. Davydov and F. Zeilfelder. Scattered data fitting by direct extension of local polynomials with bivariate splines. In preparation 2002.Google Scholar
55. 55.
D. Diener. Instability in the dimension of spaces of bivariate piecewise polynomials of degree 2r and smoothness order r. SIAM J. Numer. Anal. 27, 1990, 543–551.
56. 56.
P. Dierckx. Curve and Surface Fitting with Splines. Clarendon Press, Oxford, 1993.
57. 57.
P. Dierckx, S. Van Leemput, and T. Vermeire. Algorithms for surface fitting using Powell-Sabin splines. IMA J. Numer. Anal. 12, 1992, 271–299.
58. 58.
N. Dyn. Interpolatory subdivision schemes. This volume.Google Scholar
59. 59.
N. Dyn. Subdivision: analysis of convergence and smoothness by the formalism of Laurent polynomials. This volume.Google Scholar
60. 60.
N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered data. To appear in J. Comput. Appl. Math.Google Scholar
61. 61.
G. Faber. Über stetige Funktionen, Math. Ann. 68, 1910, 81–93.Google Scholar
62. 62.
G. Faber. Über stetige Funktionen (Zweite Abhandlung), Math. Ann. 69, 1910, 372–443.
63. 63.
G. Farin. Subsplines über Dreiecken. PhD-Thesis, University of Braunschweig, Germany, 1979.Google Scholar
64. 64.
G. Farin. Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design 3, 1986, 83–127.
65. 65.
G. Farin. Geometric Modeling. SIAM, Philadelphia, 1987.
66. 66.
G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, Boston, 1993.Google Scholar
67. 67.
M. S. Floater and E. G. Quak. Piecewise linear prewavelets on arbitrary triangulations. Numer. Math. 82, 1999, 221–252.
68. 68.
M. S. Floater and E. G. Quak. Linear independence and stability of piecewise linear prewavelets on arbitrary triangulations. SIAM J. Numer. Anal. 38, 2000, 58–79.
69. 69.
M. S. Floater and E. G. Quak. Piecewise linear wavelets on Type-2 triangulations. Computing Supplement 14, 2001, 89–103.
70. 70.
M. S. Floater, E. G. Quak, and M. Reimers. Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations. J. Comput. Appl. Math. 119, 2000, 185–207.
71. 71.
L. De Floriani and P. Magillo. Multiresolution mesh representation: models and data structures. This volume.Google Scholar
72. 72.
T. A. Foley. Scattered data interpolation and approximation with error bounds. Comput. Aided Geom. Design 3, 1986, 163–177.
73. 73.
G. Fraeijs de Veubeke. Bending and stretching of plates. Proc. Conf. on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio, 1965.Google Scholar
74. 74.
R. Franke. Scattered data interpolation: test of some methods. Math. Comp. 38, 1982, 181–200.
75. 75.
T. N. T. Goodman, H. B. Said, and L. H. T. Chang. Local derivative estimation for scattered data interpolation. Appl. Math. Comp. 68, 1995, 41–50.
76. 76.
C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and compression of 3D meshes. This volume.Google Scholar
77. 77.
G. Greiner and K. Hormann. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. Surface Fitting and Multiresolution Methods, A. Le Méhauté, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1997, 163–177.Google Scholar
78. 78.
J. Haber, F. Zeilfelder, O. Davydov, and H.-P. Seidel. Smooth approximation and rendering of large scattered data sets. Proceedings of IEEE Visualisation 2001. Ertl, T. et. al. (eds.), 341–347.Google Scholar
79. 79.
J. G. Hayes and J. Halliday. The least squares fitting of cubic spline surfaces to general data sets. J. Math. Appl. 14, 1974, 89–113.
80. 80.
D. Hong. Spaces of bivariate spline functions over triangulation. Approx. Theory Appl. 7, 1991, 56–75.
81. 81.
J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart, 1992.
82. 82.
A. Ibrahim and L. L. Schumaker. Super spline spaces of smoothness r and degree d ≥ 3r + 2. Constr. Approx. 7, 1991, 401–423.
83. 83.
A. Iske. Scattered data modelling using radial basis functions. This volume.Google Scholar
84. 84.
S. Karlin and Z. Ziegler. Chebyshevian spline functions. SIAM J. Numer. Anal. 3, 1966, 514–543.
85. 85.
L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multiresolution modeling on arbitrary meshes. SIGGRAPH 1998, 105–114.Google Scholar
86. 86.
U. Kotyczka and P. Oswald. Piecewise linear prewavelets of small support. Approximation Theory VIII, Vol. 2: Wavelets, C.K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 1995, 235–242.Google Scholar
87. 87.
M.-J. Lai. Scattered data interpolation and approximation using bivariate C 1 piecewise cubic polynomials. Comput. Aided Geom. Design 13, 1996, 81–88.
88. 88.
M.-J. Lai and L. L. Schumaker. On the approximation power of bivariate splines. Advances in Comp. Math. 9, 1998, 251–279.
89. 89.
M.-J. Lai and L. L. Schumaker. Macro-elements and stable local bases for splines on Clough-Tocher triangulations. Numer. Math. 88, 2001, 105–119.
90. 90.
M.-J. Lai and L. L. Schumaker. Macro-elements and stable local bases for splines on Powell-Sabin triangulations. To appear in Math. Comp.Google Scholar
91. 91.
M.-J. Lai and L. L. Schumaker. Quadrilateral macro-elements. To appear in SIAM J. Math. Anal.Google Scholar
92. 92.
P. Lancaster and K. Salkauskas. Curve and Surface Fitting. Academic Press, San Diego, 1986.
93. 93.
S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel B-splines. IEEE Trans. Visual. Comp. Graphics 3, 3, 1997, 228–244.
94. 94.
A. Le Méhauté. Nested sequences of triangular finite element spaces. Multivariate Approximation: Recent Trends and Results. W. Haussmann et. al. (eds.), Akademie Verlag, Berlin, 1997, 133–145.Google Scholar
95. 95.
S. K. Lodha and R. Pranke. Scattered data techniques for surfaces. Proc. Dagstuhl Conf. Scientific Visualization. H. Hagen et. dl. (eds.), IEEE Computer Society Press, 1999, 182–222.Google Scholar
96. 96.
M. Lounsbery, T. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary topology type, ACM Trans. on Graphics 16, 1997, 34–73.
97. 97.
C. Manni. On the dimension of bivariate spline spaces over rectilinear partitions. Approx. Theory Appl. 7, 1, 1991, 23–34.
98. 98.
C. Manni. On the dimension of bivariate spline spaces over generalized quasi-cross-cut partitions. J. Approx. Theory 69, 1992, 141–155.
99. 99.
M. Morandi Cecchi, S. De Marchi, and D. Fasoli. A package for representing C 1 interpolating surfaces: application to the lagoon of Venice’s bed. Numer. Algorithms 20, 1999, 197–215.
100. 100.
J. Morgan and R. Scott. A nodal basis for C 1 piecewise polynomials of degree n ≥ 5. Math. Comp. 29, 1975, 736–740.
101. 101.
J. Morgan and R. Scott. The dimension of piecewise polynomials. Unpublished manuscript 1977.Google Scholar
102. 102.
G. Nürnberger. Approximation by Spline Functions. Springer, Berlin, 1989.
103. 103.
G. Nürnberger. Approximation order of bivariate spline interpolation. J. Approx. Theory 87, 1996, 117–136.
104. 104.
G. Nürnberger and T. Rießinger. Lagrange and Hermite interpolation by bivariate splines. Numer. Func. Anal. Optim. 13, 1992, 75–96.
105. 105.
G. Nürnberger and T. Rießinger. Bivariate spline interpolation at grid points. Numer. Math. 71, 1995, 91–119.
106. 106.
G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. Local Lagrange interpolation by bivariate C 1 cubic splines. Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2001, 393–404.Google Scholar
107. 107.
G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. Lagrange interpolation by C 1 cubic splines on triangulations of separable quadrangulations. Submitted 2001.Google Scholar
108. 108.
G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. In preparation 2002.Google Scholar
109. 109.
G. Nürnberger, G. Steidl, and F. Zeilfelder. Explicit estimates for bivariate hierarchical bases. To appear in Comm. Appl. Anal.Google Scholar
110. 110.
G. Nürnberger and G. Walz. Error analysis in interpolation by bivariate C 1-splines. IMA J. Numer. Anal. 18, 1998, 485–508.
111. 111.
G. Nürnberger and F. Zeilfelder. Interpolation by spline spaces on classes of triangulations. J. Comput. Appl. Math. 119, 2000, 347–376.
112. 112.
G. Nürnberger and F. Zeilfelder. Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121, 2000, 125–152.
113. 113.
G. Nürnberger and F. Zeilfelder. Local Lagrange interpolation by cubic splines on a class of triangulations. Trends in Approximation Theory. K. Kopotun, T. Lyche, and M. Neamtu (eds.), Vanderbilt University Press, Nashville, 2001, 341–350.Google Scholar
114. 114.
G. Nürnberger and F. Zeilfelder. Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling. Recent Progress in Multivariate Approximation. W. Haußmann, K. Jetter, and M. Reimer (eds.), Birkhäuser, ISNM 137, 2001, 227–244.
115. 115.
G. Nürnberger and F. Zeilfelder. Lagrange interpolation by bivariate C 1-splines with optimal approximation order. Submitted 2001.Google Scholar
116. 116.
P. Oswald. Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer. Anal. 29, 1992, 1610–1625.
117. 117.
P. Oswald. Multilevel Finite Element Approximation. Teubner, Stuttgart, 1994.
118. 118.
M. J. D. Powell. Radial basis functions for multivariate approximation: a review. Algorithms for the Approximation of Functions and Data. J. C. Mason and M. G. Gox (eds.), Clarendon Press, Oxford, 1987, 143–167.Google Scholar
119. 119.
M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximation on triangles. ACM Trans. Math. Software 4, 1977, 316–325.
120. 120.
E. Quak. Nonuniform B-splines and B-wavelets. This volume.Google Scholar
121. 121.
R. J. Renka and A. K. Cline. A triangle-based C 1 interpolation method. Rocky Mountain J. Math. 14, 1, 1984, 223–237.
122. 122.
J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18, 3, 1995, 548–585.
123. 123.
M. Sabin. Subdivision of box-splines. This volume.Google Scholar
124. 124.
M. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. This volume.Google Scholar
125. 125.
G. Sander. Bornes supérieures et inférieures dans l’analyse matricielle des plaques en flexion-torsion. Bull. Soc. Royale Science Liège 33, 1964, 456–494.
126. 126.
I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae. Quart. Appl. Math. 4, 1946, 45–99.
127. 127.
I. J. Schoenberg and A. Whitney. On Polya frequency functions III. The pos-itivity of translation determinants with application to the interpolation problem by spline curves. Trans. Amer. Math. Soc. 74, 1953, 246–259.
128. 128.
L. L. Schumaker. Fitting surfaces to scattered data, Approximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, New York, 1976, 203–268.Google Scholar
129. 129.
L. L. Schumaker. Spline Functions: Basic Theory. Wiley-Interscience, New York, 1980.Google Scholar
130. 130.
L. L. Schumaker. On the dimension of piecewise polynomials in two variables. Multivariate Approximation Theory W. Schempp et. al. (eds.), Birkhäuser, Basel, 1979, 396–412.Google Scholar
131. 131.
L. L. Schumaker. Bounds on the dimension of spaces of multivariate piecewise polynomials. Rocky Mountain J. Math. 14, 1984, 251–264.
132. 132.
L. L. Schumaker. Dual bases for spline spaces on a cell. Comput. Aided Geom. Design 5, 1987, 277–284.
133. 133.
L. L. Schumaker. Triangulation methods. Topics in Multivariate Approximation. C. K. Chui, L. L. Schumaker, and F. I. Utreras (eds.), Academic Press, New York, 1987, 219–232.Google Scholar
134. 134.
H.-P. Seidel. An introduction to polar forms. IEEE Comp. Graph. Appl. 13, 1993, 38–46.
135. 135.
H.-P. Seidel and F. Zeilfelder. Splines over triangulations. Handbook of Computer Aided Design. G. Farin et. al. (eds.). To appear 2002.Google Scholar
136. 136.
J. R. Shewchuk. Delaunay refinement mesh generation. PhD Thesis, Carnegie Mellon University, Pittsburgh, 1997.Google Scholar
137. 137.
X. G. Shi. The singularity of Morgan-Scott triangulation. Comput. Aided Geom. Design 8, 1991, 201–206.
138. 138.
R. Stevenson. A robust hierarchical basis preconditioner on general meshes. Numer. Math. 78, 1996, 269–303.
139. 139.
R. Stevenson. Piecewise linear (pre-)wavelets on non-uniform meshes. Multigrid Methods V, W. Hackbusch and G. Wittum (eds.), Springer, Berlin, 1998, 306–319.
140. 140.
E. Stollnitz, E. T. Rose, and D. H. Salesin. Wavelets for Computer Graphics. Morgan Kauffmann, San Francisco, 1996.Google Scholar
141. 141.
H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math. 49, 1986, 371–412.
142. 142.
H. Yserentant. Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math. 58, 1986, 163–184.
143. 143.
W. Whiteley. A matrix for splines. Progress in Approximation Theory. P. Nevai et. al. (eds.), Academic Press, Boston, 1991, 821–828.Google Scholar
144. 144.
A. Zenisek. Interpolation polynomials on the triangle. Numer. Math. 15, 1970, 283–296.
145. 145.
A. Zenisek. A general theorem on triangular finite C m-elements. Rev. Française Automat. Informat. Rech. Opér., Anal. Numer. 2, 1974, 119–127.
146. 146.
J. Zhang, Z. Tang, and J. Li. Adaptive hierarchical B-spline surface approximation of large-scale scattered data. Pacific Graphics, 1998, 8–16.Google Scholar
147. 147.
M. Zlamal. On the finite element method. Numer. Math. 12, 1968, 394–409.