Advertisement

Scattered Data Fitting with Bivariate Splines

  • Frank Zeilfelder
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We describe scattered data fitting by bivariate splines, i.e., splines defined w.r.t. triangulations in the plane. These spaces are powerful tools for the efficient approximation of large sets of scattered data which appear in many real world problems. Bernstein-Bézier techniques can be used for the efficient computation of bivariate splines and for analysing the complex structure of these spaces. We report on the classical approaches and we describe interpolation and approximation methods for bivariate splines that have been developed recently. For the latter methods, we give illustrative examples treating sets of geodetic data (consisting of up to 106 points).

Keywords

Scattered Data Interpolation Point Lagrange Interpolation Hermite Interpolation Interior Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Adam. Bivariate Spline-Interpolation auf Crosscut-Partitionen. PhD-Thesis, University of Mannheim, Mannheim, Germany, 1995.Google Scholar
  2. 2.
    H. Akima. On estimating partial derivatives for bivariate interpolation of scattered data. Rocky Mountain J. Math. 14, 1, 1984, 41–52.MathSciNetzbMATHGoogle Scholar
  3. 3.
    P. Alfeld. Scattered data interpolation in three or more variables. Mathematical Methods in CAGD, T. Lyche and L. L. Schumaker (eds.), Academic Press, Boston, 1989, 1–43.Google Scholar
  4. 4.
    P. Alfeld. Bivariate spline spaces and minimal determining sets. J. Comput. Appl. Math. 119, 2000, 13–27.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    P. Alfeld and L. L. Schumaker. On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1. Numer. Math. 57, 1990, 651–661.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Alfeld and L. L. Schumaker. Smooth macro-elements based on Clough-Tocher split. Preprint 2001.Google Scholar
  7. 7.
    P. Alfeld and L. L. Schumaker. Smooth macro-elements based on Powell-Sabin split. Preprint 2001.Google Scholar
  8. 8.
    P. Alfeld, B. Piper, and L. L. Schumaker. Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree d ≥ 4r + 1. Comput. Aided Geom. Design 4, 1987, 105–123.MathSciNetzbMATHGoogle Scholar
  9. 9.
    P. Alfeld, B. Piper, and L. L. Schumaker. An explicit basis for C 1 quartic bivariate splines. SIAM J. Numer. Anal. 24, 1989, 891–911.MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Alfeld, L. L. Schumaker, and W. Whiteley. The generic dimension of the space of C 1 splines of degree d ≥ 8 on tetrahedral decompositions. SIAM J. Numer. Anal. 30, 1993, 889–920.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J. H. Argyis, I. Pried, and D. W. Scharpf. The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. Roy. Aeronaut. Soc. 72, 1968, 701–709.Google Scholar
  12. 12.
    R. H. Bartels and D. R. Foley. Surface fitting with hierarchical splines. ACM Trans. Graphics 14, 1995, 134–161.CrossRefGoogle Scholar
  13. 13.
    M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. Proc. 31st IEEE Symp. Foundation Comp. Science. 1990, 231–241.Google Scholar
  14. 14.
    L. J. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans. Amer. Math. Soc. 310, 1988, 325–340.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L. J. Billera and R. Haas. The dimension and bases of divergence-free splines; a homological approach. Approx. Theory Appl. 7, 1, 1991, 91–99.MathSciNetzbMATHGoogle Scholar
  16. 16.
    W. Boehm. Inserting new knots into B-spline curves. Comput. Aided Geom. Design 12, 1980, 199–201.Google Scholar
  17. 17.
    W. Boehm, G. Farin, and J. Kahmann. A survey of curve and surface methods in CAGD. Comput. Aided Geom. Design 1, 1984, 1–60.zbMATHGoogle Scholar
  18. 18.
    W. Boehm, J. Hoschek, and H.-P. Seidel. Mathematical aspects of computer aided geometric design. Duration and Change: Fifty Years at Oberwolfach. M. Artin et. al. (eds.), Springer, 1994, 106–138.CrossRefGoogle Scholar
  19. 19.
    C. de Boor. On calculating with B-Splines. J. Approx. Theory 6, 1972, 50–62.zbMATHCrossRefGoogle Scholar
  20. 20.
    C. de Boor. A practical Guide to Splines. Springer, New York, 1978.zbMATHCrossRefGoogle Scholar
  21. 21.
    C. de Boor. Efficient computer manipulation of tensor products. ACM Trans. Math. Software 5, 1979, 173–182.zbMATHCrossRefGoogle Scholar
  22. 22.
    C. de Boor. B-form basics. Geometric Modeling. G. Farin (ed.), SIAM, Philadelphia, 1987, 131–148.Google Scholar
  23. 23.
    C. de Boor and G. J. Fix. Spline approximation by smooth multivariate splines. Trans. Amer. Math. Soc. 276, 1973, 775–788.CrossRefGoogle Scholar
  24. 24.
    C. de Boor and K. Höllig. Approximation order from bivariate C1 cubics: a counterexample. Proc. Amer. Math. Soc. 87, 1983, 649–655.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    C. de Boor and K. Höllig. Approximation power of smooth bivariate pp functions. Math. Z. 197, 1988, 343–363.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    C. de Boor and Q. Jia. A sharp upper bound on the approximation order of smooth bivariate pp functions. J. Approx. Theory 72, 1993, 24–33.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    P. de Casteljau. Formes à pôles. Hermes, Paris, 1985.Google Scholar
  28. 28.
    Z. B. Chen, Y. Y. Feng, and F. Kozak. The blossoming approach to the dimension of the bivariate spline space. J. Comput. Math. 18, 2000, 183–198.MathSciNetzbMATHGoogle Scholar
  29. 29.
    E. W. Cheney and W. A. Light. Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics 1109, Springer, Berlin, 1985.Google Scholar
  30. 30.
    C. K. Chui. Multivariate splines. CBMS 54, SIAM, Philadelphia, 1986.Google Scholar
  31. 31.
    C. K. Chui, D. Hong, and Q. Jia. Stability of optimal-order approximation by bivariate splines over arbitrary triangulations. Trans. Amer. Math. Soc. 347, 1995, 3301–3318.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    C. K. Chui and R. H. Wang. Multivariate spline spaces. J. Math. Anal. Appl. 94, 1983, 197–221.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    C. K. Chui and R. H. Wang. On smooth multivariate spline functions. Math. Comp. 41, 1983, 131–142.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    C. K. Chui and M.-J. Lai. On bivariate super vertex splines. Constr. Approx. 6, 1990, 399–419.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    P. Cignoni, C. Montani, and R. Scorpigno. A comparison of mesh simplification algorithms. Computers &; Graphics, 1998, 37–54.Google Scholar
  36. 36.
    R. W. Clough and J. L. Tocher. Finite element stiffness matrices for analysis of plates in bending. Proc. Conf. on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  37. 37.
    E. Cohen, T. Lyche, and R. F. Riesenfeld. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comp. Graphics and Image Proc. 14, 1980, 87–111.CrossRefGoogle Scholar
  38. 38.
    E. Cohen and L. L. Schumaker. Rates of convergence of control polygons. Comput. Aided Geom. Design 2, 1985, 229–235.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    M. G. Cox. The numerical evaluation of B-splines. J. Inst. Math. Applics. 10, 1972, 134–149.zbMATHCrossRefGoogle Scholar
  40. 40.
    M. Daehlen, T. Lyche, K. Mørken, R. Schneider, and H.-P. Seidel. Multiresolution analysis over triangles based on quadratic Hermite interpolation. J. Comput. Appl. Math. 119, 2000, 97–114.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    W. Dahmen, R. H. J. Gmelig Meyling, and J. H. M. Ursem. Scattered data interpolation by bivariate C 1-piecewise quadratic functions. Approx. Theory Appl. 6, 3, 1990, 6–29.MathSciNetzbMATHGoogle Scholar
  42. 42.
    W. Dahmen, P. Oswald, and X.-Q. Shi. C 1 hierarchical basis. J. Comput. Appl. Math. 51, 1994, 37–56.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    W. Dahmen and R. Stevenson. Element by element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37, 1999, 319–325.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    O. Davydov. On almost interpolation. J. Approx. Theory 91, 1997, 398–418.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    O. Davydov and G. Nürnberger. Interpolation by C 1 splines of degree q ≥ 4 on triangulations. J. Comput. Appl. Math. 126, 2000, 159–183.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    O. Davydov, G. Nürnberger, G. Walz, and F. Zeilfelder. Interpolation by bivariate splines on crosscut partitions. Multivariate Approximation and Splines. G. Nürnberger et al. (eds.), ISNM 125, Birkhäuser, Basel, 1997, 189–204.Google Scholar
  47. 47.
    O. Davydov, G. Nürnberger, and F. Zeilfelder. Approximation order of bivariate spline interpolation for arbitrary smoothness. J. Comput. Appl. Math. 90, 1998, 117–134.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    O. Davydov, G. Nürnberger, and F. Zeilfelder. Interpolation by cubic splines on triangulations. Approximation Theory IX, Vol 1: Theoretical Aspects, C. K. Chui and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1998, 17–24.Google Scholar
  49. 49.
    O. Davydov, G. Nürnberger, and F. Zeilfelder. Interpolation by splines on triangulations. New Developments in Approximation Theory. M. W. Müller et. al. (eds.), Birkhäuser, Basel, 1999, 49–70.CrossRefGoogle Scholar
  50. 50.
    O. Davydov, G. Nürnberger, and F. Zeilfelder. Cubic spline interpolation on nested polygon triangulations. Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2000, 161–170Google Scholar
  51. 51.
    O. Davydov, G. Nürnberger, and F. Zeilfelder. Bivariate spline interpolation with optimal approximation order. Constr. Approx. 17, 2001, 181–208.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    O. Davydov, M. Sommer, and H. Strauss. On almost interpolation and locally linearly independent basis. East J. Approx. 5, 1999, 67–88.MathSciNetzbMATHGoogle Scholar
  53. 53.
    O. Davydov, M. Sommer, and H. Strauss. Interpolation by bivariate linear splines. J. Comput. Appl. Math. 119, 2000, 243–262.MathSciNetCrossRefGoogle Scholar
  54. 54.
    O. Davydov and F. Zeilfelder. Scattered data fitting by direct extension of local polynomials with bivariate splines. In preparation 2002.Google Scholar
  55. 55.
    D. Diener. Instability in the dimension of spaces of bivariate piecewise polynomials of degree 2r and smoothness order r. SIAM J. Numer. Anal. 27, 1990, 543–551.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    P. Dierckx. Curve and Surface Fitting with Splines. Clarendon Press, Oxford, 1993.zbMATHGoogle Scholar
  57. 57.
    P. Dierckx, S. Van Leemput, and T. Vermeire. Algorithms for surface fitting using Powell-Sabin splines. IMA J. Numer. Anal. 12, 1992, 271–299.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    N. Dyn. Interpolatory subdivision schemes. This volume.Google Scholar
  59. 59.
    N. Dyn. Subdivision: analysis of convergence and smoothness by the formalism of Laurent polynomials. This volume.Google Scholar
  60. 60.
    N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered data. To appear in J. Comput. Appl. Math.Google Scholar
  61. 61.
    G. Faber. Über stetige Funktionen, Math. Ann. 68, 1910, 81–93.Google Scholar
  62. 62.
    G. Faber. Über stetige Funktionen (Zweite Abhandlung), Math. Ann. 69, 1910, 372–443.MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    G. Farin. Subsplines über Dreiecken. PhD-Thesis, University of Braunschweig, Germany, 1979.Google Scholar
  64. 64.
    G. Farin. Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design 3, 1986, 83–127.MathSciNetGoogle Scholar
  65. 65.
    G. Farin. Geometric Modeling. SIAM, Philadelphia, 1987.zbMATHGoogle Scholar
  66. 66.
    G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, Boston, 1993.Google Scholar
  67. 67.
    M. S. Floater and E. G. Quak. Piecewise linear prewavelets on arbitrary triangulations. Numer. Math. 82, 1999, 221–252.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    M. S. Floater and E. G. Quak. Linear independence and stability of piecewise linear prewavelets on arbitrary triangulations. SIAM J. Numer. Anal. 38, 2000, 58–79.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    M. S. Floater and E. G. Quak. Piecewise linear wavelets on Type-2 triangulations. Computing Supplement 14, 2001, 89–103.MathSciNetGoogle Scholar
  70. 70.
    M. S. Floater, E. G. Quak, and M. Reimers. Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations. J. Comput. Appl. Math. 119, 2000, 185–207.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    L. De Floriani and P. Magillo. Multiresolution mesh representation: models and data structures. This volume.Google Scholar
  72. 72.
    T. A. Foley. Scattered data interpolation and approximation with error bounds. Comput. Aided Geom. Design 3, 1986, 163–177.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    G. Fraeijs de Veubeke. Bending and stretching of plates. Proc. Conf. on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  74. 74.
    R. Franke. Scattered data interpolation: test of some methods. Math. Comp. 38, 1982, 181–200.MathSciNetzbMATHGoogle Scholar
  75. 75.
    T. N. T. Goodman, H. B. Said, and L. H. T. Chang. Local derivative estimation for scattered data interpolation. Appl. Math. Comp. 68, 1995, 41–50.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and compression of 3D meshes. This volume.Google Scholar
  77. 77.
    G. Greiner and K. Hormann. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. Surface Fitting and Multiresolution Methods, A. Le Méhauté, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1997, 163–177.Google Scholar
  78. 78.
    J. Haber, F. Zeilfelder, O. Davydov, and H.-P. Seidel. Smooth approximation and rendering of large scattered data sets. Proceedings of IEEE Visualisation 2001. Ertl, T. et. al. (eds.), 341–347.Google Scholar
  79. 79.
    J. G. Hayes and J. Halliday. The least squares fitting of cubic spline surfaces to general data sets. J. Math. Appl. 14, 1974, 89–113.MathSciNetzbMATHGoogle Scholar
  80. 80.
    D. Hong. Spaces of bivariate spline functions over triangulation. Approx. Theory Appl. 7, 1991, 56–75.zbMATHGoogle Scholar
  81. 81.
    J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart, 1992.zbMATHCrossRefGoogle Scholar
  82. 82.
    A. Ibrahim and L. L. Schumaker. Super spline spaces of smoothness r and degree d ≥ 3r + 2. Constr. Approx. 7, 1991, 401–423.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    A. Iske. Scattered data modelling using radial basis functions. This volume.Google Scholar
  84. 84.
    S. Karlin and Z. Ziegler. Chebyshevian spline functions. SIAM J. Numer. Anal. 3, 1966, 514–543.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multiresolution modeling on arbitrary meshes. SIGGRAPH 1998, 105–114.Google Scholar
  86. 86.
    U. Kotyczka and P. Oswald. Piecewise linear prewavelets of small support. Approximation Theory VIII, Vol. 2: Wavelets, C.K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 1995, 235–242.Google Scholar
  87. 87.
    M.-J. Lai. Scattered data interpolation and approximation using bivariate C 1 piecewise cubic polynomials. Comput. Aided Geom. Design 13, 1996, 81–88.zbMATHGoogle Scholar
  88. 88.
    M.-J. Lai and L. L. Schumaker. On the approximation power of bivariate splines. Advances in Comp. Math. 9, 1998, 251–279.MathSciNetzbMATHGoogle Scholar
  89. 89.
    M.-J. Lai and L. L. Schumaker. Macro-elements and stable local bases for splines on Clough-Tocher triangulations. Numer. Math. 88, 2001, 105–119.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    M.-J. Lai and L. L. Schumaker. Macro-elements and stable local bases for splines on Powell-Sabin triangulations. To appear in Math. Comp.Google Scholar
  91. 91.
    M.-J. Lai and L. L. Schumaker. Quadrilateral macro-elements. To appear in SIAM J. Math. Anal.Google Scholar
  92. 92.
    P. Lancaster and K. Salkauskas. Curve and Surface Fitting. Academic Press, San Diego, 1986.zbMATHGoogle Scholar
  93. 93.
    S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel B-splines. IEEE Trans. Visual. Comp. Graphics 3, 3, 1997, 228–244.CrossRefGoogle Scholar
  94. 94.
    A. Le Méhauté. Nested sequences of triangular finite element spaces. Multivariate Approximation: Recent Trends and Results. W. Haussmann et. al. (eds.), Akademie Verlag, Berlin, 1997, 133–145.Google Scholar
  95. 95.
    S. K. Lodha and R. Pranke. Scattered data techniques for surfaces. Proc. Dagstuhl Conf. Scientific Visualization. H. Hagen et. dl. (eds.), IEEE Computer Society Press, 1999, 182–222.Google Scholar
  96. 96.
    M. Lounsbery, T. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary topology type, ACM Trans. on Graphics 16, 1997, 34–73.CrossRefGoogle Scholar
  97. 97.
    C. Manni. On the dimension of bivariate spline spaces over rectilinear partitions. Approx. Theory Appl. 7, 1, 1991, 23–34.MathSciNetzbMATHGoogle Scholar
  98. 98.
    C. Manni. On the dimension of bivariate spline spaces over generalized quasi-cross-cut partitions. J. Approx. Theory 69, 1992, 141–155.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    M. Morandi Cecchi, S. De Marchi, and D. Fasoli. A package for representing C 1 interpolating surfaces: application to the lagoon of Venice’s bed. Numer. Algorithms 20, 1999, 197–215.MathSciNetCrossRefGoogle Scholar
  100. 100.
    J. Morgan and R. Scott. A nodal basis for C 1 piecewise polynomials of degree n ≥ 5. Math. Comp. 29, 1975, 736–740.MathSciNetzbMATHGoogle Scholar
  101. 101.
    J. Morgan and R. Scott. The dimension of piecewise polynomials. Unpublished manuscript 1977.Google Scholar
  102. 102.
    G. Nürnberger. Approximation by Spline Functions. Springer, Berlin, 1989.zbMATHCrossRefGoogle Scholar
  103. 103.
    G. Nürnberger. Approximation order of bivariate spline interpolation. J. Approx. Theory 87, 1996, 117–136.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    G. Nürnberger and T. Rießinger. Lagrange and Hermite interpolation by bivariate splines. Numer. Func. Anal. Optim. 13, 1992, 75–96.zbMATHCrossRefGoogle Scholar
  105. 105.
    G. Nürnberger and T. Rießinger. Bivariate spline interpolation at grid points. Numer. Math. 71, 1995, 91–119.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. Local Lagrange interpolation by bivariate C 1 cubic splines. Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2001, 393–404.Google Scholar
  107. 107.
    G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. Lagrange interpolation by C 1 cubic splines on triangulations of separable quadrangulations. Submitted 2001.Google Scholar
  108. 108.
    G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. In preparation 2002.Google Scholar
  109. 109.
    G. Nürnberger, G. Steidl, and F. Zeilfelder. Explicit estimates for bivariate hierarchical bases. To appear in Comm. Appl. Anal.Google Scholar
  110. 110.
    G. Nürnberger and G. Walz. Error analysis in interpolation by bivariate C 1-splines. IMA J. Numer. Anal. 18, 1998, 485–508.zbMATHCrossRefGoogle Scholar
  111. 111.
    G. Nürnberger and F. Zeilfelder. Interpolation by spline spaces on classes of triangulations. J. Comput. Appl. Math. 119, 2000, 347–376.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    G. Nürnberger and F. Zeilfelder. Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121, 2000, 125–152.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    G. Nürnberger and F. Zeilfelder. Local Lagrange interpolation by cubic splines on a class of triangulations. Trends in Approximation Theory. K. Kopotun, T. Lyche, and M. Neamtu (eds.), Vanderbilt University Press, Nashville, 2001, 341–350.Google Scholar
  114. 114.
    G. Nürnberger and F. Zeilfelder. Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling. Recent Progress in Multivariate Approximation. W. Haußmann, K. Jetter, and M. Reimer (eds.), Birkhäuser, ISNM 137, 2001, 227–244.CrossRefGoogle Scholar
  115. 115.
    G. Nürnberger and F. Zeilfelder. Lagrange interpolation by bivariate C 1-splines with optimal approximation order. Submitted 2001.Google Scholar
  116. 116.
    P. Oswald. Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer. Anal. 29, 1992, 1610–1625.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    P. Oswald. Multilevel Finite Element Approximation. Teubner, Stuttgart, 1994.zbMATHCrossRefGoogle Scholar
  118. 118.
    M. J. D. Powell. Radial basis functions for multivariate approximation: a review. Algorithms for the Approximation of Functions and Data. J. C. Mason and M. G. Gox (eds.), Clarendon Press, Oxford, 1987, 143–167.Google Scholar
  119. 119.
    M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximation on triangles. ACM Trans. Math. Software 4, 1977, 316–325.MathSciNetCrossRefGoogle Scholar
  120. 120.
    E. Quak. Nonuniform B-splines and B-wavelets. This volume.Google Scholar
  121. 121.
    R. J. Renka and A. K. Cline. A triangle-based C 1 interpolation method. Rocky Mountain J. Math. 14, 1, 1984, 223–237.MathSciNetzbMATHGoogle Scholar
  122. 122.
    J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18, 3, 1995, 548–585.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    M. Sabin. Subdivision of box-splines. This volume.Google Scholar
  124. 124.
    M. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. This volume.Google Scholar
  125. 125.
    G. Sander. Bornes supérieures et inférieures dans l’analyse matricielle des plaques en flexion-torsion. Bull. Soc. Royale Science Liège 33, 1964, 456–494.MathSciNetGoogle Scholar
  126. 126.
    I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae. Quart. Appl. Math. 4, 1946, 45–99.MathSciNetGoogle Scholar
  127. 127.
    I. J. Schoenberg and A. Whitney. On Polya frequency functions III. The pos-itivity of translation determinants with application to the interpolation problem by spline curves. Trans. Amer. Math. Soc. 74, 1953, 246–259.MathSciNetzbMATHGoogle Scholar
  128. 128.
    L. L. Schumaker. Fitting surfaces to scattered data, Approximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, New York, 1976, 203–268.Google Scholar
  129. 129.
    L. L. Schumaker. Spline Functions: Basic Theory. Wiley-Interscience, New York, 1980.Google Scholar
  130. 130.
    L. L. Schumaker. On the dimension of piecewise polynomials in two variables. Multivariate Approximation Theory W. Schempp et. al. (eds.), Birkhäuser, Basel, 1979, 396–412.Google Scholar
  131. 131.
    L. L. Schumaker. Bounds on the dimension of spaces of multivariate piecewise polynomials. Rocky Mountain J. Math. 14, 1984, 251–264.MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    L. L. Schumaker. Dual bases for spline spaces on a cell. Comput. Aided Geom. Design 5, 1987, 277–284.MathSciNetGoogle Scholar
  133. 133.
    L. L. Schumaker. Triangulation methods. Topics in Multivariate Approximation. C. K. Chui, L. L. Schumaker, and F. I. Utreras (eds.), Academic Press, New York, 1987, 219–232.Google Scholar
  134. 134.
    H.-P. Seidel. An introduction to polar forms. IEEE Comp. Graph. Appl. 13, 1993, 38–46.CrossRefGoogle Scholar
  135. 135.
    H.-P. Seidel and F. Zeilfelder. Splines over triangulations. Handbook of Computer Aided Design. G. Farin et. al. (eds.). To appear 2002.Google Scholar
  136. 136.
    J. R. Shewchuk. Delaunay refinement mesh generation. PhD Thesis, Carnegie Mellon University, Pittsburgh, 1997.Google Scholar
  137. 137.
    X. G. Shi. The singularity of Morgan-Scott triangulation. Comput. Aided Geom. Design 8, 1991, 201–206.zbMATHGoogle Scholar
  138. 138.
    R. Stevenson. A robust hierarchical basis preconditioner on general meshes. Numer. Math. 78, 1996, 269–303.MathSciNetCrossRefGoogle Scholar
  139. 139.
    R. Stevenson. Piecewise linear (pre-)wavelets on non-uniform meshes. Multigrid Methods V, W. Hackbusch and G. Wittum (eds.), Springer, Berlin, 1998, 306–319.CrossRefGoogle Scholar
  140. 140.
    E. Stollnitz, E. T. Rose, and D. H. Salesin. Wavelets for Computer Graphics. Morgan Kauffmann, San Francisco, 1996.Google Scholar
  141. 141.
    H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math. 49, 1986, 371–412.MathSciNetCrossRefGoogle Scholar
  142. 142.
    H. Yserentant. Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math. 58, 1986, 163–184.MathSciNetCrossRefGoogle Scholar
  143. 143.
    W. Whiteley. A matrix for splines. Progress in Approximation Theory. P. Nevai et. al. (eds.), Academic Press, Boston, 1991, 821–828.Google Scholar
  144. 144.
    A. Zenisek. Interpolation polynomials on the triangle. Numer. Math. 15, 1970, 283–296.MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    A. Zenisek. A general theorem on triangular finite C m-elements. Rev. Française Automat. Informat. Rech. Opér., Anal. Numer. 2, 1974, 119–127.MathSciNetGoogle Scholar
  146. 146.
    J. Zhang, Z. Tang, and J. Li. Adaptive hierarchical B-spline surface approximation of large-scale scattered data. Pacific Graphics, 1998, 8–16.Google Scholar
  147. 147.
    M. Zlamal. On the finite element method. Numer. Math. 12, 1968, 394–409.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Frank Zeilfelder
    • 1
  1. 1.Institute of MathematicsUniversity of MannheimGermany

Personalised recommendations