Skip to main content

Application of Electromyography in Sport Medicine

  • Chapter

Abstract

The aim of this paper is to provide sound principles of electromyography (EMG) signal acquisition and processing in order to optimize signal quality and therefore lead to better interpretation of mechanical muscle output during sport medicine applications and rehabilitation. Some background information is provided on the source of the EMG signal, factors affecting its quality, recording techniques, signal processing, fidelity and reproducibility of the signal, and some applications in sport medicine and rehabilitation. The descriptions of EMG research applications in rehabilitation are not an exhaustive review of all major areas but only a few examples in the areas of signal reliability, muscle activation and timing, and muscle fatigue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson EA, Nilsson J, Thorstensson A (1997) Intramuscular EMG from the hip flexor muscles during human locomotion. Acta Physiol Scand 161 (3) 361–370

    Article  PubMed  CAS  Google Scholar 

  2. Arokoski JP, Kankaanpaa M, Valta T, Juvonen I, Partanen J, Taimela S, Lindgren KA, Airaksinen O (1999) Back and hip extensor muscle function during therapeutic exercises. Arch Phys Med Rehabil 80 (7) 842–850

    Article  PubMed  CAS  Google Scholar 

  3. Basmajian J, De Luca C (1985) Muscle alive. Their function revealed by electromyography. Fifth edn. Williams and Wilkins, Baltimore

    Google Scholar 

  4. Bilodeau M, Arsenault AB, Gravel D, Bourbonnais D (1994) EMG power spectrum of elbow extensors: A reliability study. Electromyogr Clin Neurophysiol 34 (3) 149–158

    PubMed  CAS  Google Scholar 

  5. Chen J-J, Shiavi RG, Zhang L-Q (1992) A quantitative and qualitative description of electromyographic linear envelopes for synergy analysis. IEEE Trans Biomed Eng 39 (1) 9–18

    Article  PubMed  CAS  Google Scholar 

  6. Cohen A (1986) Biomedical signal processing. Vol1. Time and frequency domain analysis. CRC Press, Boca Raton, USA

    Google Scholar 

  7. Cook TM, Zimmemann CL, Lux KM, Neubrand CM, Nicholson TD (1992) EMG comparison of lateral step-up and stepping machine exercise. J Orthop Sports Phys Ther 16 (3) 108–113

    PubMed  CAS  Google Scholar 

  8. Davis BA, Krivickas LS, Maniar R, Newandee DA, Feinberg JH (1998) The reliability of monopolar and bipolar fine-wire electromyographic measurement of muscle fatigue. Med Sci Sports Exerc 30 (8) 1328–335

    Article  PubMed  CAS  Google Scholar 

  9. De la Barrera EJ, Milner TE (1994) The effects of skinfold thickness on the selectivity of surface EMG. Electroencephalogr Clin Neurophysiol 93 (2) 91–99

    Article  PubMed  Google Scholar 

  10. De Luca C (1993a) The use of surface electromyography in biomechanics. Paper presented at the the 14th ISB Congress, Paris

    Google Scholar 

  11. De Luca CJ (1993b) Use of the surface EMG signal for performance evaluation of back muscles. Muscle Nerve 16 (2) 210–216

    Article  PubMed  Google Scholar 

  12. Elert J, Karlsson S, Gerdle B (1998) One-year reproducibility and stability of the signal amplitude ratio and other variables of the electromyogram: Test-retest of a shoulder forward flexion test in female workers with neck and shoulder problems. Clin Physiol 18 (6) 529–538

    Article  PubMed  CAS  Google Scholar 

  13. Elfving B, Nemeth G, Arvidsson I, Lamontagne M (1999) Reliability of EMG spectral parameters in repeated measurements of back muscle fatigue. J Electromyogr Kinesiol 9 (4) 235–243

    Article  PubMed  CAS  Google Scholar 

  14. Ferdjallah M, Wertsch JJ (1998) Anatomical and technical considerations in surface electromyography. Phys Med Rehabil Clin N Am 9 (4) 925–931

    PubMed  CAS  Google Scholar 

  15. Giroux B, Lamontagne M (1990) Comparisons between surface electrodes and intramuscular wire electrodes in isometric and dynamic conditions. Electromyogr Clin Neurophysiol 30 (7) 397–405

    PubMed  CAS  Google Scholar 

  16. Hagberg M, Kvarnstrom S (1984) . Muscular endurance and electromyographic fatigue in myofascial shoulder pain. Arch Phys Med Rehabil 65(9) 522–525

    Google Scholar 

  17. Hagemann B, Luhede G, Luczak H (1985) . Improved “active” electrodes for recording bioelectric signals in work physiology. Eur J Appl Physiol 54(1) 95–98

    Google Scholar 

  18. Harba MI, Teng LY (1999) Reliability of measurement of muscle fiber conduction velocity using surface EMG. Front Med Biol Eng 9 (1) 31–47

    PubMed  CAS  Google Scholar 

  19. Kadaba MP, Wootten ME, Gainey J, Cochran GV (1985) Repeatability of phasic muscle activity: Performance of surface and intramuscular wire electrodes in gait analysis. J Orthop Res 3 (3) 350–359

    Article  PubMed  CAS  Google Scholar 

  20. Kadefors R, Herberts P (1977) Single fine wire electrodes: Properties in quantitative studies of muscle function. In: Asmussen E, Jorgenssen K (eds) Biomechanics VI-A. University Park Press, Baltimore

    Google Scholar 

  21. Kuster M, Wood GA, Sakurai S, Blatter G (1994) Downhill walking: A stressful task for the anterior cruciate ligament? A biomechanical study with clinical implications. 1994 Nicola Cerulli Young Researchers Award. Knee Surg Sports Traumatol Arthrosc 2 (1) 2–7

    Article  PubMed  CAS  Google Scholar 

  22. Kwatny E,Thomas DH, Kwatny HG (1970) . An application of signal processing techniques to the study of myoelectric signals. IEEE Trans Biomed Eng 17(4) 303–313

    Google Scholar 

  23. Lafrenière CM, Lamontagne M, Elsawy R (1997) The role of the lateral pterygoid muscles in TMJ disorders during static conditions. J Craniomandib Prac 15 (1) 38–52

    Google Scholar 

  24. Lamontagne M, Coulomb e V (1992) The effects of EMG sampling rate on the power spectral density under eccentric contractions of the vastus lateralis. Paper presented at the the second North American Conference of Biomechanics, Chicago

    Google Scholar 

  25. Lamontagne M, Sabagh-Yazdi F (1999) The influence of functional knee braces on muscle fatigue. Paper presented at the 26th International Society of Biomechanics, Calgary, Canada

    Google Scholar 

  26. Mâsse L, Lamontagne M, O’Riain M (1992) Biomechanical analysis of wheelchair propulsion for various seating positions. J of Rehab Research and Development 29 (3) 12–28

    Article  Google Scholar 

  27. Mathieu PA, Aubin CE (1999) Back muscle activity during flexions/extensions in a second group of normal subjects. Ann Chir 53 (8) 761–772

    PubMed  CAS  Google Scholar 

  28. McGill S, Juker D, Kropf P (1996) Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine. J Biomech 29 (11) 1503–1507

    Article  PubMed  CAS  Google Scholar 

  29. Merletti R, Knaflitz M, Deluca CJ (1992) Electrically evoked myoelectric signals. Crit Rev Biomed Eng 19 (4) 293–340

    PubMed  CAS  Google Scholar 

  30. Moritani T, Muro M, Kijima A (1985) . Electromechanical changes during electrically induced and maximal voluntary contractions: Electrophysiologic responses of different muscle fiber types during stimulated contractions. Exp Neurol 88(3) 471–483

    Google Scholar 

  31. Morris AD, Kemp GJ, Lees A, Frostick SP (1998) A study of the reproducibility of three different normalisation methods in intramuscular dual fine wire electromyography of the shoulder. J Electromyogr Kinesiol 8 (5) 317–322

    Article  PubMed  CAS  Google Scholar 

  32. Németh G, Kronberg M, Brostrom LA (1990) Electromyogram (EMG) recordings from the subscapularis muscle: Description of a technique. J Orthop Res 8 (1) 151–153

    Article  PubMed  Google Scholar 

  33. Németh G, Lamontagne M, Tho KS, Eriksson E (1997) Electromyographic activity in expert downhill skiers using functional knee braces after anterior cruciate ligament injuries. Am J Sports Med 25 (5) 635–641

    Article  PubMed  Google Scholar 

  34. Nishimura S, Tomita Y, Horiuchi T (1992) . Clinical application of an active electrode using an operational amplifier. IEEE Trans Biomed Eng 39(10) 1096–1099

    Google Scholar 

  35. Notermans S (1984) Current practice of clinical electromyography. Elsevier, New York

    Google Scholar 

  36. Park TA, Harris GF (1996) “Guided” intramuscular fine wire electrode placement. A new technique. Am J Phys Med Rehabil 75(3) 232–234

    Google Scholar 

  37. Perreault EJ, Hunter IW, Kearney RE (1993) Quantitative analysis of four EMG amplifiers. J Biomed Eng 15 (5) 413–419

    Article  PubMed  CAS  Google Scholar 

  38. Preece AW, Wimalaratna HS, Green JL, Churchill E, Morgan HM (1994) Noninvasive quantitative EMG. Electromyogr Clin Neurophysiol 34 (2) 81–86

    PubMed  CAS  Google Scholar 

  39. Shiavi R (1974) A wire multielectrode for intramuscular recording. Med Biol Eng 12 (5) 721–723

    Article  Google Scholar 

  40. Shiavi R, Zhang LQ, Limbird T, Edmondstone MA (1992) Pattern analysis of electromyographic linear envelopes exhibited by subjects with uninjured and injured knees during free and fast speed walking. J Orthop Res 10 (2) 226–236

    Article  PubMed  CAS  Google Scholar 

  41. Sinderby C, Lindstrom L, Grassino AE (1995) Automatic assessment of electromyogram quality. J Appl Physiol 79 (5) 1803–1815

    Google Scholar 

  42. Soderberg G (1992) Selected topics in surface electromyography for use in the occupational setting: Expert perspectives. DHHS National Institute for Occupational Safety and Health, Publ. No. 91–100, pp. 179

    Google Scholar 

  43. Sparto PJ, Parnianpour M, Reinsel TE, Simon S (1997) Spectral and temporal responses of trunk extensor electromyography to an isometric endurance test. Spine 22 (4) 418–425

    Article  PubMed  CAS  Google Scholar 

  44. Tho K, Németh G, Lamontagne M, Eriksson E (1997) Electromyographic analysis of muscle fatigue in anterior cruciate ligament deficient knees. Clin Orthop (340) 142–151

    Google Scholar 

  45. Thorstensson A, Carlson H, Zomlefer MR, Nilsson J (1982) Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol Scand 116 (1) 13–20

    Article  PubMed  CAS  Google Scholar 

  46. Van Lent ME, Drost MR, v d Wildenberg FA (1994) EMG profiles of ACL-deficient patients during walking: The influence of mild fatigue. Int J Sports Med 15 (8) 508–514

    Article  PubMed  Google Scholar 

  47. Winter D (1990) Biomechanics and motor control of human motion. 2nd edn. John Wiley Sons Inc, Toronto

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lamontagne, M. (2001). Application of Electromyography in Sport Medicine. In: Puddu, G., Giombini, A., Selvanetti, A. (eds) Rehabilitation of Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04369-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04369-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08690-8

  • Online ISBN: 978-3-662-04369-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics