Scheduling on One Processor

  • Jacek Błażewicz
  • Klaus H. Ecker
  • Erwin Pesch
  • Günter Schmidt
  • Jan Węglarz
Chapter

Abstract

Single machine scheduling (SMS) problems seem to have received substantial attention because of several reasons. These type of problems are important both because of their own intrinsic value, as well as their role as building blocks for more generalized and complex problems. In a multi-processor environment single processor schedules may be used in bottlenecks, or to organize task assignment to an expensive processor; sometimes an entire production line may be treated as a single processor for scheduling purposes. Also, compared to multiple processor scheduling, SMS problems are mathematically more tractable. Hence more problem classes can be solved in polynomial time, and a larger variety of model parameters, such as various types of cost functions, or an introduction of change-over cost, can be analyzed. Single processor problems are thus of rather fundamental character and allow for some insight and development of ideas when treating more general scheduling problems.

Keywords

Assure Production Line Lution Ster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AD90.
    H. H. Ali, J. S. Deogun, A polynomial algorithm to find the jump number of interval orders, Preprint, Univ. of Nebraska Lincoln, 1990.Google Scholar
  2. AH73.
    D. Adolphson, T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25, 1973, 403–423.Google Scholar
  3. BA87.
    U. Bagchi, R. H. Ahmadi, An improved lower bound for minimizing weighted completion times with deadlines, Oper. Res. 35, 1987, 311–313.Google Scholar
  4. Ban80.
    S. P. Bansal, Single machine scheduling to minimize weighted sum of completion times with secondary criterion–a branch-and-bound approach, European J. Oper. Res. 5, 1980, 177–181.Google Scholar
  5. BD78.
    J. Bruno, P. Downey, Complexity of task sequencing with deadlines, set-up times and changeover costs, SIAM J. Comput. 7, 1978, 393–404.Google Scholar
  6. BFR71.
    P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date constraints, Naval Res. Logist. Quart. 18, 1971, 511–517.Google Scholar
  7. BFR73.
    P. Bratley, M. Florian, P. Robillard, On sequencing with earliest starts and due dates with application to computing bounds for the (n/m/G/Fmax) problem, Naval Res. Logist. Quart. 20, 1973, 57–67.Google Scholar
  8. BH89.
    V. Bouchitte, M. Habib, The calculation of invariants of ordered sets, in: I. Rival (ed.), Algorithms and Order, Kluwer, Dordrecht, 1989, 231–279.Google Scholar
  9. BK81.
    P. C. Bagga, K. R. Kalra, Single machine scheduling problem with quadratic functions of completion time–a modified approach, J. Inform. Optim. Sci. 2, 1981, 103–108.Google Scholar
  10. B1a76.
    J. Bl’azewicz, Scheduling dependent tasks with different arrival times to meet deadlines, in: E. Gelenbe, H. Beilner (eds.), Modelling and Performance Evaluation of Computer Systems, North Holland, Amsterdam, 1976, 57–65.Google Scholar
  11. BLLRK83.
    K. R. Baker, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints, Oper. Res. 31, 1983, 381–386.Google Scholar
  12. BM83.
    H. Buer, R. H. Möhring, A fast algorithm for the decomposition of graphs and posets, Math. Oper. Res. 8, 1983, 170–184.Google Scholar
  13. BR82.
    L. Bianco, S. Ricciardelli, Scheduling of a single machine to minimize total weighted completion time subject to release dates, Naval Res. Logist. Quarterly. 29, 1982, 151–167.Google Scholar
  14. BS74.
    K. R. Baker, Z.-S. Su, Sequencing with due dates and early start times to minimize maximum tardiness, Naval Res. Logist. Quart. 21, 1974, 171–176.Google Scholar
  15. BS78a.
    K. R. Baker, L. Schrage, Dynamic programming solution for sequencing problems with precedence constraints, Oper. Res. 26, 1978, 444–449.Google Scholar
  16. BS78b.
    K. R. Baker, L. Schrage, Finding an optimal sequence by dynamic programming: An extension to precedence related tasks, Oper. Res. 26, 1978, 111–120.Google Scholar
  17. BS81.
    R. N. Burns, G. Steiner, Single machine scheduling with series-parallel precedence constraints, Oper. Res. 29, 1981, 1195–1207.Google Scholar
  18. Bur76.
    R. N. Burns, Scheduling to minimize the weighted sum of completion times with secondary criteria, Naval Res. Logist. Quart. 23, 1976, 25–129.Google Scholar
  19. BY82.
    G.R. Bitran, H. H. Yanasse, Computational complexity of the capacitated lot size problem, Management Sci. 28, 1982, 1174–1186.Google Scholar
  20. Car82.
    J. Carlier, The one-machine sequencing problem, European J. Oper. Res. 11, 1982, 42–47.Google Scholar
  21. CM72.
    M. Chein, P. Martin, Sur le nombre de sauts d’une foret, C. R. Acad. Sc. Paris 275, serie A, 1972, 159–161.Google Scholar
  22. CMM67.
    R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison Wesley, Reading, Mass., 1967.Google Scholar
  23. Cof76.
    E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New York, 1976.Google Scholar
  24. CS86.
    S. Chand, H. Schneeberger, A note on the single-machine scheduling problem with minimum weighted completion time and maximum allowable tardiness, Naval Res. Logist. Quart. 33, 1986, 551–557.Google Scholar
  25. DD81.
    M. I. Dessouky, J. S. Deogun, Sequencing jobs with unequal ready times to minimize mean flow time, SIAM J. Comput. 10, 1981, 192–202.Google Scholar
  26. DE77.
    W. C. Driscoll, H. Emmons, Scheduling production on one machine with changeover costs, AILE Trans. 9, 1977, 388–395.Google Scholar
  27. DL90.
    J. Du, J. Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Math. Oper. Res. 15, 1990, 483–495.Google Scholar
  28. EFMR83.
    J. Erschler, G. Fontan, C. Merce, F. Roubellat, A new dominance concept in scheduling n jobs on a single machine with ready times and due dates, Oper. Res. 31, 1983, 114–127.Google Scholar
  29. Emm75.
    H. Emmons, One machine sequencing to minimize mean flow time with minimum number tardy, Naval Res. Logist. Quart. 22, 1975, 585–592.Google Scholar
  30. ER85.
    M. H. El-Zahar, I. Rival, Greedy linear extensions to minimize jumps, Discrete Appl. Math. 11, 1985, 143–156.Google Scholar
  31. Fis85.
    P. C. Fishburn, Interval Orders and Interval Graphs, J. Wiley, New York, 1985.Google Scholar
  32. FK84.
    M. L. Fisher, A. M. Krieger, Analysis of a linearization heuristic for single machine scheduling to maximize profit, Math. Programming 28, 1984, 218–225.Google Scholar
  33. FLRK80.
    M. Florian, J. K. Lenstra, A. H. G. Rinnooy Kan, Deterministic production planning: algorithms and complexity, Management Sci. 26, 1980, 669–679.Google Scholar
  34. FS85a.
    U. Faigle, R. Schrader, A setup heuristic for interval orders, Oper. Res. Lett. 4, 1985, 185–188.Google Scholar
  35. FS85b.
    U. Faigle, R. Schrader, Interval orders without odd crowns are defect optimal, Report 85382-OR, University of Bonn, 1985.Google Scholar
  36. FTM71.
    M. Florian, P. Trepant, G. McMahon, An implicit enumeration algorithm for the machine sequencing problem, Management Sci. 17, 1971, B782 - B792.Google Scholar
  37. GJ76.
    M. R. Garey, D. S. Johnson, Scheduling tasks with non-uniform deadlines on two processors, J. Assoc. Comput. Mach. 23, 1976, 461–467.Google Scholar
  38. GJ79.
    M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.Google Scholar
  39. GJST81.
    M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit-time tasks with arbitrary release times and deadlines, SIAM J. Comput. 10, 1981, 256–269.Google Scholar
  40. GK87.
    S. K. Gupta, J. Kyparisis, Single machine scheduling research, OMEGA Internat. J. Management Sci. 15, 1987, 207–227.Google Scholar
  41. GL78.
    G. V. Gens, E. V. Levner, Approximation algorithm for some scheduling problems, Engrg. Cybernetics 6, 1978, 38–46.Google Scholar
  42. GL81.
    G. V. Gens, E. V. Levner, Fast approximation algorithm for job sequencing with deadlines, Discrete Appl. Math. 3, 1981, 313–318.Google Scholar
  43. GL88.
    A. Gascon, R. C. Leachman, A dynamic programming solution to the dynamic, multi-item, single-machine scheduling problem, Oper. Res. 36, 1988, 50–56.Google Scholar
  44. G1a68.
    C. R. Glassey, Minimum changeover scheduling of several products on one machine, Oper. Res. 16, 1968, 342–352.Google Scholar
  45. GLLRK79.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 5, 1979, 287–326.Google Scholar
  46. Go180.
    M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.Google Scholar
  47. GS83.
    S. K. Gupta, T. Sen, Minimizing the range of lateness on a single machine, Engrg. Costs Production Economics 7, 1983, 187–194.Google Scholar
  48. GS84.
    S. K. Gupta, T. Sen, Minimizing the range of lateness on a single machine, J. Oper. Res. Soc. 35, 1984, 853–857.Google Scholar
  49. GTW88.
    M. R. Garey, R. E. Tarjan, G. T. Wilfong, One-processor scheduling with earliness and tardiness penalties, Math. Oper. Res. 13, 1988, 330–348.Google Scholar
  50. HKR87.
    T. C. Hu, Y. S. Kuo, F. Ruskey, Some optimum algorithms for scheduling problems with changeover costs, Oper. Res. 35, 1987, 94–99.Google Scholar
  51. HKS91.
    N. G. Hall, W. Kubiak, S. P. Sethi, Earliness-tardiness scheduling problems, II: Deviation of completion times about a restictive commen due date, Oper. Res. 39, 1991, 847–856.Google Scholar
  52. Hor72.
    W. A. Horn, Single-machine job sequencing with tree-like precedence ordering and linear delay penalties, SIAM J. Appl. Math. 23, 1972, 189–202.Google Scholar
  53. Hor74.
    W. A. Horn, Some simple scheduling algorithms, Naval Res. Logist. Quart. 21, 1974, 177–185.Google Scholar
  54. HS88.
    L. A. Hall, D. B. Shmoys, Jackson’s rule for one-machine scheduling: Making a good heuristic better, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 1988.Google Scholar
  55. IIN81.
    T. Ichimori, H. Ishii, T. Nishida, Algorithm for one machine job sequencing with precedence constraints, J. Oper. Res. Soc. Japan 24, 1981, 159–169.Google Scholar
  56. IK78.
    O. H. Ibarra, C. E. Kim, Approximation algorithms for certain scheduling problems, Math. Oper. Res. 3, 1978, 197–204.Google Scholar
  57. Jac55.
    J. R. Jackson, Scheduling a production line to minimize maximum tardiness, Research Report 43, Management Sci. Res. Project, UCLA, 1955.Google Scholar
  58. Kan81.
    J. J. Kanet, Minimizing the average deviation of job completion times about a common due date, Naval Res. Logist. Quart. 28, 1981, 643–651.Google Scholar
  59. Kar72.
    R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, 85–103.Google Scholar
  60. KIM78.
    H. Kise, T. Ibaraki, H. Mine, A solvable case of a one-machine scheduling problem with ready and due times, Oper. Res. 26, 1978, 121–126.Google Scholar
  61. KIM79.
    H. Kise, T. Ibaraki, H. Mine, Performance analysis of six approximation algo rithms for the one-machine maximum lateness scheduling problem with ready times, J. Oper. Res. Soc. Japan 22, 1979, 205–224.Google Scholar
  62. KK83 K. R. Kalra, K. Khurana, Single machine scheduling to minimize waiting cost with secondary criterion, J. Math. Sci. 16–18, 1981–1983, 9–15.Google Scholar
  63. KLS90.
    W. Kubiak, S. Lou, S. Sethi, Equivalence of mean flow time problems and mean absolute deviation problems, Oper. Res. Lett. 9, 1990, 371–374.Google Scholar
  64. Kub93.
    W. Kubiak, Completion time variance minimization on a single machine is difficult, Oper. Res. Lett. 14, 1993, 49–59.Google Scholar
  65. Kub95.
    W. Kubiak, New results on the completion time varaince minimization, Discrete Appl. Math. 58, 1995, 157–168.Google Scholar
  66. Law64.
    E. L. Lawler, On scheduling problems with deferral costs, Management Sci. 11, 1964, 280–288.Google Scholar
  67. Law73.
    E. L. Lawler, Optimal sequencing of a single machine subject to precedence constraints, Management Sci. 19, 1973, 544–546.Google Scholar
  68. Law76 E. L. Lawler, Sequencing to minimize the weighted number of tardy jobs, RAIRO Rech. Opér. 10, 1976, Suppl. 27–33.Google Scholar
  69. Law77.
    E. L. Lawler, A ‘pseudopolynomial’ algorithm for sequencing jobs to minimize total tardiness, Ann. Discrete Math. 1, 1977, 331–342.Google Scholar
  70. Law78.
    E. L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence constraints, Ann. Discrete Math. 2, 1978, 75–90.Google Scholar
  71. Law82.
    E. L. Lawler, Sequencing a single machine to minimize the number of late jobs, Preprint, Computer Science Division, University of California, Berkeley, 1982.Google Scholar
  72. Law83.
    E. L. Lawler, Recent results in the theory of machine scheduling, in: A. Bachem, M. Grötschel, B. Korte (eds.), Mathematical Programming: The State of the Art, Springer, Berlin, 1983, 202–234.Google Scholar
  73. LD78.
    R. E. Larson, M. I. Dessouky, Heuristic procedures for the single machine problem to minimize maximum lateness, AILE Trans. 10, 1978, 176–183.Google Scholar
  74. LDD85.
    R. E. Larson, M. I. Dessouky, R. E. Devor, A forward-backward procedure for the single machine problem to minimize maximum lateness, IIE Trans. 17, 1985, 252–260.Google Scholar
  75. Len77.
    J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract 69, Mathematisch Centrum, Amsterdam, 1977.Google Scholar
  76. LLLRK84.
    J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive scheduling of uniform machines subject to release dates, in: W. R. Pulleyblank (ed.), Progress in Combinatorial Optimization, Academic Press, New York, 1984, 245–261.Google Scholar
  77. LLRK76.
    B. J. Lageweg, J. K. Lenstra, A. H. G. Rinnooy Kan, Minimizing maximum lateness on one machine: Computational experience and some applications, Statist. Neerlandica 30, 1976, 25–41.Google Scholar
  78. LLRK82.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Recent development in deterministic sequencing and scheduling: a survey, in: M. A. H. Dempster, J. K. Lenstra, A. H. G Rinnooy Kan (eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht. 1982, 35–73.Google Scholar
  79. LLRKS93.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing and scheduling: Algorithms and complexity, in: S. C. Graves, A. H. G. Rinnooy Kan, P. H. Zipkin (eds.), Handbook in Operations Research and Management Science, Vol. 4: Logistics of Production and Inventory, Elsevier, Amsterdam, 1993.Google Scholar
  80. LM69.
    E. L. Lawler, J. M. Moore, A functional equation and its application to resource allocation and sequencing problems, Management Sci. 16, 1969, 77–84.Google Scholar
  81. LRK73.
    J. K. Lenstra, A. H. G. Rinnooy Kan, Towards a better algorithm for the jobshop scheduling problem - I, Report BN 22, 1973, Mathematisch Centrum, Amsterdam.Google Scholar
  82. LRK78.
    J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under precedence constraints, Oper. Res. 26, 1978, 22–35.Google Scholar
  83. LRK80.
    J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity results for scheduling chainson a single machine, European J. Oper. Res. 4, 1980, 270–275.Google Scholar
  84. LRKB77.
    J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine scheduling problems, Ann. Discrete Math. 1, 1977, 343–362.Google Scholar
  85. McN59.
    R. McNaughton, Scheduling with deadlines and loss functions, Management Sci. 6, 1959, 1–12.Google Scholar
  86. MF75.
    G. B. McMahon, M. Florian, On scheduling with ready times and due dates to minimize maximum lateness, Oper. Res. 23, 1975, 475–482.Google Scholar
  87. Mit72.
    S. Mitsumori, Optimal production scheduling of multicommodity in flow line, IEEE Trans. Syst. Man Cybernet. CMC-2, 1972, 486–493.Google Scholar
  88. Miy81.
    S. Miyazaki, One machine scheduling problem with dual criteria, J. Oper. Res. Soc. Japan 24, 1981, 37–51.Google Scholar
  89. Moe89.
    R. H. Möhring, Computationally tractable classes of ordered sets, in: I. Rival (ed.), Algorithms and Order, Kluwer, Dordrecht, 1989, 105–193.Google Scholar
  90. Mon82.
    C. L. Monma, Linear-time algorithms for scheduling on parallel processors, Oper. Res. 30, 1982, 116–124.Google Scholar
  91. Moo68.
    J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs, Management Sci. 15, 1968, 102–109.Google Scholar
  92. MR85.
    R. H. Möhring, F. J. Radermacher, Generalized results on the polynomiality of certain weighted sum scheduling problems, Methods of Oper. Res. 49, 1985, 405–417.Google Scholar
  93. MS87.
    C. L. Monma, J. B. Sidney, Optimal sequencing via modular decomposition: Characterization of sequencing functions, Math. Oper. Res. 12, 1987, 22–31.Google Scholar
  94. MS89.
    J. H. Muller, J. Spinrad, Incremental modular decomposition, J. Assoc. Comput. Mach. 36, 1989, 1–19.Google Scholar
  95. MV90.
    T. L. Magnanti, R. Vachani, A strong cutting plane algorithm for production scheduling with changeover costs, Oper. Res. 38, 1990, 456–473.Google Scholar
  96. Pos85.
    M. E. Posner, Minimizing weighted completion times with deadlines, Oper. Res. 33, 1985, 562–574.Google Scholar
  97. Pot80a.
    Pot80a C. N. Potts, An algorithm for the single machine sequencing problem with precedence constraints, Math. Programming Study 13, 1980, 78–87.Google Scholar
  98. Pot80b.
    C. N. Potts, Analysis of a heuristic for one machine sequencing with release dates and delivery times, Oper. Res. 28, 1980, 1436–1441.Google Scholar
  99. Pot85.
    C. N. Potts, A Lagrangian based branch and bound algorithm for a single machine sequencing with precedence constraints to minimize total weighted completion time, Management Sci. 31, 1985, 1300–1311.Google Scholar
  100. Pu175.
    W. R. Pulleyblank, On minimizing setups in precedence constrained scheduling, Report 81105-OR, University of Bonn, 1975.Google Scholar
  101. PW83.
    C. N. Potts, L. N. van Wassenhove, An algorithm for single machine sequencing with deadlines to minimize total weighted completion time, European J. Oper. Res. 12, 1983, 379–387.Google Scholar
  102. Rag86.
    M. Raghavachari, A V-shape property of optimal schedule of jobs about a common due date, European J. Oper. Res. 23, 1986, 401–402.Google Scholar
  103. RDS87.
    F. M. E. Raiszadeh, P. Dileepan, T. Sen, A single machine bicriterion scheduling problem and an optimizing branch-and-bound procedure, J. Inform. Optim. Sci. 8, 1987, 311–321.Google Scholar
  104. RKLL75.
    A. H. G. Rinnooy Kan, B. J. Lageweg, J. K. Lenstra, Minimizing total costs in one-machine scheduling, Oper. Res. 23, 1975, 908–927.Google Scholar
  105. RZ86.
    I. Rival, N. Zaguiga, Constructing greedy linear extensions by interchanging chains, Order 3, 1986, 107–121.Google Scholar
  106. Sah76.
    S. Sahni, Algorithms for scheduling independent tasks, J. Assoc. Comput. Mach. 23, 1976, 116–127.Google Scholar
  107. Sch71.
    L. E. Schrage, Obtaining optimal solutions to resource constrained network scheduling problems, AIIE Systems Engineering Conference, Phoenix, Arizona, 1971.Google Scholar
  108. Sch82.
    L. E. Schrage, The multiproduct lot scheduling problem, in: M. A. H. Dempster, J. K. Lenstra, A. H. G Rinnooy Kan (eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982.Google Scholar
  109. Sch92.
    G. Schmidt, Minimizing changeover costs on a single machine, in: W. Bühler, F. Feichtinger, F.-J. Radermacher, P. Feichtinger (eds.), DGOR Proceedings 90, Vol. 1, Springer, 1992, 425–432.Google Scholar
  110. Sid73.
    J. B. Sidney, An extension of Moores due date algorithm, in: S. E. Elmaghraby (ed.), Symposium on the Theory of Scheduling and Its Applications, Springer, Berlin, 1973, 393–398.Google Scholar
  111. Sid75.
    J. B. Sidney, Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs, Oper. Res. 23, 1975, 283–298.Google Scholar
  112. Sim78.
    B. Simons, A fast algorithm for single processor scheduling, Proc. 19th Annual IEEE Symp. Foundations of Computer Science, 1978, 50–53.Google Scholar
  113. Smi56.
    W. E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart. 3, 1956, 59–66.Google Scholar
  114. SS86.
    J. B. Sidney, G. Steiner, Optimal sequencing by modular decomposition: polynomial algorithms, Oper. Res. 34, 1986, 606–612.Google Scholar
  115. Tow78.
    W. Townsend, The single machine problem with quadratic penalty function of completion times: A branch and bound solution, Management Sci. 24, 1978, 530–534.Google Scholar
  116. VB83.
    F. J. Villarreal, R. L. Bulfin, Scheduling a single machine to minimize the weighted number of tardy jobs, AILE Trans. 15, 1983, 337–343.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jacek Błażewicz
    • 1
  • Klaus H. Ecker
    • 2
  • Erwin Pesch
    • 3
  • Günter Schmidt
    • 2
  • Jan Węglarz
    • 1
  1. 1.Institute of Computing ScienceTechnical University of PoznańPoznańPoland
  2. 2.Institute of Computing ScienceTechnical University of ClausthalClausthal-ZellerfeldGermany
  3. 3.Faculty of EconomicsUniversity of BonnBonnGermany

Personalised recommendations