Bound on the maximum negative ionization of atoms and molecules

  • Elliott H. Lieb


It is proved that N c , the number of negative particles that can be bound to an atom of nuclear charge z, satisfies N c < 2z +1. For a molecule of K atoms, N c < 2Z +K where Z is the total nuclear charge. As an example, for hydrogen N c = 2, and thus H-- is not stable, which is a result not proved before. The bound particles can be a mixture of different species, e.g., electrons and π mesons; statistics plays no role. The theorem is proved in the static-nucleus approximation, but if the nuclei are dynamical, a related, weaker result is obtained. The kinetic energy operator for the particles can be either [p—eA(x)/c] 2 /2m (nonrelativistic with magnetic field) or ([pc— eA(x)] 2 +m 2 c 4 ) 1/2 —mc 2 (relativistic with magnetic field). This result is not only stronger than that obtained before, but the proof (at least in the atomic case) is simple enough to be given in an elementary quantum-mechanics course.


Triangle Inequality Kinetic Energy Operator Positive Definite Quadratic Form Atomic Case Magnetie Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Ruskai, Commun. Math. Phys. 82, 457 (1982).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    I. M. Sigal, Commun. Math. Phys. 85, 309 (1982). See also Mathematical Problems in Theoretical Physics, Vol. 153 of Lecture Notes in Theoretical Physics (Springer, Berlin, 1982), pp. 149–156.Google Scholar
  3. 3.
    I. M. Sigal, Institute Mittag Leffler Report No. 12 (1982, revised in 1983), Ann. Phys. (to be published).Google Scholar
  4. 4.
    M. B. Ruskai, Commun. Math. Phys. 85, 325 (1982).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    R. Benguria and E. H. Lieb, Phys. Rev. Lett. 50, 1771 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    B. Baumgartner, J. Phys. A (to be published).Google Scholar
  7. 7.
    R. Benguria and E. H. Lieb, (unpublished).Google Scholar
  8. 8.
    E. H. Lieb, I. M. Sigal, B. Simon, and W. E. Thirring (unpublished). See also Phys. Rev. Lett. 52, 994(1984).Google Scholar
  9. 9.
    R. N. Hill, Mathematical Problems in Theoretical Physics. Proceedings of the International Conference on Mathematical Physics, Lausanne, 1979, Vol. 116 of Lecture Notes in Physics edited by K. Osterwalder (Springer, New York, 1979), pp. 52–56.Google Scholar
  10. 10.
    G. Zhislin, Trudy, Mosk. Mat. Obšč. 2, 81 (1960).Google Scholar
  11. 11.
    B. Baumgartner, Lett. Math. Phys. 7, 439 (1983).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    F. H. Stillinger and D. K. Stillinger, Phys. Rev. A 10, 1109 (1974);ADSCrossRefGoogle Scholar
  13. 12a.
    F. H. Stillinger, J. Chem. Phys. 45, 3623 (1966).Google Scholar
  14. 13.
    E. H. Lieb, Phys. Rev. Lett. 52, 315 (1984).MathSciNetADSCrossRefGoogle Scholar
  15. 14.
    E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).MathSciNetADSCrossRefGoogle Scholar
  16. 14a.
    E. H. Lieb, Erratum: 54, 311(E) (1982).Google Scholar
  17. 15.
    I. Daubechies and E. H. Lieb, Commun. Math. Phys. 90, 511 (1983).MathSciNetADSCrossRefMATHGoogle Scholar
  18. 16.
    E. H. Lieb and B. Simon, J. Chem. Phys. 61, 735 (1974);MathSciNetADSCrossRefGoogle Scholar
  19. 16.
    E. H. Lieb and B. Simon, Commun. Math. Phys. 52, 185 (1977). Theorem 2.4 states, inter alia, that 1 ..., ∈ N are the N lowest points of the spectrum of h. This is correct, but the proof is wrong. A correct proof is given in the earlier summary: E. H. Lieb, in Proceedings of the International Congress of Mathematicians, Vancouver, 1974, Vol. 2, pp. 383–386.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations