Skip to main content

Abstract

Now that the properties of the ground state of quantum-mechanical many-body systems (bosons) at low density, p, can be examined experimentally it is appropriate to revisit some of the formulas deduced by many authors 4–5 decades ago. One of these is that the leading term in the energy/particle is 4πaρ where a is the scattering length of the 2-body potential. Owing to the delicate and peculiar nature of bosonic correlations (such as the strange N 7/5 law for charged bosons), four decades of research failed to establish this plausible formula rigorously. The only previous lower bound for the energy was found by Dyson in 1957, but it was 14 times too small. The correct asymptotic formula has recently been obtained jointly with J. Yngvason and this work will be presented. The reason behind the mathematical difficulties will be emphasized. A different formula, postulated as late as 1971 by Schick, holds in two-dimensions and this, too, will be shown to be correct. Another problem of great interest is the existence of Bose-Einstein condensation, and what little is known about this rigorously will also be discussed. With the aid of the methodology developed to prove the lower bound for the homogeneous gas, two other problems have been successfully addressed. One is the proof (with Yngvason and Seiringer) that the Gross-Pitaevskii equation correctly describes the ground state in the ‘traps’ actually used in the experiments. The other is a very recent proof (with Solovej) that Foldy’s 1961 theory of a high density gas of charge particles correctly describes its ground state energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Lieb, J. Yngvason, Ground State Energy of the low density Bose Gas, Phys. Rev. Lett. 80, 2504–2507 (1998). arXiv math-ph/9712138, mp-arc 97–631

    Article  ADS  Google Scholar 

  2. E.H. Lieb, J. Yngvason, The Ground State Energy of a Dilute Two-dimensional Bose Gas, J. Stat. Phys. (in press) arXiv math-ph/0002014, mp_arc 00–63.

    Google Scholar 

  3. E.H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional, Phys. Rev A 61, 043602–1 – 043602–13 (2000)mp_arc 99–312, arXiv math-ph/9908027 (1999).

    Google Scholar 

  4. E.H. Lieb, R. Seiringer and J. Yngvason, A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-dimensional Bose Gas, Commun. Math. Phys. (in press). arXiv cond-mat/0005026, mp_arc 00–203.

    Google Scholar 

  5. E.H. Lieb, J.P. Solovej, Ground State Energy of the One-Component Charged Bose Gas, Commun. Math. Phys. bf 217, 127–163 (2001). arXiv cond-mat/0007425, mp_arc 00–303.

    Article  MathSciNet  ADS  Google Scholar 

  6. E.H. Lieb, J. Yngvason, The Ground State Energy of a Dilute Bose Gas, in Differential Equations and Mathematical Physics, University of Alabama, Birmingham, 1999, R. Weikard and G. Weinstein, eds., 271–282 Amer. Math. Soc./Internat. Press (2000). arXiv math-ph/9910033, mp-arc 99–401.

    Google Scholar 

  7. E.H. Lieb, R. Seiringer, J. Yngvason, The Ground State Energy and Density of Interacting Bosons in a Trap, in Quantum Theory and Symmetries, Goslar, 1999, H.-D. Doebner, V.K. Dobrev, J.-D. Hennig and W. Luecke, eds., pp. 101–110, World Scientific (2000). arXiv math-ph/9911026, mp-arc 99–439.

    Google Scholar 

  8. W. Ketterle, N. J. van Druten, Evaporative Cooling of Trapped Atoms, in B. Bederson, H. Walther, eds., Advances in Atomic, Molecular and Optical Physics, 37, 181–236, Academic Press (1996).

    Google Scholar 

  9. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  10. R. Seiringer, Diplom thesis, University of Vienna, (1999).

    Google Scholar 

  11. N.N. Bogolubov, J. Phys. (U.S.S.R.) 11, 23 (1947);

    MathSciNet  Google Scholar 

  12. N.N. Bogolubov and D.N. Zubarev, Sov. Phys.-JETP 1, 83 (1955).

    Google Scholar 

  13. K. Huang, C.N. Yang, Phys. Rev. 105, 767–775 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. T.D. Lee, K. Huang, and C.N. Yang, Phys. Rev. 106, 1135–1145 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K.A. Brueckner, K. Sawada, Phys. Rev. 106, 1117–1127, 1128–1135 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S.T. Beliaev, Sov. Phys.-JETP 7, 299–307 (1958).

    MathSciNet  Google Scholar 

  17. T.T. Wu, Phys. Rev. 115, 1390 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. N. Hugenholtz, D. Pines, Phys. Rev. 116, 489 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Girardeau, R. Arnowitt, Phys. Rev. 113, 755 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. T.D. Lee, C.N. Yang, Phys. Rev. 117, 12 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E.H. Lieb, Simplified Approach to the Ground State Energy of an Imperfect Bose Gas, Phys. Rev. 130 (1963), 2518–2528. See also Phys. Rev. 133 (1964), A899–A906 (with A.Y. Sakakura) and Phys. Rev. 134 (1964), A312–A315 (with W. Liniger).

    Article  ADS  Google Scholar 

  22. E.H. Lieb, The Bose fluid, in W.E. Brittin, ed., Lecture Notes in Theoretical Physics VIIC, Univ. of Colorado Press, pp. 175–224 (1964).

    Google Scholar 

  23. F.J. Dyson, Ground-State Energy of a Hard-Sphere Gas, Phys. Rev. 106, 20–24 (1957).

    Article  ADS  MATH  Google Scholar 

  24. B. Baumgartner, The Existence of Many-particle Bound States Despite a Pair Interaction with Positive Scattering Length, J. Phys. A 30 (1997), L741–L747.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. E.H. Lieb, W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys. Rev. 130, 1605–1616 (1963);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E.H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum, Phys. Rev. 130, 1616–1624 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. G. Temple, The theory of Rayleigh’s Principle as Applied to Continuous Systems, Proc. Roy. Soc. London A 119 (1928), 276–293.

    Article  ADS  MATH  Google Scholar 

  28. M. Schick, Two-Dimensional System of Hard Core Bosons, Phys. Rev. A 3, 1067–1073 (1971).

    Article  ADS  Google Scholar 

  29. T. Kennedy, E.H. Lieb, S. Shastry, The XY Model has Long-Range Order for all Spins and all Dimensions Greater than One, Phys. Rev. Lett. textbf 61, 2582–2584 (1988).

    Article  ADS  Google Scholar 

  30. E.H. Lieb, H. Narnhofer, The Thermodynamic Limit for Jellium, J. Stat. Phys. 12, 291–310 (1975). Errata J. Stat. Phys. 14, 465 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. L.L. Foldy, Charged Boson Gas, Phys. Rev. 124, 649–651 (1961); Errata ibid 125, 2208 (1962).

    Article  ADS  Google Scholar 

  32. F.J. Dyson, Ground State Energy of a Finite System of Charged Particles, J. Math. Phys. 8, 1538–1545 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Conlon, E.H. Lieb, H-T. Yau The N 7/5 Law for Charged Bosons, Commun. Math. Phys. 116, 417–448 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  34. G.M. Graf, J.P. Solovej, A correlation estimate with applications to quantum systems with Coulomb interactions, Rev. Math. Phys., 6 (No. 5a, Special Issue) 977–997 (1994). mp_arc 93–60.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (2001). The Bose Gas: A Subtle Many-Body Problem. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics