Skip to main content

The Stability and Instability of Relativistic Matter

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

We consider the quantum mechanical many-body problem of electrons and fixed nuclei interacting via Coulomb forces, but with a relativistic form for the kinetic energy, namely p 2 /2m is replaced by (p 2 c 2 + m 2 c 4 ) 1/2 — mc 2 . The electrons are allowed to have q spin states (q = 2 in nature). For one electron and one nucleus instability occurs if Zα>2/π, where z is the nuclear charge and a is the fine structure constant. We prove that stability occurs in the many-body case if z α2/π and α l/(47q). For small z, a better bound on a is also given. In the other direction we show that there is a critical αc (no greater than 128/15π) such that if α>αc then instability always occurs for all positive z (not necessarily integral) when the number of nuclei is large enough. Several other results of a technical nature are also given such as localization estimates and bounds for the relativistic kinetic energy.

Work partially supported by U.S. National Science Foundation grant PHY-85–15288-A02

The author thanks the Institute for Advanced Study for its hospitality and the U.S. National Science Foundation for support under grant DMS-8601978

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, J.R.: Inequalities for potentials of particle systems. 111. J. Math. 24, 645–652 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Chandrasekhar, S.: Phil. Mag. 11, 592 (1931)

    Google Scholar 

  3. Chandrasekhar, S.: Astro. J. 74, 81 (1931)

    Article  ADS  MATH  Google Scholar 

  4. Chandrasekhar, S.: Monthly Notices Roy. Astron. Soc. 91, 456 (1931)

    ADS  Google Scholar 

  5. Chandrasekhar, S.: Rev. Mod. Phys. 56, 137 (1984)

    Article  ADS  Google Scholar 

  6. Conlon, J.G.: The ground state energy of a classical gas. Commun. Math. Phys. 94, 439–458 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Conlon, J.G., Lieb, E.H., Yau, H.-T.: The N7/5 law for charged bosons. Commun. Math. Phys. 116,417–448 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  8. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  9. Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511–520 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Daubechies, I.: One electron molecules with relativistic kinetic energy: properties of the discrete spectrum. Commun. Math. Phys. 94, 523–535 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  11. Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys. 90, 497–510 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dyson, F.J.: Ground state energy of a finite system of charged particles. J. Math. Phys. 8, 1538–1545(1967)

    Article  MathSciNet  ADS  Google Scholar 

  13. Dyson, F.J., Lenard, A.: Stability of matter I and II. J. Math. Phys. 8, 423–434 (1967); ibid 9, 698–711 (1968). See also Lenard’s Battelle lecture. In: Lecture Notes in Physics, vol. 23. Berlin, Heidelberg, New York: Springer 1973

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, Vol. 1. New York, Toronto, London: McGraw-Hill 1954, p. 75, 2.4 (35)

    Google Scholar 

  15. Federbush, P.: A new approach to the stability of matter problem. II. J. Math. Phys. 16, 706–709 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  16. Fefferman, C.: The N-body problem in quantum mechanics. Commun. Pure Appl. Math. Suppl. 39, S67–S109 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Math. Iberoamericana 2, 119–215(1986)

    Article  Google Scholar 

  18. Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Commun. Math. Phys. 104, 251–270 (1986)

    Article  ADS  MATH  Google Scholar 

  19. Herbst, I.: Spectral theory of the operator (p 2 + m 2 ) 1/2 -ze 2 /rCommun. Math. Phys. H, 285–294 (1977); Errata ibid 55, 316 (1977)

    Article  ADS  Google Scholar 

  20. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966. See remark 5.12, p. 307

    Book  MATH  Google Scholar 

  21. Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators with (Math) potentials. J. Math. Phys. 22, 1033–1044 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Lieb, E.H.: Stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. Lieb, E.H.: The N5/3 law for bosons. Phys. Lett. 70A, 71–73 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  24. Lieb, E.H. : Density functionals for Coulomb systems. Int. J. Quant. Chem. 24,243–277 (1983)

    Article  Google Scholar 

  25. Lieb, E.H.: On characteristic exponents in turbulence. Commun. Math. Phys. 92, 473–480 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. II. The many electron atom and the one electron molecule. Commun. Math. Phys. 104, 271–282 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Lieb, E., Simon, B.: Thomas Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116(1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lieb, E.H., Thirring, W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975). Errata, ibid 35,1116 (1975); see also their article: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Essays in honor of Valentine Bargmann. Lieb, E.H., Simon, B., Wightman, A.S. (eds.). Princeton, NJ: Princeton University Press 1976

    Article  ADS  Google Scholar 

  29. Lieb, E.H., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY) 155, 494–512 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  30. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112,147–174(1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. See also Lieb, E.H. and Yau, H.-T.: A rigorous examination of the Chandrasekhar theory of stellar collapse. Astro. J. 323,140–144 (1987)

    Article  ADS  Google Scholar 

  32. Loss, M., Yau, H.-T.: Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104, 283–290 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20,319–337 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Yau, HT. (2001). The Stability and Instability of Relativistic Matter. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics