Advertisement

The Stability and Instability of Relativistic Matter

  • Elliott H. Lieb
  • Horng-Tzer Yau

Abstract

We consider the quantum mechanical many-body problem of electrons and fixed nuclei interacting via Coulomb forces, but with a relativistic form for the kinetic energy, namely p 2 /2m is replaced by (p 2 c 2 + m 2 c 4 ) 1/2 — mc 2 . The electrons are allowed to have q spin states (q = 2 in nature). For one electron and one nucleus instability occurs if Zα>2/π, where z is the nuclear charge and a is the fine structure constant. We prove that stability occurs in the many-body case if z α2/π and α l/(47q). For small z, a better bound on a is also given. In the other direction we show that there is a critical αc (no greater than 128/15π) such that if α>αc then instability always occurs for all positive z (not necessarily integral) when the number of nuclei is large enough. Several other results of a technical nature are also given such as localization estimates and bounds for the relativistic kinetic energy.

Keywords

Density Matrix Ground State Energy Coulomb Potential Negative Eigenvalue Relativistic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter, J.R.: Inequalities for potentials of particle systems. 111. J. Math. 24, 645–652 (1980)MathSciNetMATHGoogle Scholar
  2. 2.
    Chandrasekhar, S.: Phil. Mag. 11, 592 (1931)Google Scholar
  3. 2.
    Chandrasekhar, S.: Astro. J. 74, 81 (1931)ADSCrossRefMATHGoogle Scholar
  4. 2.
    Chandrasekhar, S.: Monthly Notices Roy. Astron. Soc. 91, 456 (1931)ADSGoogle Scholar
  5. 2.
    Chandrasekhar, S.: Rev. Mod. Phys. 56, 137 (1984)ADSCrossRefGoogle Scholar
  6. 3.
    Conlon, J.G.: The ground state energy of a classical gas. Commun. Math. Phys. 94, 439–458 (1984)MathSciNetADSCrossRefMATHGoogle Scholar
  7. 4.
    Conlon, J.G., Lieb, E.H., Yau, H.-T.: The N7/5 law for charged bosons. Commun. Math. Phys. 116,417–448 (1988)MathSciNetADSCrossRefGoogle Scholar
  8. 5.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  9. 6.
    Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511–520 (1983)MathSciNetADSCrossRefMATHGoogle Scholar
  10. 7.
    Daubechies, I.: One electron molecules with relativistic kinetic energy: properties of the discrete spectrum. Commun. Math. Phys. 94, 523–535 (1984)MathSciNetADSCrossRefGoogle Scholar
  11. 8.
    Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys. 90, 497–510 (1983)MathSciNetADSCrossRefMATHGoogle Scholar
  12. 9.
    Dyson, F.J.: Ground state energy of a finite system of charged particles. J. Math. Phys. 8, 1538–1545(1967)MathSciNetADSCrossRefGoogle Scholar
  13. 10.
    Dyson, F.J., Lenard, A.: Stability of matter I and II. J. Math. Phys. 8, 423–434 (1967); ibid 9, 698–711 (1968). See also Lenard’s Battelle lecture. In: Lecture Notes in Physics, vol. 23. Berlin, Heidelberg, New York: Springer 1973MathSciNetADSCrossRefMATHGoogle Scholar
  14. 11.
    Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, Vol. 1. New York, Toronto, London: McGraw-Hill 1954, p. 75, 2.4 (35)Google Scholar
  15. 12.
    Federbush, P.: A new approach to the stability of matter problem. II. J. Math. Phys. 16, 706–709 (1975)MathSciNetADSCrossRefGoogle Scholar
  16. 13.
    Fefferman, C.: The N-body problem in quantum mechanics. Commun. Pure Appl. Math. Suppl. 39, S67–S109 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 14.
    Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Math. Iberoamericana 2, 119–215(1986)CrossRefGoogle Scholar
  18. 15.
    Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Commun. Math. Phys. 104, 251–270 (1986)ADSCrossRefMATHGoogle Scholar
  19. 16.
    Herbst, I.: Spectral theory of the operator (p 2 + m 2 ) 1/2 -ze 2 /rCommun. Math. Phys. H, 285–294 (1977); Errata ibid 55, 316 (1977)ADSCrossRefGoogle Scholar
  20. 17.
    Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966. See remark 5.12, p. 307CrossRefMATHGoogle Scholar
  21. 18.
    Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators with (Math) potentials. J. Math. Phys. 22, 1033–1044 (1981)MathSciNetADSCrossRefMATHGoogle Scholar
  22. 19.
    Lieb, E.H.: Stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)MathSciNetADSCrossRefGoogle Scholar
  23. 20.
    Lieb, E.H.: The N5/3 law for bosons. Phys. Lett. 70A, 71–73 (1979)MathSciNetADSCrossRefGoogle Scholar
  24. 21.
    Lieb, E.H. : Density functionals for Coulomb systems. Int. J. Quant. Chem. 24,243–277 (1983)CrossRefGoogle Scholar
  25. 22.
    Lieb, E.H.: On characteristic exponents in turbulence. Commun. Math. Phys. 92, 473–480 (1984)MathSciNetADSCrossRefMATHGoogle Scholar
  26. 23.
    Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. II. The many electron atom and the one electron molecule. Commun. Math. Phys. 104, 271–282 (1986)MathSciNetADSCrossRefMATHGoogle Scholar
  27. 24.
    Lieb, E., Simon, B.: Thomas Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116(1977)MathSciNetCrossRefMATHGoogle Scholar
  28. 25.
    Lieb, E.H., Thirring, W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975). Errata, ibid 35,1116 (1975); see also their article: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Essays in honor of Valentine Bargmann. Lieb, E.H., Simon, B., Wightman, A.S. (eds.). Princeton, NJ: Princeton University Press 1976ADSCrossRefGoogle Scholar
  29. 26.
    Lieb, E.H., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY) 155, 494–512 (1984)MathSciNetADSCrossRefGoogle Scholar
  30. 27.
    Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112,147–174(1987).MathSciNetADSCrossRefMATHGoogle Scholar
  31. 27a.
    See also Lieb, E.H. and Yau, H.-T.: A rigorous examination of the Chandrasekhar theory of stellar collapse. Astro. J. 323,140–144 (1987)ADSCrossRefGoogle Scholar
  32. 28.
    Loss, M., Yau, H.-T.: Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104, 283–290 (1986)MathSciNetADSCrossRefMATHGoogle Scholar
  33. 29.
    Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20,319–337 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  • Horng-Tzer Yau
    • 2
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA
  2. 2.School of MathematicsThe Institute for Advanced StudyPrincetonUSA

Personalised recommendations