Advertisement

The Stability of Matter: From Atoms to Stars

  • Elliott H. Lieb

Abstract

Why is ordinary matter (e.g., atoms, molecules, people, planets, stars) as stable as it is? Why is it the case, if an atom is thought to be a miniature solar system, that bringing very large numbers of atoms together (say 1030) does not produce a violent explosion? Sometimes explosions do occur, as when stars collapse to form supernovae, but normally matter is well behaved. In short, what is the peculiar mechanics of the elementary particles (electrons and nuclei) that constitute ordinary matter so that the material world can have both rich variety and stability?

Keywords

Quantum Mechanic Neutron Star Ground State Energy Ordinary Matter Pauli Exclusion Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AI]
    American Institute of Physics Handbook, McGraw-Hill, New York, 1972 third ed., p. 7–6.Google Scholar
  2. [AM]
    P. Armbruster and G. Münzenberg, Creating superheavy elements, Scientific American 260 (1989), 66–72.ADSCrossRefGoogle Scholar
  3. [AB]
    J. Auchmuty and R. Beals, Variational solution of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43 (1971), 255–271.MathSciNetMATHGoogle Scholar
  4. [ABa]
    J. Auchmuty and R. Beals,See also Models of rotating stars, Astrophys. J. 165 (1971), L79-L82.ADSCrossRefGoogle Scholar
  5. [B]
    G. Baym, Neutron stars, in Enclyclopedia of Physics, (R. G. Lerner and G. L. Trigg eds.) Addison-Wesley, London, 1981, pp. 659–660.Google Scholar
  6. [BM]
    M. Born, Quantenmechanik der Stossvorgänge, Z. Phys. 38 (1926), 803–827.ADSCrossRefGoogle Scholar
  7. [CH]
    S. Chandrasekhar, The maximum mass of ideal white dwarfs, Astrophys. J. 74 (1931), 81–82.ADSCrossRefMATHGoogle Scholar
  8. [CHa]
    S. Chandrasekhar, See also On stars, their evolution and stability, Rev. Mod. Phys. 56(1984), 137–147.ADSCrossRefGoogle Scholar
  9. [CO]
    J. Conlon, The ground state energy of a classical gas, Comm. Math. Phys. 94 (1984), 439–458.MathSciNetADSCrossRefMATHGoogle Scholar
  10. [CLY]
    J. G. Conlon, E. H. Lieb and H-T. Yau, The N7/5law for charged bosons, Comm. Math. Phys. 116 (1988), 417–448.MathSciNetADSCrossRefGoogle Scholar
  11. [DA]
    I. Daubechies, An uncertainly principle for fermions with generalized kinetic energy, Comm. Math. Phys. 90 (1983), 511–520.MathSciNetADSCrossRefMATHGoogle Scholar
  12. [DAL]
    I. Daubechies and E. H. Lieb, One electron relativistic molecules with Coulomb interactions, Comm. Math. Phys. 90 (1983), 497–510.MathSciNetADSCrossRefMATHGoogle Scholar
  13. [D]
    F. J. Dyson, Ground state energy of a finite system of charged particles, J. Math. Phys. 8(1967), 1538–1545.MathSciNetADSCrossRefGoogle Scholar
  14. [DL]
    F. J. Dyson and A. Lenard, Stability of matter. I and II, J. Math. Phys. 8 (1967), 423–434; ibid 9 (1968), 698–711.MathSciNetADSCrossRefMATHGoogle Scholar
  15. [FD]
    C. Fefferman and R. de la Llave, Relativistic stability of matter. I., R.v. Math. Iberoamericana 2 (1986), 119–215.CrossRefGoogle Scholar
  16. [FE]
    E. Fermi, Un metodo statistico per la determinazione di alcune priorieta delTatomo, Atti Acad. Naz. Lincei, Rend. 6 (1927), 602–607.Google Scholar
  17. [FR]
    A. P. French, Atoms, in Encyclopedia of Physics, (R. G. Lerner and G. L. Trigg eds.), Addison-Wesley, London (1981), p. 64.Google Scholar
  18. [H]
    I. Herbst, Spectral theory of the operator (p 2 + m 2)½-ze 2/r, Comm. Math. Phys. 53 (1977), 285–294. Errata, ibid. 55 (1977), 316.MathSciNetADSCrossRefMATHGoogle Scholar
  19. [HNT]
    P. Hertel, H. Narnhofer and W. Thirring, Thermodynamic functions for fermions with gravostatic and electrostatic interactions, Comm. Math. Phys. 28(1972), 159–176.MathSciNetADSCrossRefGoogle Scholar
  20. [HT]
    P. Hertel and W. Thirring, Free energy of gravitating fermions, Comm. Math. Phys. 24(1971), 22–36.MathSciNetADSCrossRefMATHGoogle Scholar
  21. [J]
    J. H. Jeans, The mathematical theory of electricity and magnetism, Cambridge Univ. Press, Cambridge, third edition, 1915, p. 168.Google Scholar
  22. [JM]
    M. Jammer, The conceptual development of quantum mechanics, McGraw-Hill, New York, 1966.Google Scholar
  23. [K]
    T. Kato, Perturbation theory for linear operators, Springer-Verlag, Heidelberg, 1966. See Remark 5.12 on p. 307.CrossRefMATHGoogle Scholar
  24. [KS]
    H. Kalf, U.-W. Schminke, J. Walter and R. Wüst, On the spectral theory of Schrodinger and Dirac operators with strongly singular potentials, Lecture Notes in Math., vol. 448 Springer-Verlag, Berlin and New York, 1974, pp. 182–226.Google Scholar
  25. [LE]
    A. Lenard, Lectures on the Coulomb stability problem, Lecture Notes in Physics 20 (1973), 114–135.MathSciNetADSCrossRefGoogle Scholar
  26. [L1]
    E. H. Lieb, Stability of matter, Rev. Mod. Phys. 48 (1976), 553–569.MathSciNetADSCrossRefGoogle Scholar
  27. [L2]
    E. H. Lieb, On characteristic exponents in turbulence, Comm. Math. Phys. 92 (1984), 473–480.MathSciNetADSCrossRefMATHGoogle Scholar
  28. [L3]
    E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53 (1981), 603–641 ; errata ibid 54 (1982), 311.MathSciNetADSCrossRefGoogle Scholar
  29. [L4]
    E. H. Lieb, Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. 29A (1984), 3018–3028.ADSCrossRefGoogle Scholar
  30. [L4a]
    E. H. Lieb, A summary is in Phys. Rev. Lett. 52 (1984), 315–317.MathSciNetADSCrossRefGoogle Scholar
  31. [L5]
    E. H. Lieb, The N 5/3law for bosons, Phys. Lett. A 70 (1979), 71–73.MathSciNetADSCrossRefGoogle Scholar
  32. [LL]
    E. H. Lieb and J. L. Lebowitz, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. in Math. 9 (1972), 316–398.MathSciNetCrossRefMATHGoogle Scholar
  33. [LO]
    E. H. Lieb and S. Oxford, An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem. 19 (1981), 427–439.CrossRefGoogle Scholar
  34. [LS]
    E. H. Lieb and B. Simon. The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math. 23 (1977), 22–116.MathSciNetCrossRefMATHGoogle Scholar
  35. [LT1]
    E. H. Lieb and W. E. Thirring, Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35 (1975), 687–689. Errata ibid. 35(1975), 1116.ADSCrossRefGoogle Scholar
  36. [LT2]
    E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the Schrodinger Hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, (E. Lieb, B. Simon and A. Wightman, eds.), Princeton Univ. Press, Princeton, New Jersey, 1976, pp. 269–330.Google Scholar
  37. [LT3]
    E. H. Lieb and W. E. Thirring. Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. of Phys. (NY) 155 (1984), 494–512.MathSciNetADSCrossRefGoogle Scholar
  38. [LY1]
    E. H. Lieb and H-T. Yau, The stability and instability of relativistic matter, Comm. Math. Phys. 118 (1988), 177–213.MathSciNetADSCrossRefMATHGoogle Scholar
  39. [LY1a]
    E. H. Lieb and H-T. Yau, A summary is in Many-body stability implies a bound on the fine structure constant, Phys. Rev. Lett. 61 (1988), 1695–1697.MathSciNetADSCrossRefGoogle Scholar
  40. [LY2]
    E. H. Lieb and H-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), 147–174.MathSciNetADSCrossRefMATHGoogle Scholar
  41. [LY2a]
    E. H. Lieb and H-T. Yau, A summary is in A rigorous examination of the Chandrasekhar theory of stellar collapse, Astrophys. J. 323(1987), 140–144.ADSCrossRefGoogle Scholar
  42. [M]
    J. Messer, Temperature dependent Thomas-Fermi theory, Lectures Notes in Physics no. 147, Springer-Verlag, Berlin and New York, 1981.Google Scholar
  43. [P]
    W. Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren, Z. Phys. 31 (1925), 765–785.ADSCrossRefMATHGoogle Scholar
  44. [RB]
    R. Ruffini and S. Bonazzola, Systems of self-gravitating particles in general relativity and the concept of equation of state, Phys. Rev. 187 (1969), 1767–1783.ADSCrossRefGoogle Scholar
  45. [SE]
    E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 79 (1926), 361–376. See also ibid. 79 (1926), 489–527; 80 (1926), 437–490; 81 (1926), 109–139.CrossRefMATHGoogle Scholar
  46. [ST]
    S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs and neutron stars, Wiley, New York, 1983.CrossRefGoogle Scholar
  47. [T]
    L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc. 23(1927), 542–548.ADSCrossRefMATHGoogle Scholar
  48. [TW]
    W. Thirring, A course in mathematical physics, vol. 4, Springer-Verlag, Berlin and New York, 1983.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonNew JerseyUSA

Personalised recommendations