Skip to main content

Ground states of large quantum dots in magnetic fields

  • Chapter
  • 421 Accesses

Abstract

The quantum-mechanical ground state of a two-dimensional (2D) TV-electron system in a confining potential V(x)=Kv(x)(K is a coupling constant) and a homogeneous magnetic field B is studied in the high-density limit N → ∞, K → ∞ with K/N fixed. It is proved that the ground-state energy and electronic density can be computed exactly in this limit by minimizing simple functional of the density. There are three such functionals depending on the way B/N varies as N → ∞: A 2D Thomas-Fermi (TF) theory applies in the case B/N → 0; if B/N → const ≠ 0 the correct limit theory is a modified B-dependent TF model, and the case B/N → ∞ is described by a classical continuum electrostatic theory. For homogeneous potentials this last model describes also the weak-coupling limit K/N → 0 for arbitrary B. Important steps in the proof are the derivation of a Lieb-Thirring inequality for the sum of eigenvalues of single-particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-correlation energy. For this last estimate we study a model of classical point charges with electrostatic interactions that provides a lower bound for the true quantum-mechanical energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, in Single Charge Tunneling, edited by H. Grabert, J. M. Martinis, and M. H. Devoret (Plenum, New York, 1991).

    Google Scholar 

  2. M. A. Kästner, Rev. Mod. Phys. 64, 849 (1992).

    Article  ADS  Google Scholar 

  3. P. L. McEuen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kastner, N. S. Wingreen, and S. J. Wind, Phys. Rev. B 45, 11419(1992).

    Article  ADS  Google Scholar 

  4. R. C. Ashoori, H. L. Stornier, J. S. Weiner, L. N. Pfeiffer, S. J. Pearton, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 68, 3088 (1992).

    Article  ADS  Google Scholar 

  5. R. C. Ashoori, H. L. Stornier, J. S. Weiner, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 71, 613 (1993).

    Article  ADS  Google Scholar 

  6. N. C. van der Vaart, M. P. de Ruyter van Steveninck, L. P. Kouwenhoven, A. T. Johnson, Y. V. Nazarov, and C. J. P. M. Harmans, Phys. Rev. Lett. 73, 320 (1994).

    Article  ADS  Google Scholar 

  7. O. Klein, C. Chamon, D. Tang, D. M. Abush-Magder, X.-G. Wen, M. A. Kästner, and S. J. Wind (unpublished).

    Google Scholar 

  8. A. Kumar, S. E. Laux, and F. Stern, Phys. Rev. B 42, 5166 (1990).

    Article  ADS  Google Scholar 

  9. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  10. V. Shikin, S. Nazin, D. Heitmann, and T. Demel, Phys. Rev. B 43, 11903(1991).

    Article  ADS  Google Scholar 

  11. V. Gudmundsson and R. R. Gerhardts, Phys. Rev. B 43, 12098(1991).

    Article  ADS  Google Scholar 

  12. A. H. MacDonald, S. R. Eric Yang, and M. D. Johnson, Aust. J. Phys. 46, 345 (1993).

    Article  ADS  Google Scholar 

  13. P. L. McEuen, N. S. Wingreen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kastner, and S. J. Wind, Physica B 189, 70 (1993).

    Article  ADS  Google Scholar 

  14. S.-R. Eric Yang, A. H. MacDonald, and M. D. Johnson, Phys. Rev. Lett. 71, 3194 (1993).

    Article  ADS  Google Scholar 

  15. J. M. Kinaret and N. S. Windgreen, Phys. Rev. B 48, 11113 (1993).

    Article  ADS  Google Scholar 

  16. D. Pfannkuche, V. Gudmundsson, and P. A. Maksym, Phys. Rev. B 47, 2244 (1993).

    Article  ADS  Google Scholar 

  17. D. Pfannkuche, V. Gudmundsson, P. Hawrylak, and R. R. Gerhardts, Solid State Electron. 37, 1221 (1994).

    Article  ADS  Google Scholar 

  18. M. Ferconi and G. Vignale (unpublished).

    Google Scholar 

  19. E. H. Lieb, J. P. Solovej, and J. Yngvason, Phys. Rev. Lett. 69, 749(1992).

    Article  ADS  Google Scholar 

  20. E. H. Lieb, J. P. Solovej, and J. Yngvason, Commun. Pure Appl. Math. 47, 513 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. H. Lieb, J. P. Solovej, and J. Yngvason, Commun. Math. Phys. 161, 77 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E. H. Lieb, J. P. Solovej, and J. Yngvason, in Proceedings of the Conference on Partial Differential Equations and Mathematical Physics, Birmingham, AL, 1994, edited by I. Knowles (International Press, Cambridge, MA, in press).

    Google Scholar 

  23. Y. Tomishima and K. Yonei, Progr. Theor. Phys. 59, 683 (1978).

    Article  ADS  Google Scholar 

  24. I. Fushiki, E. H. Gudmundsson, C. J. Pethick, and J. Yngvason, Ann. Phys. (N.Y.) 216, 29 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Yngvason, Lett. Math. Phys. 22, 107 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E. H. Lieb and H.-T. Yau, Commun. Math. Phys. 118, 177 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. V. Fock, Z. Phys. 47, 446 (1928).

    Article  ADS  MATH  Google Scholar 

  28. E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981);

    Article  MathSciNet  ADS  Google Scholar 

  29. E. H. Lieb, Rev. Mod. Phys. 54, 311(E) (1982).

    Article  MathSciNet  ADS  Google Scholar 

  30. E. H. Lieb and B. Simon, Adv. Math. 23, 22 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  31. E. H. Lieb and M. Loss (unpublished).

    Google Scholar 

  32. E. H. Lieb and W. E. Thirring, Phys. Rev. Lett. 35, 687 (1975).

    Article  ADS  Google Scholar 

  33. E. H. Lieb and W. E. Thirring, in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, edited by E. H. Lieb, B. Simon, and A. Wightman (Princeton University Press, Princeton, NJ, 1976), pp. 269–303.

    Google Scholar 

  34. L. Erdös, Commun. Math. Phys. (to be published).

    Google Scholar 

  35. E. H. Lieb, Phys. Lett. 70,A 444 (1979).

    Article  MathSciNet  Google Scholar 

  36. E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).

    Article  Google Scholar 

  37. E. H. Lieb and J. P. Solovej, Lett. Math. Phys. 22, 145 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. E. H. Lieb, Phys. Rev. Lett. 46, 457 (1981);

    Article  MathSciNet  ADS  Google Scholar 

  39. E. H. Lieb, Phys. Rev. Lett. 47, 69(E) (1981).

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Simon, Functional Integration and Quantum Physics (Academic, New York, 1979).

    MATH  Google Scholar 

  41. K. Fan, Proc. Natl. Acad. Sci. U.S.A. 37, 760 (1951).

    Article  ADS  MATH  Google Scholar 

  42. E. H. Lieb, Commun. Math. Phys. 92, 57 (1984).

    Google Scholar 

  43. Ph. Blanchard and J. Stubbe (unpublished).

    Google Scholar 

  44. A. Martin, Commun. Math. Phys. 129, 161 (1990).

    Article  ADS  MATH  Google Scholar 

  45. E. H. Lieb, in Schrödinger Operators, Proceedings of a Conference in Sønderborg, Denmark, 1988, edited by H. Holden and A. Jensen, Springer Lecture Notes in Physics Vol. 345 (Springer, Berlin, 1989), pp. 371–382.

    Google Scholar 

  46. V. Bach, Commun. Math. Phys. 147, 527 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. C. Fefferman and R. de la Llave, Rev. Iberoamericana 2, 119 (1986).

    Article  Google Scholar 

  48. E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, NJ, 1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Solovej, J.P., Yngvason, J. (2001). Ground states of large quantum dots in magnetic fields. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics