Advertisement

Surface Phonons

  • Hans Lüth
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

Classical bulk solid-state physics can, broadly speaking, be divided into two categories, one that relates mainly to the electronic properties and another in which the dynamics of the atoms as a whole or of the cores (nuclei and tightly bound core electrons) is treated. This distinction between lattice dynamics and electronic properties, which is followed by nearly every textbook on solid-state physics, is based on the vastly different masses of electrons and atomic nuclei. Displacements of atoms in a solid occur much more slowly than the movements of the electrons. When atoms are displaced from their equilibrium position, a new electron distribution with higher total energy results; but the electron system remains in its ground state, such that after the initial atomic geometry has been reestablished, the whole energy amount is transferred back to the lattice of the nuclei or cores. The electron system is not left in an excited state. The total electronic energy can therefore be considered as a potential for the movement of the nuclei. On the other hand, since the electronic movement is much faster than that of the nuclei, a first approximation for the dynamics of the electrons is based on the assumption of a static lattice with fixed nuclear positions determining the potential for the electrons. This approximation of separate, non-interacting electron dynamics and lattice (nuclear/core) dynamics is called the adiabatic approximation. It was introduced into solid-state and molecular physics by Born and Oppenheimer [5.1]. It is clear, however, that certain phenomena, such as the scattering of conduction electrons on lattice vibrations, are beyond this approximation.

Keywords

Rayleigh Wave Dielectric Function Bulk Mode Longitudinal Optical Rayleigh Surface Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X.1
    J.P. Toennies: Phonon interactions in atom scattering from surfaces, in Dynamics of Gas-Surface Interactions, ed. by G. Benedek, U. Valbusa, Springer Ser. Chem. Phys. Vol. 21(Springer, Berlin, Heidelberg 1982 ) p. 208Google Scholar
  2. E. Hulpke (ed.): Helium Atom Scattering from Surfaces, Springer Ser. Surf. Sci., Vol. 27 ( Springer, Berlin, Heidelberg 1992 )Google Scholar
  3. X.2
    S. Yamamoto, R.E. Stickney: J. Chem. Phys. 53, 1594 (1970)CrossRefGoogle Scholar
  4. X.3
    J.P. Toennies: Physica Scripta T1, 89 (1982)CrossRefGoogle Scholar
  5. X.4
    B. Poelsema, G. Comsa: Scattering of Thermal Energy Atoms from Disordered Surfaces, Springer Tracts Mod. Phys., Vol. 115 ( Springer, Berlin, Heidelberg 1989 )Google Scholar
  6. X.5
    K. Kern, R. David, R.L. Palmer, G. Comsa: Phys. Rev. Lett. 56, 2064 (1986)Google Scholar
  7. X.6
    P. Zeppenfeld, K. Kern, R. David, K. Kuhnke, G. Comsa: Phys. Rev. B 38, 12329 (1988)Google Scholar
  8. 5.1
    M. Born, R. Oppenheimer: Ann. Phys. (Leipzig) 84, 457 (1927)Google Scholar
  9. 5.2
    G. Benedek: Surface Lattice Dynamics. Dynamic Aspects of Surface Physics, LV III Corso (Editrice Compositori, Bologna 1974 ) p. 605 A.A. Maradudin, R.F. Wallis, L. Dobrzinski: Handbook of Surface and Interfaces III, Surface Phonons and Polaritons ( Garland STPM Press, New York 1980 )Google Scholar
  10. 5.3
    L.M. Brekhovskikh, O.A. Godin: Acoustics of Layered Media I,II, Springer Ser. Wave Phen., Vols. 5,10 (Springer, Berlin, Heidelberg 1990, 1992 )Google Scholar
  11. 5.4
    L.M. Brekhovskikh, V. Goncharov: Mechanics of Continua and Wave Dynamics, 2nd edn., Springer Ser. Wave Phen., Vol. 1 ( Springer, Berlin, Heidelberg 1994 )CrossRefGoogle Scholar
  12. 5.5
    E.A. Ash, E.G.S. Paige (eds.): Rayleigh-Wave Theory and Application, Springer Ser. Wave Phen., Vol. 2 ( Springer, Berlin, Heidelberg 1985 )Google Scholar
  13. 5.6
    L.D. Landau, E.M. Lifshitz: Theory of Elasticity VII, Course of Theoretical Physics ( Pergamon, London 1959 ) p. 105Google Scholar
  14. 5.7
    J. Lindhard: Kgl. Danske Videnskab Selskab Mat.-Fys. Medd. 28, No. 8, 1 (1954)Google Scholar
  15. 5.8
    A. Stahl: Surf. Sci. 134, 297 (1983)CrossRefGoogle Scholar
  16. 5.9
    R. Matz, H. Lüuth: Phys. Rev. Lett. 46, 500 (1981)CrossRefGoogle Scholar
  17. 5.10
    M. Hass, B.W. Henvis: J. Phys. Chem. Solids 23, 1099 (1962)CrossRefGoogle Scholar
  18. 5.11
    H. Ibach, D.L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations ( Academic, New York 1982 )Google Scholar
  19. 5.12
    H. Lüuth: Vacuum (GB) 38, 223 (1988)CrossRefGoogle Scholar
  20. 5.13
    F.W. De Wette, G.P. Alldredge, T.S. Chen, R.E. Allen: Phonons. Proc. Int’l Conf. (Rennes), ed. by M.A. Nusimovici (Flamarion, Rennes 1971) p. 395 R.E. Allen, G.P. Alldredge, F.W. De Wette: Phys. Rev. Lett. 24, 301 (1970)Google Scholar
  21. 5.14
    G. Benedek: Surface collective excitations. Proc. NATO ASI on Collective Excitations in Solids (Erice 1981 ); ed. by B.D. Bartols ( Plenum, New York 1982 )Google Scholar
  22. 5.15
    G. Brusdeylins, R.B. Doak, J.P. Toennies: Phys. Rev. Lett. 46, 437 (1981) 5.16 S. Lehwald, J.M. Szeftel, H. Ibach, T.S. Rahman, D.L. Mills: Phys. Rev. Lett. 50, 518 (1983)CrossRefGoogle Scholar
  23. 5.17
    R.E. Allen, G.P. Alldredge, F.W. De Wette: Phys. Rev. B 4, 1661 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hans Lüth
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbHInstitut für Schichten und GrenzflächenJülichGermany
  2. 2.Rheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations