Real-Time Optimal Control of Shape Memory Alloy Actuators in Smart Structures

  • Stefan Seelecke
  • Christof Büskens
  • Ingo Müller
  • Jürgen Sprekels


An optimal control method is proposed for shape memory alloy actuators in smart structures. The method is capable of compensating for the hysteretic behavior present in these materials and thus qualifies for high frequency applications where conventional methods fail. Furthermore, a version has been developed, which is fully real-time capable. It is based on a parametric sensitivity analysis of nonlinear programming problems and is demonstrated to work very robustly for a wide range of parameters.


Optimal Control Problem Shape Memory Alloy Beam Shape Smart Structure Shape Memory Alloy Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. Brinson, M. S. Huang, C. Boiler, and W. Brand: Analysis of Controlled Beam Deflections Using SMA Wires, J. Intelligent Mat Syst Struct 8 (1997) 12–25CrossRefGoogle Scholar
  2. 2.
    C. Büskens: Direkte Optimierungsmethoden zur numerischen Berechnung optimaler Steuerungen. Diploma thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany (1993)Google Scholar
  3. 3.
    C. Büskens: Optimierungsmethoden und Sensitivitatsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen. Dissertation, Institut für Numerische Mathematik, Universitat Münster, Münster, Germany (1998)Google Scholar
  4. 4.
    C. Büskens: Real-Time Solutions for Perturbed Optimal Control Problems by a Mixed Open- and Closed-Loop Strategy. This volume.Google Scholar
  5. 5.
    C. Büskens and H. Maurer: Sensitivity Analysis and Real-Time Optimization of Nonlinear Programming Problems. This volume.Google Scholar
  6. 6.
    C. Büskens and H. Maurer: Sensitivity Analysis and Real-Time Control of Optimal Control Problems Using Nonlinear Programming Methods. This volume.Google Scholar
  7. 7.
    J. M. Cruz-Hernandez and V. Hayward: An Approach to Reduction of Hysteresis in Smart Materials, Proceedings of the 1998 IEEE, International Conference on Robotics & Automation (1998) 1510–1515Google Scholar
  8. 8.
    D. Grant and V. Hayward: Variable Structure Control of Shape Memory Alloy Actuators, IEEE Contr Syst Mag 17 (1997) 80–88CrossRefGoogle Scholar
  9. 9.
    K. K. Ho, J. J. Gill, G. P. Carman and P. Jardine: Fabrication and Characterization of Thin Film NiTi for use as a Microbubble for Active Flow Control, M Wuttig, ed, Proc. 6th Ann. Int. Symp. Smart Struct. Mat., 1–5, Newport Beach, CA (1999)Google Scholar
  10. 10.
    D. C. Lagoudas and S. G. Shu: Residual Deformation of Active Structures with SMA Actuators, Int. J Mech Sci 41 (1999) 595–619MATHCrossRefGoogle Scholar
  11. 11.
    N. Papenfuss, and S. Seelecke: Simulation and Control of SMA Actuators, Proc. 6th Ann. Int. Symp. Smart Struct. Mat., Newport Beach, USA, 1–5 March, 1999,3667 (1999) 586–595Google Scholar
  12. 12.
    S. Seelecke: Control of Beam Structures by Shape Memory Wires, 2nd Sci. Conf. Smart Mechanical Systems — Adaptronics, Otto-von-Guericke Univ. Magdeburg (1997) 43–52Google Scholar
  13. 13.
    S. Seelecke: Adaptive Structures with SMA Actuators — Modeling and Simulation (in German), Habilitation thesis, TU Berlin, Berlin, Germany (1999)Google Scholar
  14. 14.
    S. Seelecke and C. Buskens: Optimal Control of Beam Structures by Shape Memory Wires, S. Hernandez and C.A. Brebbia, eds, OPTI97, Computer Aided Optimum Design of Structures, Rome, Italy (1997) 457–466Google Scholar
  15. 15.
    S. Seelecke, and I. Müller: Shape Memory Alloy Actuators in Smart Structures — Modeling and Simulation, Applied Mechanics Review, submitted (2000)Google Scholar
  16. 16.
    S. G. Shu, D. C. Lagoudas, D. Hughes and J. T. Wen: Modeling of Flexible Beam Actuated by Shape Memory Alloy Wires, Smart Mat Struct 6 (1997) 265–277CrossRefGoogle Scholar
  17. 17.
    G. V. Webb and D. C. Lagoudas: Control of SMA Actuators Under Dynamic Enviroments, Proc. 6th Ann. Int. Symp. Smart Struct. Mat., Newport Beach, USA, 3667 (1999)Google Scholar
  18. 18.
    M. W. M. van der Wijst, P. J. G. Schreurs, and F. E. Veldpaus: Application of Computed Phase Transformation Power to Control Shape Memory Alloy Actuators, Smart Mat Struct 6 (1997) 190–198CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stefan Seelecke
    • 1
  • Christof Büskens
    • 2
  • Ingo Müller
    • 3
  • Jürgen Sprekels
    • 4
  1. 1.Department of Mechanical & Aerospace EngineeringNorth Carolina State UniversityUSA
  2. 2.Lehrstuhl für IngenieurmathematikUniversität BayreuthGermany
  3. 3.Institut für VerfahrenstechnikTechnische Universität BerlinGermany
  4. 4.Weierstraß-Institut für Angewandte Analysis und StochastikBerlinGermany

Personalised recommendations