Advertisement

Combinatorial Online Optimization in Real Time

  • Martin Grötschel
  • Sven O. Krumke
  • Jörg Rambau
  • Thomas Winter
  • Uwe T. Zimmermann
Chapter

Abstract

Optimization is the task of finding a best solution to a given problem. When the decision variables are discrete we speak of a combinatorial optimization problem. Such a problem is online when decisions have to be made before all data of the problem are known. And we speak of a real-time online problem when online decisions have to be computed within very tight time bounds. This paper surveys the art of combinatorial online and realtime optimization, it discusses, in particular, the concepts with which online and real-time algorithms can be analyzed.

Keywords

Local Search Competitive Ratio Online Algorithm Competitive Analysis Online Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albers, Better bounds for online scheduling, Proceedings of the 24th Annual ACM Symposium on the Theory of Computing, 1997, pp. 130–139.Google Scholar
  2. 2.
    S. Arora, Polynomial-time approximation schemes for euclidean TSP and other geometric problems, Proceedings of the 38th Annual IEEE Symposium on the Foundations of Computer Science, 1997, pp. 2–11.Google Scholar
  3. 3.
    N. Ascheuer, Amsel — a modelling and simulation environment library, Online-Documentation available5.Google Scholar
  4. 4.
    N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, Ph.D. thesis, Technische Universität Berlin, 1995.Google Scholar
  5. 5.
    N. Ascheuer, M. Grötschel, N. Kamin, and J. Rambau, Combinatorial online optimization in practice, Optima — Mathematical Programming Society Newsletter (1998), no. 57, 1–6.Google Scholar
  6. 6.
    N. Ascheuer, S. O. Krumke, and J. Rambau, Online dial-a-ride problems: Minimizing the completion time, Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1770, Springer, 2000, pp. 639–650.Google Scholar
  7. 7.
    G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi, Complexity and approximation, combinatorial optimization problems and their approximability properties, Springer, 1999.MATHGoogle Scholar
  8. 8.
    G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Competitive algorithms for the traveling salesman, Proceedings of the 4th Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, vol. 955, August 1995, pp. 206–217.Google Scholar
  9. 9.
    G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Algorithms for the online traveling salesman, Algorithmica (2001), To appear.Google Scholar
  10. 10.
    B. Awerbuch, Y. Bartal, and A. Fiat, Distributed paging for general networks, Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 574–583.Google Scholar
  11. 11.
    R. Battiti and G. Tecchiolli, The reactive tabu search, ORS A journal on computing 6 (1994), no. 2, 126–140.MATHCrossRefGoogle Scholar
  12. 12.
    R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, MIP: Theory and practice closing the gap, ILOG Technical Report, Presented at 19th IFIP TC7 Conference on System Modelling and Optimization, Cambridge, England, July 1999.Google Scholar
  13. 13.
    U. Blasum, M. R. Bussieck, W. Hochstättier, H. H. Scheel, and T. Winter, Scheduling trams in the morning, Mathematical Methods of Operations Research 49 (1999), no. 1, 137–148.MathSciNetMATHGoogle Scholar
  14. 14.
    M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie, The online-TSP against fair adversaries, Proceedings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science, vol. 1767, Springer, 2000, pp. 137–149.Google Scholar
  15. 15.
    A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cambridge University Press, 1998.MATHGoogle Scholar
  16. 16.
    A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of reference, Proceedings of the 23th Annual ACM Symposium on the Theory of Computing, 1991, pp. 249–259.Google Scholar
  17. 17.
    A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of reference, Journal of Computer and System Sciences 50 (1995), 244–258.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson, Adversarial queueing theory, Proceedings of the 23rd Annual ACM Symposium on the Theory of Computing, 1996, pp. 376–385.Google Scholar
  19. 19.
    A. Brooke, D. Kendrick, A. Meeraus, and R. Raman, GAMS — a user’s guide, GAMS Development Corporatio, 1998.Google Scholar
  20. 20.
    E. Cela, The quadratic assignment problem, theory and algorithms, Kluwer Academic Publishers, Dordrecht, 1998.MATHCrossRefGoogle Scholar
  21. 21.
    N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman problem, Tech. report, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.Google Scholar
  22. 22.
    W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial optimization, Wiley Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, 1998.MATHGoogle Scholar
  23. 23.
    J. K. Lenstra E. H. L. Aarts, Local search in combinatorial optimizatio, Wiley, 1997.Google Scholar
  24. 24.
    A. Fiat and G. J. Woeginger (eds.), Online algorithms: The state of the art, Lecture Notes in Computer Science, vol. 1442, Springer, 1998.MATHGoogle Scholar
  25. 25.
    R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A modeling language for mathematical programming, Duxbury Press, Brooks/Cole Publishing Company, 1993.Google Scholar
  26. 26.
    M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the theory of HP-completeness), W.H. Freeman and Company, New York, 1979.Google Scholar
  27. 27.
    R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45 (1966), 1563–1581.Google Scholar
  28. 28.
    Ronald L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics 17 (1969), 263–269.Google Scholar
  29. 29.
    M. Grötschel, S. O. Krumke, and J. Rambau, Forschungsartikel, ch. This book, Springer, 2001.Google Scholar
  30. 30.
    D. Hauptmeier, S. O. Krumke, and J. Rambau, The online dial-a-ride problem under reasonable load, Proceedings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science, vol. 1767, Springer, 2000, pp. 125–136.Google Scholar
  31. 31.
    D. S. Hochbaum (ed.), Approximation algorithms for NP-hard problems, PWS Publishing Company, 20 Park Plaza, Boston, MA 02116–4324, 1997.Google Scholar
  32. 32.
    S. Irani, A. Karlin, and S. Phillips, Strongly competitive algorithms for paging with locality of reference, Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 228–236.Google Scholar
  33. 33.
    A. Karlin, M. Manasse, L. Rudolph, and D. D. Sleator, Competitive snoopy caching, Algorithmica 3 (1988), 79–119.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    E. Koutsoupias and C. Papadimitriou, Beyond competitive analysis, Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science, 1994, pp. 394–400.Google Scholar
  35. 35.
    E. Koutsoupias and C. Papadimitriou, On the k-server conjecture, Journal of the ACM 42 (1995), no. 5, 971–983.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (eds.), The traveling salesman problem, Wiley-Interscience series in discrete mathematics, John Wiley & Sons, 1985.MATHGoogle Scholar
  37. 37.
    J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems, SIAM Journal on Computing 28 (1999), no. 4, 1298–1309.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    R. Motwani, Lecture notes on approximation algorithms: Volume I, Tech. Report CS-TR-92–1435, Department of Computer Science, Stanford University, Stanford, CA 94305–2140, 1992.Google Scholar
  39. 39.
    R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University Press, 1995.MATHGoogle Scholar
  40. 40.
    C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization, Prentice-Hall, Inc., 1982.MATHGoogle Scholar
  41. 41.
    C. Phillips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via resource augmentation, Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, 1997, pp. 140–149.Google Scholar
  42. 42.
    K. Pruhs and B. Kalyanasundaram, Speed is as powerful as clairvoyance, Proceedings of the 36th Annual IEEE Symposium on the Foundations of Computer Science, 1995, pp. 214–221.Google Scholar
  43. 43.
    C. R. Reeves, Modern heuristic techniques for combinatorial problems, McGraw-Hill, 1995.Google Scholar
  44. 44.
    S. Séguin, J.-Y. Potvin, M. Gendreau, T. G. Crainic, and P. Marcotte, Real-time decision problems: An operational research perspective, Journal of the Operational Research Society 48 (1997), 162–174.MATHGoogle Scholar
  45. 45.
    H.-J. Siegert, Simulation zeitdiskreter systeme, Oldenbourg, München, Wien, 1991.Google Scholar
  46. 46.
    D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Communications of the ACM 28 (1985), no. 2, 202–208.MathSciNetCrossRefGoogle Scholar
  47. 47.
    D. Steenken, T. Winter, and U. T. Zimmermann, Stowage and transport optimization in ship planning, (2001).Google Scholar
  48. 48.
    V. Vazirani, Approximation algorithms, Springer, 2001.Google Scholar
  49. 49.
    A. P. A. Vestjens, On-line machine scheduling, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1994.Google Scholar
  50. 50.
    T. Winter, Online and real-time dispatching problems, Ph.D. thesis, Technical University Braunschweig, 1999.Google Scholar
  51. 51.
    T. Winter and U. T. Zimmerman, Real-time dispatch of trams in storage yards, Annals of Operations Research 96 (2000), 287–315.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Martin Grötschel
    • 1
  • Sven O. Krumke
    • 1
  • Jörg Rambau
    • 1
  • Thomas Winter
    • 2
  • Uwe T. Zimmermann
    • 3
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Germany
  2. 2.Information and Communication Mobile NetworksSiemens AGGermany
  3. 3.Abteilung Mathematische OptimierungTechnische Universität BraunschweigGermany

Personalised recommendations